文档库 最新最全的文档下载
当前位置:文档库 › 自适应校正

自适应校正

自适应校正
自适应校正

Scene-based Self Adaptive Iteration Bad Pixel Dynamic Correction Algorithm for

Infrared Focal Plane Arrays

Shuo Yang, Baojun Zhao, Linbo Tang

School of Information and Electronics

Beijing Institute of Technology

Beijing, China

yangdingshe@https://www.wendangku.net/doc/e52197775.html,

Abstract—Infrared focal plane array IRFPA bad pixel correction in a variety of applications and complex conditions is a common problem. Therefore, a scene-based self Adaptive Iteration bad pixel dynamic correction algorithm was proposed and investigated.Adaptive filtering bad pixel detection algorithm is that the intensity of an image is recorded and the intensity of the image is filtered by a locally acting adaptive filter. Then the bad pixel regarded as an image noise is determined using intensity of the unfiltered image and intensity of the filtered image. Using the improved Nagao filtering bad pixel compensation algorithm with some stronger directivity filtering sub-windows whose patterns are decided by the texture analysis and which have the same pixel amount, the image boundary pixels did not reappear as flicking dot during the quick scene changes, and the rich scene details were preserved.

Keywords-infrared focal plane array (IRFPA); scene-based method;bad pixel detection and compensation; texture analysis; nagao filters

I.I NTRODUCTION

Infrared focal plane arrays (IRFPA) have been widely used in various fields. Due to the limitations of techniques and materials, the bad pixel always exists in kinds of IRFPA, which becomes an important problem effecting the image quality of IRFPA[1].

Usually, there are two steps of bad pixel correction: bad pixel detection and bad pixel compensation. According to the different generation mechanism of bad pixel, the detection methods are divided into static detection and dynamic detection. Static detection is suitable for the natural bad pixels of device, and it is based on calibration methods.

A bad pixel map is set by calibration stage in laboratories or in factories, according to which compensation is taken when it works. Dynamic detection is proposed to detect those dynamic bad pixels caused by the temperature drift of detectors working for long hours or the violent change of environment temperature. It is usually a scene-based method. By the statistical analysis of scene image information, bad pixels are detected, and then a bad pixel map is formed to compensate bad pixels dynamically. Dynamic detection algorithm is common, such as traditional definition based algorithm[2], characteristics histogram analysis algorithm, filtering algorithm, motion estimation and image registration algorithm, etc[3-5]. Bad pixel compensation is usually an approximate replacement or calculation of bad pixel response value with the responses of its neighborhood pixels, neighboring interpolation algorithm, mean or median filtering algorithm are the commonly used methods[5].

In order to realize IRFPA bad pixels dynamic adaptive correction in complex scene conditions, studies on the scene based bad pixel dynamic correction algorithm and its evaluation method are taken. It is hoped that the detail information of image can be preserved as much as possible during the dynamic correction process and the bad pixels on image boundary don’t reappear while the scene changes rapidly.

II.D EFINITION AND M ANIFESTATION OF B AD P IXELS

Bad pixel is also called non-effective pixel, which is defined and measured by the IRFPA pixel responsivity to the blackbody radiance. There are two kinds of bad pixels: dead pixels and over-hot pixels. If the responsivity of a pixel is less than 1/10 average responsivity, the pixel is called dead pixel. Oppositely, if the noise voltage of a pixel is more than 1/10 average noise voltage, the pixel is called over-hot pixel[2]

.

Figure 1. Structure of adaptive, dynamic correction Fig.1. shows a typical IR image with both dead pixels and over-hot pixels from a cooled IRFPA. The manifestation of bad pixel response feature is: dead pixel always has a very low output in different illumination, even has no response at all; over-hot pixel has a very high response output no matter how the environment illumination changes. Therefore, in white-hot IR images, the manifestation of bad pixel is showed as black dots for dead pixels and white dots for over-hot pixels.

III. S CENE -BASED S ELF A DAPTIVE I TERATION B AD P IXEL

D YNAMIC C ORRECTION A LGORITHM Bad pixel correction is usually made up of two parts: bad pixel detection and bad pixel compensation.

A. Self Adaptive Iteration Bad Pixel Detection Algorithm With the IRFPA response changed in accordance with the different environment temperature, drifting can be detected of pixel intensity with large time constants in the hours to minutes range. For those who are looking at the images, the bad pixel this causes appears as an imaging error.

It is therefore the aim of bad pixel dynamic correction to counter-balance the drift effect of the pixel intensity. The information about the imaging error must be independent of the scene observed.

Because of the type of imaging error it is sufficient to provide information from the local surround field of each pixel to identify an imaging error. The scene information must be suppressed, as otherwise it would be in the bad pixel compensation. A 3?3 detection window has proven to be particularly reliable as the local filter operator for the present embodiment of the process.

With the window, the values from the surround field of

pixel ij Y are sorted by size to a series of numbers {}

max n

Y ,

where 11

max max max

k k k Y Y Y -+>>. The median filter returns the value in the centre of the series of numbers:

{}5max max

n

Y median Y =

(1) The condition for ideal detection, i.e. for no scene

information to be included, is not actually met. It appears that edges in particular are “burnt in ” and that they seem to be superimposed, if the scene changes. This can be avoided by implementing a decision process, which detects whether edges or imaging errors is involved and controls the compensation.

If all the pixels within the 3?3 window belong to the scene of the same region, each pixel value is close to the other. The bad pixel in space independent of each other and if the bad pixel exists in the detection window, its adjacent pixels have great different from it on the intensities, reflecting on the image is different from the one surrounding pixel too bright or too dark points.

If the pixel within the window belongs to the edge of the scene, then the same region of the pixel intensity difference is relatively small, between different regions of the larger pixel intensity changes. Some edge points close to each other's intensity. If the edge points for the window of maximum or minimum point, the points in the surround field is often the second-largest point value or the second-smallest value. Using this feature can distinguish between edge points and imaging error points and surround field scattering is used as a detection criterion below:

12

max max dc K Y Y =- (2)

or

98

max max

dc K Y Y =-

(3)

Where 1max Y or 9

max Y is maximum or minimum in {}

max n Y ,

and 2max Y or 8max Y is the second-largest value or the second-smallest value, dc K is the detection criterion.

The decision whether to modify the coefficients is made by comparing decision criterion dc K with an adaptive threshold value th K , which can be adjusted according to the changes of the scene information within the window. If the numerical value ascertained for decision criterion dc K exceeds the given threshold value th K and the pixel is located in the center of the window, the pixel identified as the bad pixel point and is changed. Else if dc K > th K and the pixel is not the center point, the pixel is marked as may be compensated.

Extreme values are excluded for the threshold decision.

The following then applies:

th K =(4)

A comparison error is shown in simplified form, as an example, in the table below:

ordered from largest to smallest form {1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000}, According to the formula (2) and (3) were calculated dc K = 0 and th K = 0. As dc K =th K

, not compensated.

According to dc and th K = 0. As dc K > th K and the pixel is in the center of the window,

compensated.

dc th = 0. As dc K = th K , not compensated.

Also consider a case, if there are two adjacent pixels which have similar intensities in a window, the decision criterion is invalid. We need to statistic the number how many times each pixel is marked as may be compensated.

Each pixel is given the amount of a mark ,i j sum . If there are pixels meet the conditions. They are identified as may be compensated at least three times, that is, ,3i j sum ≥, as an

We is in the third row and the third column as 1N , and in the fourth row and the third column as 2N .dc K on 1N is 0, th K on 1N is 535, and dc K on 2N is 0, th K on 2N is 535. Clearly, the two points will not be judged to be the imaging error point. But 1N and 2N are both marked as may be compensated for three times, that

is, 13N sum = and 2N sum are the same. According this information, these two points can both be judged to be imaging error point. This simple criterion produces good results.

B. Improved Texture Analyisis Based Nagao Filtering Compensation Algorithm

The compensation of bad pixel can be conducted as follow: compensations by replacing bad pixels with the approximations obtained from linear calculation to the neighborhood, such as traditional neighborhood interpolation algorithm, neighborhood mean filtering method, et al; and also using the non-linear methods for compensations by replacing bad pixels with a certain pixel value selected from the neighborhood, such as neighborhood simple replacement and median filtering, et al.

Nagao filtering is a window adaptive filtering algorithm, which was presented by Makoto Nagao in 1979 [6]. The main idea of Nagao filtering can be described as follows: firstly, select the most appropriate one from a group of usable filtering sub-windows for each pixel, and then calculate the filtering output in this window as the final Nagao filtering result.

The mean and variance for each filtering sub-window are given by:

1

(,)(,),(,)k k N

i j Y k l x y W S μ=∈∑ (5)

(,)

,)k k i j k l W σ=

∈ (6)

where k W is the coordinates set of the k th window, N S is the pixel amount, and k σ refers to the variance of this filtering sub-window.

The filtering sub-window with the minimum variance is the most appropriate one. Calculate the

mean or the median of the pixels in the window as the final filtering result.

If bad pixel information is included during the calculation, the bad pixel in sub-window is kicked out, the amount of pixel in sub-window is increased to 8, and then the validity of the algorithm on the image boundary will be improved. The improved Nagao filter sub-windows are [7]

Figure 2. 3 new kinds of new filter sub-windows

The above Nagao filter algorithm exists some deficiencies, that is, the algorithm needs to calculate the mean and variance in the window for nine times and needs large computation and long computing time. Moreover, if the difference between the intensities of the bad pixel and its surrounding field pixels is not significant, there are some artifacts in the images which are filtered by Nagao filter algorithm and the effect of filtering is poor. To overcome these shortcomings, a texture analysis based Nagao filter algorithm which needs to choose windows reasonably and filter images directly is proposed. This greatly reduce the computation and the original image is observed after the filtering.

Statistical analysis method is the most widely applied and using the second order statistics to analyze the textures of the images can obtain a very good result. According the requirement of the adaptive filtering of images and comprehensive consideration of the computer ’s processing speed, two statistics energy and entropy are selected as the feature parameters in the texture analysis based Nagao filter algorithm:

2,(,)i j

Egy Y i j =∑ (7)

,(,)log((,))i j

Epy Y i j Y i j =∑ (8)

Where Egy is the energy statistic and Epy is the entropy statistic and as the entropy in change of the image texture is more sensitive than the energy, the parameter of the texture complexity can be deduced by introducing the weightings:

12C Egy Epy σσ=+ (9)

Where 1σ and 2σ are the weightings and can be adjusted according the situations during the image processing.

The theory of the texture analysis based Nagao filter algorithm is that the texture complexity of the pixels in every 5?5 window can be calculated according equations (7), (8) and (9). The result is compared with a threshold which is given according the change of the scene information. If the result exceeds the threshold, indicating that the scene changes rapidly, a linear filtering sub-window which replaces the original filtering sub-window can be used to

calculate the mean and variance and when the scene changes smoothly, the original sub-window continued to be used. The eight directions in the linear sub-window are the same as in

No matter which filtering sub-window is selected, the filtering sub-window with the minimum variance should be found out and the mean of it replace the bad pixel as the final result.

Scene-based bad pixel dynamic correction algorithm for IRFPA is the combination of self adaptive iteration bad pixel detection algorithm and improved texture analysis based Nagao filtering bad pixel compensation algorithm. The improvement of these two algorithms can make up for the deficiencies of traditional bad pixel detection and compensation algorithms and is suitable for correcting both the device natural bad pixels and the dynamic bad pixels caused by the temperature drift of detectors working for long hours or the violent change of environment temperature.

IV.EXPERIMENT AND A NALYSIS

In order to verify the validity of SBBPDC algorithm, a bad pixel correction experiment was taken to the IR images from a cooled medium wave IRFPA thermal imager. We analyzed and proved the correcting performance of the improved bad pixel algorithm by processing the actual infrared images that are collected with a rate of 50 frames per second by a uncooled microbolometer IRFPA camera with the 128 ? 128 – pixel, whose operating wave range is 8 ~ 14 m

μ.

Fig.4 is the bad pixel correction result of the image in Fig.1.It is shown that the scene-based self adaptive iteration bad pixel dynamic correction algorithm can obtain good effect, that is, dead pixels and over-hot pixels are eliminated completely and the quality of the corrected image without artifact is very close to the original image.

Figure 4. the result of the improved bad pixel correction algorithm

V.C ONCLUSIONS

Aiming at the problem of IRFPA bad pixel correction in complex application environments and conditions with rich scene details, a scene-based self adaptive iteration bad pixel dynamic correction algorithm was proposed. It contains bad pixel detection with a self adaptive iteration method and compensation with a texture analysis based Nagao filtering method. The experiment showed the bad pixels in IR image were corrected effectively and the scene detail information was also well kept by the algorithm. Bad pixel dynamic correction for IRFPA is an urgent problem to be solved in present applications. By further optimization of the algorithm, the real time dynamic bad pixel detection and compensation can be realized on FPGA or DSP hardware platform, and the algorithm is feasible for the engineering applications. By using this algorithm, a correction of IRFPA dynamic bad pixels will be conducted and a high quality image will be provided for the following research and applications such as IR image enhancement and object detection and tracking, et al.

R EFERENCES

[1]Liu Chongliang, Jin Weiqi, Cao Yang, Liu Xiu, “New

dynamicalgorithm for IRFPA bad pixel detection and compensation based onstatistics,” Journal of Beijing Institute of Technology, vol.18 no.4,pp.463-467, Dec.2009.

[2]Country Engineering Supervision Bureau, The technical norms

formeasurement and test of characteristic parameters of infrared focal planearrays. GB/T 17444-1998. Beijing: Standards Press of China, 1998.

[3]Shi Yan, Mao Haicen, Zhang Tianxu, “New approach of IRFPA

noneffectivepixel discrimination based on pixel’s characteristics his togramanalysis,” Infrared Million Waves, vol.24 no.2, pp.119-124, Apr.2005.

[4]Zhang Ke, Zhao Guifang, Cui Ruiqing, Yuan Qigang, “Method

ofimproving bad pixel detection precision of IRFPA,” Infrared and LaserEngineering, vol.36 no.4, pp.453-456, Aug.2007.

[5]Wan g Bingjian, Liu Shangqian, Li Qing, Lei Rui, “Blind-

pixelcorrection algorithm for an infrared focal plane array based on movingsceneanalysis,” Optical Engineering, vol.45 no.3, pp.036401:1-4,Mar.2006.

[6]Makoto Nagao and Takashi Matsuyama, “Edge Preserving

Sm oothing,”Computer Graphics and Image Processing, vol.9 no.4, pp.394-407, 1979.

[7]Henri Ma?tre, Le traitement des images, Paris, 2003.

HDR及一些非均匀性校正算法

HDR High Dynamic Range ,即高动态范围,比如所谓的高动态范围图象(HDRI)或者高动态范围渲染(HDRR)。动态范围是指信号最高和最低值的相对比值。目前的16位整型格式使用从“0”(黑)到“1”(白)的颜色值,但是不允许所谓的“过范围”值,比如说金属表面比白色还要白的高光处的颜色值。在HDR的帮助下,我们可以使用超出普通范围的颜色值,因而能渲染出更加真实的3D场景。也许我们都有过这样的体验:开车经过一条黑暗的隧道,而出口是耀眼的阳光,由于亮度的巨大反差,我们可能会突然眼前一片白光看不清周围的东西了,HDR在这样的场景就能大展身手了。 HDR可以用3句话来概括:亮的地方可以非常亮暗的地方可以非常暗亮暗部的细节都很明显。HDR的处理在显卡中可以分为3个步骤:将画面用高光照动态范围渲染,并储存每个象素的亮度特性;将HDRI画面转成低动态范围的画面(RGBA或是sRGB);色彩和Gamma校正后传送到显示设备输出。 计算机在表示图像的时候是用8bit(256)级或16bit(65536)级来区分图像的亮度的,但这区区几百或几万无法再现真实自然的光照情况。HDR文件是一种特殊图形文件格式,它的每一个像素除了普通的RGB信息,还有该点的实际亮度信息。普通的图形文件每个象素只有0 -255的灰度范围,这实际上是不够的。想象一下太阳的发光强度和一个纯黑的物体之间的灰度范围或者说亮度范围的差别,远远超过了256个级别。因此,一张普通的白天风景图片,看上去白云和太阳可能都呈现是同样的灰度/亮度,都是纯白色,但实际上白云和太阳之间实际的亮度不可能一样,他们之间的亮度差别是巨大的。因此,普通的图形文件格式是很不精确的,远远没有纪录到现实世界的实际状况。所以,现在我们就要介绍一下高动态范围图像(简称HDRI)。 HDR高动态范围渲染目前是一种逐渐开始流行的显示技术,其技术出发点就是让计算机能够显示更接近于现实照片的画面质量。目前在民用领域看到最多HDR技术应用的必然是游戏了。 在现实中,当人从黑暗的地方走到阳光下时,我们的眼睛会不由自主的迷起来,那是因为在黑暗的地方,人为了更好的分辨物体,瞳孔张开很大,以便吸收光线;而突然到了光亮处瞳孔来不及收缩,视网膜上的视神经无法承受如此多的光线,人自然会迷上眼睛阻止大量光线冲击视神经。而电脑是不具备这种功能的。所以,HDR的最终效果因该是亮处的效果是鲜亮的,而黑暗处你也可以清晰的分辨物体的轮廓,位置和深度,而不是以前的一团黑。动态、趋近真实的物理环境是HDR的特效表现原则。 实际游戏中会发现井底水面反射的阳光在墙壁上动态的明亮反光,洞口的明亮天空也会稍微变弱些。这样就能更清晰的表现出水面的反光。如果此时低头看水面会发现水面直接将阳光反射到人眼中很刺眼,但仅仅1秒钟时间光线就会减弱,因为人眼适应了直接反射的阳光。 这就是游戏的曝光控制功能,模拟人眼自动适应光线变化的能力,而不是照相机。HDR并不仅仅是反射的光强度要高。在游戏中,如果你盯着一个面向阳光直射的物体,物体表面会出现丰富的光反射;如果盯着不放,物体表面的泛光会渐渐淡出,还原出更多的细节。HDR特效是变化的,因此称作高动态光照。 热成像的非均匀性校正算法有很多种,红外焦平面非均匀性校正算法主要分为基于定标的非均匀校正算法(如一点温度定标算法、二点温度定标算法、多点温度定标算法)和基于场景的自适应非均匀校正算法(如时域高通滤波(THPFC)算法、人工神经网络(ANNC)算法、恒定统计平均(Cs)校正算法等)。目前二点温度定标算法和多点温度定标算法是最为成熟的实用性算法,但是它需要周期性的对它维护,这给红外成像设备维护工作带来很多困难。而基于场景的非均匀

测厚仪自校准方法

超声波测厚仪自校准方法 1.目的 为了保证超声波测厚仪的正确使用及测量结果的准确可靠,特制定本自校准方法。 2.依据 超声波测厚仪使用手册等 3. 校准方法 3.1 采用台阶试块,分别在厚度接近待测厚度的最大值和待测厚度的最小值(或待测厚度最大值的1/2)进行校准。 3.1.1试块的基本要求和尺寸见附图。3.1.2 测定曲面工件厚度时,应使用同一曲率的试块,或者对平面试块加以修正。 3.2 将探头置于较厚试块上,调整声速,使得测厚仪显示读数接近已知值。 3.3 将探头置于较薄试块上,调整零位,使得测厚仪显示读数接近已知值。 3.4 反复调整,使得量程的高低两端都得到正确读数,仪器即告调整完毕。 3.5 如果已知材料声速,则可预先调好声速,然后在仪器附带的试块上,调节零位,使得仪器显示为试块的厚度,仪器即告调整完毕。 4.记录 校准过程应做好记录工作,记录至少包括仪器型号、探头、试块、耦合剂、校核人员、测定日期。记录格式见“超声波测厚仪自校准记录表”(SDTJ/JH-01-01)。 编制: 审核: 批准:

附图: 6.3

超声波测厚仪自校准记录表 SDTJ/JH-01-01

超声波测厚仪自校准、期间核查记录表填写说明 1、设备名称:超声波测厚仪 2、设备型号:进行自校准或核查的超声波测厚仪本身的型号;如:TT120、TT100等 3、本院编号:进行自校准或核查的超声波测厚仪在本单位内部的仪器编号 4、出厂编号:进行自校准或核查的超声波测厚仪出厂时生产厂家给定的编号 5、声速:对超声波测厚仪进行自校准或核查时,根据标准块的材质选定的超声波声速,例如:当 标准块的材质为碳钢时超声波测厚仪的声速应为v=5790m/s;当标准块的材质为不锈钢时 超声波测厚仪的声速应为v=5900m/s 6、标准块厚度:对超声波测厚仪进行自校准或核查时所使用的标准试块的实际厚度 7、显示值:进行自校准或核查的超声波测厚仪对标准块进行测厚时超声波测厚仪所显示的标准块厚度 值 8、允许误差:根据标准块实际厚度,运用允许误差计算公式计算得到的数值 9、实际误差:标准块厚度与显示值的差值 10、备注:对超声波测厚仪进行自校准或核查的结果 11、说明:对超声波测厚仪进行自校准或核查过程中需要特别说明的问题 12、校准人:对超声波测厚仪进行自校准或核查的操作者姓名 13、年月日:对超声波测厚仪进行自校准或核查的时间

图像颜色校正技巧

浅谈图像颜色校正的技巧 扫描仪和数码相机是印前处理中常用的两种图像输入设备,由于扫描仪光源、滤色片和光电转换元件的误差,扫描输入的图像经常会存在一定程度的颜色偏差,而用数码相机采集图像时也可能因为光照条件或曝光时间的不合适以及CCD的颜色响应误差而引起图像的色偏。因此,为了得到颜色复制准确的彩色印刷品,必须在印前系统中对偏色的图像进行颜色校正。但在印前图像处理中,校正图像的色偏,并不是一件容易的事,它要求印前工作人员必须掌握一定的颜色校正方法和技巧,只有这样才能做到事半功倍,提高印前工作效率。 图像偏色情况的辨别 进行图像颜色校正,首先要分析图像哪些部分偏色,具体偏什么颜色。但是一副复杂的彩色图像往往包含了成百上千种颜色,我们不可能对每一种颜色都进行分析,判断它是否偏色,而是通过检查图像的灰平衡和记忆色来判断图像的偏色情况。 灰平衡是指在一定的印刷条件下,将青、品红、黄三色油墨按一定比例叠印,得到视觉上中性灰的颜色,这时就称为实现了灰平衡。灰平衡是颜色存在的基础,在印刷过程中,它是控制图像色彩复制效果的重要手段,一般来说,图像中的灰平衡控制好了,其他彩色部分也能够得到较好的再现。而且人眼对图像中的中性灰色部分非常敏感,只要图像中的灰色部分出现轻微的彩色,人眼就能很容易地感觉出来。因此,灰平衡是检测图像是否偏色的一种很好的方法,而反映在RGB 模式的图像中,中性灰色部分的红、绿、蓝三个值应该相等,如果图像中灰色部分的R、G、B值不等,就可识别出色偏。例如,用Photoshop取色器工具读取图像中的某一灰色中间色调值为(R:127、G:127、B:136),则说明中性灰中含有较多的蓝色,说明图像稍微偏蓝色。在CMYK色彩模式中读取中性灰相对来说要困难一些,从理论上来讲,同样数量的青、品红和黄产生中性灰,而实际上由于印刷油墨不纯,中性灰中青的含量必须比黄和品红多一些,具体多多少取决于中性灰是暗调、中间调还是高光,而且还与使用的油墨有关系。因此,利用灰平衡来判断CMYK色彩模式图像的色偏时,需要采集印刷的灰平衡数据。 记忆色是人们所熟悉的物体颜色在人们记忆中的主观印象,并不是我们经常说的单纯的红色、绿色和蓝色,而是与具体的物体相关,如人的肤色、草的绿色、

自校准方法编写规定

1 目的 对检测设备自校准方法的编制进行控制,保证自校准方法正确实用、满足自校准工作要求。 2 范围 适用于本实验室检测工作使用中或修理后的、目前尚无计量检定规程需要并且有可能进行自校准的检测设备自校准方法的编审。 3 职责 3.1质控室负责组织编制自校准方法,并监督执行; 3.2相关室主任负责组织对自校准方法进行实验验证; 3.3技术负责人批准自校准方法。 4 要求 4.1每种自校准设备编写一个自校准方法。 4.2自校准方法编写格式要求。 4.2.1自校准方法的编号如下: 顺序号 4.2.2自校准方法的文件名称为:□□□自校准方法,其中□□□为检测设备名称。 4.3自校准方法内容要求。 4.3.1目的 编制自校准方法的目的。 4.3.2适用范围 说明自校准方法适用的检测设备种类和型号。 4.3.3职责 规定相关责任人的责任。 4.3.4概述 对检测设备的结构、原理及主要用途作简单介绍。

4.3.5技术要求 4.3. 5.1设备外观要求,包括对设备标志、成套完整性、各种开关、电源线等的要求。4.3.5.2技术指标的要求全面、详细。 4.3.6校准条件 包括设备外观及环境条件、仪器安装要求、校准设备、校准标准物质。根据实验室程序文件《实现测量可溯源性程序》(HSJC-PF-223-2009)要求,自校准应有经检定合格的计量器具或可港源标准物质作为依据。 4.3.7自校准项目和自校准方法 应包括设备一般检查和各项性能检查。 4.3.8自校准周期 规定设备自校准周期。 4.3.9支持性文件 列出自校准方法中直接引用和必须配合使用的文件名称和编号。 4.4自校准方法实验验证 操作人员对设备进行自校准,出具自校准报告,主任审核自校准报告。 5 相关文件 5.1 HSJC-PF-203-2009《管理体系文件控制和维护程序》 5.2 HSJC-PF-223-2009《实现测量可溯源程序》 5.3 HSJC-PF-222-2009《仪器设备的控制与管理程序》 5.4 HSJC-PF-217-2009《检测方法及方法确认程序》 6 运行记录 6.1《检测设备自校准方法文稿》 6.2《检测设备自校准实验原始记录和实验报告》 6.3《检测设备自校准不确定度分析(必要时)》 6.4记录表HSJC-ZK-307-2009/01《检测设备自校准方法审批表》

显示器颜色校正(实用版)

显示器颜色校正(实用版) 我是一名景观设计工作者,色彩对于我来讲则是最敏感的,在通常工作中,我时常会遇到在自己电脑上调整的图纸和在客户电脑上看到的相差很大,更离谱的是我自己电脑调整好的和打印输出时候的色调与明暗度的差距。这个问题,应该多数设计师都会遇到吧,因此本人找了很多资料以及图片,最后主要问题还是显示器的问题,下面是显示器颜色校正方法及图片(因为显卡都不一样,会有一定的差距哦)。 一、校正前的准备工作: 1.为了得到最好的校准效果,尽量使用最新版的Adobe Gamma(比如Photoshop cs中附带的)。 2.要确保显示器开机预热半个小时以上,使它处于稳定的工作状态。 3.显示器周围的环境光线始终保持一致。灯及灯的位置不要改变,太亮或太暗都不合适,最好的光线是稍稍偏暗,并且尽可能减少屏幕对环境光线的反射。 4.去掉显示器的桌面背景,因为漂亮的桌面会影响你在接下来的校正过程中对色彩的准确感知。并将桌面颜色设置成中性的灰色。以WindowsXP系统为例,右击桌面选择“属性”打开“显示属性”对话框,点选“外观”选项卡,单击其中的“高级”按钮,弹出“高级外观”窗口,单击其中的“颜色”按钮,在弹出的“颜色”窗口中修改红绿蓝三种颜色的值为128。 5.显示器的颜色数量应该设置成24位或32位真彩色。通过“显示属性”窗口中“设置”选项里的“颜色质量”设置。 二、校正方法一 1、点击:开始→设置→控制面扳→Adobe Gamma(通过安装程序安装的Photoshop 都会有本程序)。在弹出的对话框中选择控制扳模式(向导模式也行,凭个人爱好)。(如果没有Adobe Gamma,就直接下载一个Gamma) 2、看说明文件是不是:sRGB IEC61966-2.1(版本可不管),如不是,点击“加载”按扭在打开屏幕描述文件中找到:sRGB Color Space Profile 文件,选中后点击“打开”。sRGB IEC61966-2.1就加载上了。

非均匀性矫正

一、图像的非均匀性矫正

二、图像增强

三、程序代码(MATLAB)%%%%%%%%%%%%%%%%%%%%555555555555555555555555555555555一点矫正HIGH_T=fopen('highdat_151.dat','rb'); HIGH=fread(HIGH_T,[200,200],'uint8'); HIGH=uint8(HIGH); %类型转化为uint8 subplot(321);imshow(HIGH); title('原始高温图像'); subplot(322);mesh(double(HIGH));title('原始高温图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LOW_T=fopen('lowdat_151.dat','rb'); LOW=fread(LOW_T,[200,200],'uint8'); LOW=uint8(LOW); subplot(323);imshow(LOW); title('原始低温图像'); subplot(324);mesh(double(LOW)); title('原始低温图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HAND_D=fopen('handdat_60.dat','rb'); HAND=fread(HAND_D,[200,200],'uint8'); HAND=uint8(HAND); subplot(325),imshow(HAND); title('原始手形图像'); subplot(326),mesh(double(HAND)); title('原始手形图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%选取低温图进行定标 S=mean2(LOW(:)); % S为定标值 S_LOW=S*ones(200,200); S_LOW=uint8(S_LOW); %S_LOW为定标矩阵 D_LOW=LOW-S_LOW; %校正系数D_LOW figure; HIGH_L=HIGH-D_LOW; subplot(321);imshow(HIGH_L); title('经低温矫正后的高温图像'); subplot(322);mesh(double(HIGH_L)); title('经低温矫正后的高温图像三维显示'); LOW_L=S_LOW; subplot(323);imshow(LOW_L); title('经低温矫正后的低温图像'); subplot(324);mesh(double(LOW_L)); title('经低温矫正后的低温图像三维显示'); HAND_L=HAND-D_LOW; subplot(325);imshow(HAND_L); title('经低温矫正后的原始手图像'); subplot(326);mesh(double(HAND_L)); title('经低温矫正后的原始手图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%选取高温图进行定标 S=mean2(HIGH(:)); % S为定标值 S_HIGH=S*ones(200,200); S_HIGH=uint8(S_HIGH); %S_LOW为定标矩阵 D_HIGH=HIGH-S_HIGH; %校正系数D_HIGH figure; HIGH_H=S_HIGH; subplot(321);imshow(HIGH_H); title('经高温矫正后的高温图像');

灰阶及色彩校正

灰阶及色彩校正 步骤1.1: 我们用来测量灰阶的软件称为ColorHCFR 步骤1.2: 用所有预设选项安装传感器软件 步骤1.3: 从盒子中取出传感器并插到你的PC上空的USB插槽。 步骤1.4: 打开并设定ColorHCFR 软件。 打开HCFR软件,选择"Advanced -> Preferences" 选单选项,按"References"标签,设定"Color 空间- Standard" 选项为HDTV - REC 709,勾选Change White,下拉菜单选择D65,Reference Gamma输入2.2,其他选项参考图片。

步骤1.5: 在ColorHCFR里开启一个新的校正档案 选择选单"File-> New" 在ColorHCFR里开启一个新的校正档案 "DVD Manual",然后按Next。传感器选择“Xrite i1 DisplayPro,Colormuki”,然后按“完成”。Reading Type选择“Projector”,然后按“确定”。

步骤 1.6:正确地调整传感器的方向,找到最大光输出读值。 播放100 IRE 窗形测试图案。在右边的"Display" 视窗,选择"xyY" 选项,然后按绿色三角形开始连续读取数值。 传感器会开始撷取x、y、及Y 读值,并每隔几秒更新一次。你应该会在左下角的"Selected Color" 视窗里看到资料更新,持续看着ftL 读值,并往所有6个方向(离布幕的近/远从,左/右,上/ 下)调整传感器。例如,在一个方向上转动传感器几度,然后等到ftL的读值更新,持续转动同时等新的读值,如果读值变小,就转相反的方向。持续做直到你得到最大值,接着再进行俯仰角的调整,然后再调整离布幕的距离等等。一次调整一个方向可以让你尽快架设到最好的位置。持续调整直到你得到最大的读值,这就是我们要的位置(Ps:实在懒的话,和幕布的距离就不要调整了)。从现在开始,不要碰到或移动传感器。

红外图像非均匀性校正及增强算法研究

红外图像非均匀性校正及增强算法研究 受限于制造工艺的约束,红外焦平面中各探测像元的光电响应率不一致,即存在非均匀性问题,导致图像中出现固定样式噪声,且具有缓慢的时间漂移性。并且,红外探测器的光电响应动态范围较大,而单幅图像场景的温度范围通常在红外探测器总体动态范围中占比小,导致原始红外图像对比度低、物体边界模糊。 因此,非均匀性校正和图像增强是必不可少的红外图像预处理步骤。本文将围绕基于场景的非均匀性校正和红外图像增强技术展开研究,论文的主要研究内容如下:1.凝视型红外探测器中,传统的基于神经网络的非均匀性校正方法通常假设固定样式噪声满足独立同分布,但在低成本非制冷探测器中,非均匀性的条纹噪声强,噪声分布特性不满足假设,导致现有方法难以兼顾边缘保护与条纹噪声抑制。 针对该问题,本文提出了基于自适应稀疏表示以及局部全局联合约束学习率的非均匀性校正方法,引入稀疏表示理论,利用干净的红外图像集训练出的过完备字典中的原子可稀疏地表示图像场景信息的特性,在自适应的误差容限内重建图像,从而保护图像边缘、将噪声成分当作冗余去除。实验结果表明,在均方根误差指标上,本方法相比传统方法降低了1.1652至1.9107不等、降低了约17.92%至26.37%,能够在保护图像边缘的同时有效去除包括条纹噪声在内的固定样式噪声。 2.扫描型红外探测器中,若直接采用凝视型探测器的非均匀性校正方法,则仍需数百帧图像计算校正系数,算法收敛慢。传统的扫描型探测器校正方法利用扫描成像的特性逐列(假设沿行扫描)更新校正系数,在单帧图像内完成校正。 然而,单帧图像内场景辐射多样性通常有限,导致传统方法易陷入局部最优

LCD显示器色彩校正方法

LCD显示器色彩校正方法 2009年03月13日星期五 21:09 为什么我在自己电脑上调整的照片,在别人的电脑上一看色彩就不对了,这个问题特别容易出现在LCD 液晶显示器上面,这时就需要用到LCD显示器色彩校正了,LCD显示器色彩校正分为软件校正和硬件校正二种方法:不过tn面板色彩先天不足,再怎么校色也好不到哪去。真正要求色彩的用户建意使用高端的ips面板显示器或者CRT显示器吧。 下面分别介绍: ◎实现方式:硬件操作或软件设置◎运行条件:可软可硬, 1 软件方式:三星MagicTune软件; 2 硬件方式:Spyder 2 Pro色彩校正仪◎操作难度:★★★☆☆ 自液晶显示器进入主流价位以来,一些从事设计、排版以及印刷行业的用户忍不住“大屏”、“环保”、“低价”等诱惑,于是改用液晶显示器。不过,液晶显示器在色彩表现方面不如CRT显示器还原真实,液晶屏幕上显示的图像和真实图像往往存在明显的色彩差异,这对上述用户的工作影响甚大。如果用户仍要坚持使用液晶显示器,必须先对显示器进行色彩校正,将这方面的影响尽量减至最低。 方法一:专业仪器校色 优点:操作简单、数据准确可靠 缺点:成本较高 对于行业用户以及有条件的专业玩家而言,采用专业的显示器色彩校正仪器进行校色无疑是最令人放心的。以时下常用的Spyder 2 Pro显示器色彩校正仪(也称为“专业蜘蛛”、“红蜘蛛”)为例,只需按照软件提示,选择与实际情况相符的选项即可。限于篇幅,在此不介绍具体的操作方法。唯一需要指出的是,可能有些用户不清楚色温控制值该如何设置。以笔者的经验来看,若是中档消费级显示器,可选择“绝对色温块”选项;若为高档消费级或专业级显示器,选择“RGB滑块”更为合适;若显示器属于入门级,则只能选择“绝对色温预设”了。检测完毕之后,Spyder 2 Pro色彩校正仪会自动生成一个用于色彩管理的ICC配置文件,并保存至Windows的对应目录中,以便系统调用。该仪器的报价为3400元,如果用户确实有需要,可以考虑购买,或者选择相对便宜的Spyder 2 Express(也称为“快捷蜘蛛”、“绿蜘蛛”,报价为980元)。 方法二:软件校色 优点:操作简单、无额外花费 缺点:数据准确性稍差 专业仪器虽好,可价格甚至比一台20英寸宽屏液晶显示器还贵,相信大多数普通用户都舍不得为之掏腰包。其实,我们也可用一些无需付费的校色软件替代专业仪器,虽然数据准确性稍差,但不失为一种简单可行的解决方法。 一;三星MagicTune 3.6软件,大家可去三星网站下载。 步骤一:双击桌面上的MagicTune图标,在主界面中选择“色彩”选项;若遇到软件提示“本计算机系统不支持MagicTune”,别急,这是因为显示器非三星产品或型号不符所致。此时,可直接进入MagicTune的安装目录(默认路径为C:\Program Files\SEC\MagicTune3.6),找到LCDGamma0101.exe

红外图像非均匀性校正

改进的红外图像神经网络非均匀性校正算法 摘要:红外焦平面阵列(IRFPA)像元响应存在不一致性,会严重影响红外成像系统成像的质量,实际应用中需要采用响应的非均匀性校正(NUC)技术。传统的神经网络校正算法在校正结果中存在图像模糊和伪像的问题,影响人们对于目标的观察。在分析了传统的神经网络性校正算法所出现问题原因的基础上,提出了有效的改进算法:用非线性滤波器代替传统算法中使用的均值滤波器。算法改进之后所得到的校正图像,不仅在清晰度方面有明显的改善,而且有效的消除了传统算法中存在伪像的问题。 关键词:非均匀性;神经网络;模糊;伪像 中图分类号:TN215 文献标识码:A Improved infrared image neural network non-uniformity correction algorithm Abstract:The responsive of infrared focal plane arrays (IRFPA) is different; it will affect the quality of imaging system seriously. Non-uniformity correction technology will need in practical application. The calibrated images have the problems of blurring and existing ghost artifacts when use the traditional neural network correction algorithm. And it is bad for the observation of the target. After analysis the reasons for the problems in the traditional neural network correction algorithm,proposed the improved algorithm. Replace the mean filter, which used in the traditional algorithm, by the nonlinear filter. The corrected image by the improved algorithm not only a marked improvement in clarity, but also effectively eliminate the problem of artifacts in traditional algorithms. Keywords:Non-uniformity; Neural network; Blurring; Ghosting artifacts 0引言 红外技术是20世纪初新出的一种不可见光技术,目前已被广泛应用于军事和民事领域,如红外探测,红外监视等。而IRFPA作为红外技术的核心部分,起着关键的作用,但是IRFPA上存在的非均匀性是影响红外系统的一个重大因素。因此,对于非均匀性的研究是目前广泛讨论的问题。 目前国内外已经出现了多种IRFPA非均匀性校正方法,归纳起来它们大致可以分为两类:基于定标的NUC算法[1],这类算法由于精度高、算法简单,得到了广泛的应用。但是定标类校正方法由于受到IRFPA工作时间和环境的影响,其响应参数会发生缓慢漂移,进而影响校正精度。因此,定标类校正方法通常需要进行周期性定标校正[2],这样在校正过程中就需要设备停止工作,所以会带来很大的不便。第二类是基于场景的NUC算法[3],这类校正算法在一定程度上能够克服IRFPA响应漂移带来的校正误差,并且不需要参考源,因此基于场景的算法成为了目前研究的主要方向。神经网络校正方法以其较好的自适应性和误差跟踪能力而成为场景类校

线性系统的校正方法

第6章线性系统的校正方法(12学时)【主要讲授内容】 6.1 系统的设计与校正问题 6.2常用校正装置及其特性 6.3 串联校正 6.4 反馈校正 6.5 复合校正 6.6 控制系统的校正设计 【重点与难点】 1、重点: 串联滞后-超前校正网络的设计及复合校正方法。 2、难点: 反馈校正方法及应用。 【教学要求】 1、了解基本控制规律; 2、掌握超前校正装置、滞后校正装置、超前-滞后校正装置及其特性; 3、掌握运用频率法进行串联校正的过程; 4、了解运用根轨迹法进行串联校正的过程; 5、掌握反馈校正方法及应用; 6、掌握运用MATLAB进行控制系统的校正的方法。 【实施方法】 课堂讲授,PPT及上机实验配合 6.1系统的设计与校正问题 控制系统是由为完成给定任务而设置的一系列元件组成,其中可分成被控对象与控制器两大部分。设计控制系统的目的,在于将构成控制器的各元件和被控对象适当地组合起来,使之能完成对控制系统提出的给定任务。通常,这种给定任务通过性能指标来表达。当将上面选定的控制器与被控对象组成控制系统后,如果不能全面满足设计要求的性能指标时,在已选定的系统不可变部分基础上,还需要再增加些必要的元件,使重新组合起来的控制系统能够全面满足设计要求的性能指标。这就是控制系统设计中的综合与校正问题。 在校正与设计控制系统过程中,对控制精度及稳定性能都要求较高的控制系统来说,为使系统能全面满足性能指标,只能在原已选定的不可变部分基础上,引入其它元件来校正控制系统的特性。这些能使系统的控制性能满足设计要求的

性能指标而有目的地增添的元件,称为控制系统的校正元件。校正元件的形式及其在系统中的位置,以及它和系统不可变部分的联接方式,称为系统的校正方案。在控制系统中,经常应用的基本上有两种校正方案,即串联校正与反馈校正。 如果校正元件与系统不可变部分串接起来,如图6-1所示,则称这种形式的校正为串联校正。 图6-1 串联校正系统方框图 如果从系统的某个元件输出取得反馈信号,构成反馈回路,并在反馈回路内 G s的校正元件,见图6-2,则称这种校正形式为反馈校正。设置传递函数为() c 图6-2 反馈校正系统方框图 G s,可 应用串联校正或(和)反馈校正,合理选择校正元件的传递函数() c 以改变控制系统的开环传递函数以及其性能指标。一般来说,系统的校正与设计问题,通常简化为合理选择串联或(和)反馈校正元件的问题。究竟是选择串联校正还是反馈校正,主要取决于信号性质、系统各点功率的大小,可供采用的元件、设计者的经验以及经济条件等。在控制工程实践中,解决系统的校正与设计问题时,采用的设计方法一般依据性能指标而定。在利用试探法综合与校正控制系统时,对一个设计者来说,灵活的设计技巧和丰富的设计经验都将起着很重要的作用。 串联校正和反馈校正,是控制系统工程中两种常用的校正方法,在一定程度上可以使已校正系统满足给定的性能指标要求。把前馈控制和反馈控制有机结合起来的校正方法就是复合控制校正。在系统的反馈控制回路中加入前馈通路,组成一个前馈控制和反馈控制相组合的系统,选择得当的系统参数,这样的系统称之为复合控制系统,相应的控制方式称为复合控制。把复合控制的思想用于系统

仪器自校校准办法

自校仪器等校准办法 GY-YQ-01-2011 编制:谢远鹏 审核:王爱华 批准:蔡海祯 使用部门:工程技术部 编号:03 2014年10月15日发布2014年10月15日实施 兰州广宇建筑安装有限公司发布

仪器检定方法 为了保证工程质量,强化监视和测量装置的管理,使监视和测量装置的管理规范化,标准化,制度化,保证公司范围内的无溯源关系的装置始终处于有效的控制状态,特制定本检定办法,望各工区认真遵照执行。 1检定范围 1.1砼坍落度筒 1.2砼试模(包括砼抗渗试模)砂浆试模 1.3塔尺 1.4检查尺 1.5阴阳角检测尺 2检定项目 2.1砼坍落度筒:a几何尺寸b竖向轴线是否偏心 2.2砼砂浆试模:a几何尺寸b相邻面的垂直度 2.3塔尺: 3.0m 5.0m长度 2.4检查尺:工作面是否处于直线垂直状态 2.5阴阳角检测尺:是否满足阴、阳角检测的角度 3检定周期的确定 由于以上监视和测量装置在施工现场的使用较频繁,其准确与否,将直接影响工程质量,所以规定以上计量器具检定周期为三个月。 4检定方法与标识 4.1坍落度筒的检定方法 a将坍落度筒固定在刨光的木板上,用铅笔在筒内沿筒内壁划圆,检查期圆度,并用分规再量出直径,在标准尺上读出直径尺寸,(筒上下口直径分别为100mm、200mm) b用刨光的木方做成倒“T”型,横杆长度为190mm,竖杆长度为350mm,制作时保证横、竖杆间的角度为90度,检定时,将其抄平立放后,将坍落筒套在其外,在筒上口标高处在竖杆上划线,用标准尺量出标记到底板的高度(300mm)。 C要求: 1)筒直径允许偏差≤2mm

2)筒高度允许偏差≤2mm 3)筒内壁必须光滑,无凸凹部位 d 用δ=4mm厚钢板(尺寸为250×250mm)在对称中心垂直焊-φ6mm,长350mm 的钢筋,保证钢筋与钢板垂直,并在钢板上划一个以上钢板对称中心为圆,以筒下口半径为半径的圆。测定时,将坍落度筒套在φ6mm钢筋外,同时筒下口与钢板上的圆重合,平放安稳,再用标准尺量钢筋与筒上口边缘的距离,(至少二点)如距离相等,则判定坍落度筒竖向轴线下偏心。 4.2砼、砂浆试模的检定方法 首先将试模表面清理干净,然后组装,用300mm标准钢板尺量测几何尺寸,用万能角度规量测试模相邻面的角度(角度规标准钢板尺须检定合格)。要求: A试模内表面必须平整光滑,底侧模不准有翘曲现象。 B试模组装后,各接缝处,不允许有超过1mm以上的裂缝。 C紧固螺栓必须灵活,无脱扣和严重锈蚀现象。 D试模的几何尺寸长,宽、高各边长允许误差≤2mm。 E 试模内角垂直度允许误差≤30′。 4.3塔尺 5.0m以下尺检定方法 用经过检验合格的5m钢卷尺,对需检测3.0m或5.0m塔尺进行检测。 A每米段允许偏差≤1mm。 3.0m塔尺累计允许偏差≤3mm 5.0m塔尺累计允许偏差≤4mm b 被检尺尺面必须清净,光滑,刻度、数字清晰,抽拉自如,无弯曲打折现象。 4.4检查尺的检定方法 用小白线检查,两人把白线拉直放在铝合金靠尺工作面的两端,铝合金靠尺工作面没有挠度(成一直线)同白线平行,宽窄一致,然后把铝合金靠尺上来检查检查尺的准确度,允许偏差≤0.5mm。 4.5阴阳角检测尺检定 用万能角度规检查阴阳角检测尺的各个角度,允许偏差≤5′。

色彩校正的意义

一、色彩校正的意义 使用图片前,你首先要做的就是观察这些图片是不是偏色,如果偏色,要仔细分析偏什么色,再运用一系列手段加以矫正。 校色,就是要还原图片本来的颜色;校色与调色是两个根本不同的概念;前者是将偏色图片的颜色矫正为本来的颜色,必须遵循一定的科学标准,不具有随意性,属于专项技术的范畴;后者则是作者为表现某种意图或是某种情感而对图片进行的“艺术渲染”,不需要遵循严格的技术标准,具有随意性,属于“艺术”的范畴 二、色彩校正的科学依据 图片偏色调整应该以中性灰为依据。 Adobe关于灰平衡控制论述的两个基本原理: (1) 高光点,中间调及暗调决定了图象的色调。 (2) 只有在灰平衡的调整下才能正确地实施色彩组合,灰平衡是颜色存在的基础 细小的色偏是一种不被人眼所注意的色偏,对于这些色偏的解决办法是寻找图像中的中性灰色或记忆中的颜色作为一个标准 三、校正色偏应遵循的原则: (1)色偏不会只局限于图像中某一种颜色,应先检查亮调部分(因为人眼对较 亮部分的色偏最敏感) (2)校正色偏时要先选择中性灰色,因为中性灰色是弥补色偏的重要手段。在 彩色部分校正灰色时,不要相信人眼所呈现的颜色,应使用吸管工具进行检查。 (3)校正色偏时要尽量调整该颜色的补色。 (4)根据图像的具体要求,可以使用HLS模式进行调整。 (5)许多图像的色偏在某些色调范围内是相当严重的。如果只单纯地调整这部 分色调,会使调整以外的色调变化剧烈,所以一定要协调好整体的色调范围。 四、校色前的准备: 1、显示器的校准:在对图像进行操作前一定要先用Adobe Gamma 软件 (与Photoshop 一同安装,在系统的控制面板中可以找到)校准你的显示器;如果在图像输出前不进行色彩校正,很可能从屏幕上看到的色彩和打印输出的色彩会出现不一致的情况,或在另一台显示器上显示的同一个图像相差甚远。如果你的显示器颜色偏差的厉害,就会直接影响到如扫描、打印以及各类与颜色打交道的操作。 2、如果使用色彩管理和准确的ICC 配置文件,显示器将更可靠地显示颜 色。使用ICC 显示器配置文件可帮助您消除显示器中的色偏,使显示器的灰色尽可能呈现中性色,并且使不同显示器中的图像显示达到标准化。 在Photoshop中,色彩管理调用Adobe RGB(1998),并建议你将色彩管理中的灰度改为Gray Gamma2.2,新存为自己的方案。有关显示器的校正和色彩管理方面的详细内容,请自行在网上搜索,很容易找到。 五、校色的一般方法及技巧:

线性系统的校正方法实验报告..

实验、线性系统的校正方法 一,实验目的 1.掌握系统校正的方法,重点了解串联校正。 2.根据期望的时域性能指标推导出系统的串联校正环节的传递函数。3,比较校正前后系统的性能改变,分析校正后的效果。 4, 了解和掌握串联超前校正、滞后校正的原理,及超前校正、滞后校正网络的参数的计算。 二,实验原理 1,所谓校正就是指在系统中加入一些机构或装臵 (其参数可以根据需要而调整),使系统特性发生变化,从而满足系统的各项性能指标。按校正装臵在系统中的连接方式,可分为:串联校正、反馈校正和复合控制校正三种。串联校正是在主反馈回路之内采用的校正方式2.超前校正的目的是改善系统的动态性能,实现在系统静态性能不受损的前提下,提高系统的动态性能。通过加入超前校正环节,利用其相位超前特性来增大系统的相位裕度,改变系统的开环频率特性。一般使校正环节的最大相位超前角出现在系统新的穿越频率点。 3.滞后校正通过加入滞后校正环节,使系统的开环增益有较大幅度增加,同时又使校正后的系统动态指标保持原系统的良好状态。它利用滞后校正环节的低通滤波特性,在不影响校正后系统低频特性的情况下,使校正后系统中高频段增益降低,从而使其穿越频率前移,达到增加系统相位裕度的目的。 三,实验内容

A、已知单位负反馈系统被控对象的传递函数如下G(S)=K/S/(S+1) 设计一个超前校正网络Gc(S),是系统满足如下要求:单位斜坡输入作用下,系统稳态误差小于 0.1;校正后系统的相位裕量大于45度。 分析:(1)根据控制理论可知,对于I 型系统在单位斜坡信号作用下系统的稳态误差为: Ess=1/K <0.1 可得K≥10,取K=10 (2)用下列命令绘制Bode 图并求取其频域指标。 s=tf('s'); G=10/(s*(s+1)); margin(G); grid on 得到如图的波特图:

超声波探伤仪自校准方法

超声波探伤仪自校准方法 ⒈目的 CTS-26型与HS-600型超声探伤仪系携带式A型脉冲反射式超声探伤,可用交流或电池供电工作,采用高亮度内刻度示波管,具有工作频率范围宽探伤灵敏度高、稳定性好、高亮度、示波管波形清晰和体积小、重量轻、耗电小以及造型新颖、操作方便等特点。为确保超声探伤仪功能正常,保证设备精确度、延长使用寿命,特制定本方法。 ⒉依据 (1)超声探伤仪使用手册 (2)JB/T4730-2005 ⒊技术要求 工作频率: 0.5~10MHz 工作方式: 单探头发射接收或双探头分别发射接收 衰减器: 衰减量80dB(20dB×2, 2dB×20) 垂直线性误差: ≤5% 水平线性误差: ≤1% 深度范围: 10~5000mm(钢纵波) ⒋校准项目 4.1 外观应完好,附件应齐全,各控制旋钮、调节装置应灵敏、有效。 4.2 垂直线性误差检查。 4.3 水平线性误差检查。 ⒌校准方法 5.1 检查各控制旋钮,调节是否有效、灵敏。 5.2 垂直线性检查 将《抑制》置最小(红点标志),《工作方式选择》开关置于“上”,使用5P20-D直探头。将探头固定在CS-1型试块上,调节仪器的衰减器和增益,使某一稳定回波的幅度恰为垂直刻度的100%,调节衰减器,每次衰减6dB,其幅度降低一半(即50%;25%;12.5%)其最大偏差应小于垂直刻度的5%。 5.3 水平线性检查

利用BH-50标准回波探头以取得多次无干扰回波后,调节仪器上的有关旋钮使多次回波的前沿挺拔清晰。调节仪器,在先后使每次底波均处于相同幅度(如垂直刻度的80%)的条件下,把第一次底波前沿对准水平刻度“0”。第6次波前沿对准“10”,然后在此条件下,检查第2、3、4、5次底波的前沿是否与相应的水平刻度2、4、6、8对准,其最大偏差应小于水平刻度的0.5格。 ⒍校准结果 6.1 各检查项目均满足为合格。 6.2 有不影响性能的外观缺陷等为准用。 6.3 垂直线性、水平性线超标,调节作用失灵为不合格。 ⒎记录 校准时应详细记录,记录格式见“超声波探伤仪自校准记录表”(SDTJ/JH-04-01) 超声波探伤仪自校准记录表

显示器色彩校正

几种免费显示器校正软件比较 目前市面上显示器校正分为硬件校正和软件校正两种。 硬件校正是采用专用测量仪器(如色度仪、分光光度仪等),配合一些专用软件去测量显示器的亮度、对比度、色度,并按标准调整,最终通过测量一系列色块生成显示器专用icc文件。此icc文件可以影响显示器及应用软件的颜色显示效果。采用硬件仪器调整可使显示器不受人为干扰而达到标准化,使目前最佳的显示器校正方式。但硬件调整需要购买相应测量仪器(价格昂贵,往往比常用显示器还贵),而提供显示器调整的专业服务机构还太少,不能满足需求(提供服务也要收取一定费用,这也是许多非专业个人用户不选择的原因)。 基于以上原因,目前还有一些免费的软件校正方式。软件校正是采用安装在电脑系统中的软件,用人工眼睛看的方式去调整显示器的亮度、对比度、色彩等指标,个别软件还可以生成包含一些信息的icc文件(注意纯软件生成的icc文件并不是显示器正真的icc文件,只是包含一些经过调整的基本信息的通用icc文件)。软件校正受人为水平能力和环境光线因素影响很大,而且不适合调整液晶显示器(LCD),但作为免费的校正方式,还是适合非专业使用的人员来调整纯平显示器(CRT)的。 目前最常用,最为大家了解的免费软件是随photoshop一起捆绑销售的adobe gamma软件,adobe gamma软件我们网站有专门的介绍,请点击这里:Adobe Gamma软件,了解详细使用方式。 很多photoshop用户并没有安装Adobe Gamma软件(安装时选择简洁安装、使用photoshopCS -CS2版本、使用一些绿色精简版photoshop,都没有adobe gamma软件),而Adobe Gamma软件并不单独提供下载,同时Adobe Gamma自身也存在一些问题。另有其他几种软件调整方式也各有各的特点,在这里给大家介绍一下,它们分别是:QuickGamma软件、桐生彩希的调整显示器图卡、Monitor Calibration Wizard软件三种。下面分别一一介绍。 QuickGamma软件 QuickGamma正是一个协助你做显示器校色的软体, 而且使用起来相当简单。它是免费的,而且使用起来相当简单。在此做一简略说明, 详细使用方式请见软件的Help 文件。 在使用QuickGamma 前, 请先将你的显示器色温设定为6500K, 大多数显示器制造商为了求卖相会将出厂预设的色温值设为9300K, 这会使得画面的色彩较偏冷色调。至于怎么设定显示器的色温, 请你参见显示器的说明书。 接着, 将显示器的对比设为最大, 并照下面的说明调整亮度。

系统的校正方法

·196 · 第6章 线性系统的校正方法 重点与难点 一、基本概念 1. 理想的频率特性 系统开环频率特性与系统时域指标之间有一定的关系。对于二阶系统而言,相位裕量γ、截止频率c ω与时域指标(超调量σ%、调节时间s t )有确定性关系。对高阶系统而言,γ,c ω都可以粗略估计高阶系统的响应特性。相位裕量越大,系统阶跃响应的超调量σ%和调节时间s t 就越小;c ω也近似与s t 成反比关系。因此,理想的频率特性应该有较大的相位裕量;希望响应快的系统就应该有大一点的c ω。 闭环系统(单位反馈)的频率特性有如下关系: ?? ? ??>>=<<≤= )( |)(20lg ) ( )1( )1|(| ||)(通常称为高频段通常称为低频段当有积分环节时c c j |G a a a A ωωωωωω (6.1) 式中)(ωj G 为开环频率特性。因此,若希望系统有较强的抗高频干扰能力,c ω应该小,而且|)(|lg 20ωj G 要衰减快。 如果频率特性用渐近线方法描述,理想的频率特性应该在c ω处以-20dB/dec 斜率穿越0dB 线,才能获得较大的相位裕量。 综合上所述,理想的频率特性应有积分环节且开环增益大,以满足稳态误差的要求;在截止频率c ω的频域(通常称为中频段),应以-20dB/dec 的斜率穿越0dB 线,并占有足够宽的频带,以保证系统具备较大的相位裕量;在c ωω>>的高频段,频率特性应该尽快衰减,以消减噪声影响。 2. 系统的校正 当系统频率特性不满足理想的频率特性指标(通常的指标体系为:闭环谐振峰值 r M 、谐振频率r ω、带宽频率b ω或开环频率特性的相位裕量γ、截止频率c ω、开环增 益K 、幅值裕量g H 等)时,需要引入校正网络,使新系统的频率特性满足要求。设计 校正网络参数通常用频率校正方法。 当希望系统的闭环极点达到要求时,需要加入某一校正网络以改变闭环极点。通常采用根轨迹校正方法。 3. 校正方式

相关文档