文档库 最新最全的文档下载
当前位置:文档库 › 浅谈如何提高压铸模寿命

浅谈如何提高压铸模寿命

浅谈如何提高压铸模寿命
浅谈如何提高压铸模寿命

浅谈如何提高压铸模寿命

压铸模由于生产周期长、投资大、制造精度高,故造价较高,因此希望模具有较高的使用寿命。但由于材料、机械加工等一系列内外因素的影响,导致模具过早失效而报废,造成极大的浪费。

压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。造成压铸模失效的主要原因有:材料自身存在的缺陷、加工、使用、维修以及热处理的问题。

1 材料自身存在的缺陷

众所周知,压铸模的使用条件极为恶劣。以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉应力。开模顶件时,型腔表面承受极大的压应力。数千次的压铸后,模具表面便产生龟裂等缺陷。

由此可知,压铸使用条件属急热急冷。模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。H13(4Cr5MoV1Si)是目前应用较广泛的材料,据介绍,国外80%的型腔均采用H13,现在国内仍大量使用3Cr2W8V,但3Cr2W8VT_艺性能不好,导热性很差,线膨胀系数高,工作中产生很大热应力,导致模具产生龟裂甚至破裂,并且加热时易脱碳,降低模具抗磨损性能,因此属于淘汰钢种。马氏体时效钢适用于耐热裂而对耐磨性和耐蚀性要求不高的模具。钨钼等耐热合金仅限于热裂和腐蚀较严重的小型镶块,虽然这些合金即脆又有缺口敏感性,但其优点是有良好的导热性,对需要冷却而又不能设置水道的厚压铸件压铸模有良好的适应性。因此,在合理的热处理与生产管理下,H13仍具有满意的使用性能。

热点模具网论坛

制造压铸模的材料,无论从哪一方面都应符合设计要求,保证压铸模在其正常的使用条件下达到设计使用寿命。因此,在投入生产之前,应对材料进行一系列检查,以防带缺陷材料造成模具早期报废和加工费用的浪费。常用检查手段有宏观腐蚀检查、金相检查、超声波检查。

(1)宏观腐蚀检查。主要检查材料的多孔性、偏柝、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝。

(2)金相检查。主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。

(3)超声波检查。主要检查材料内部的缺陷和大小。

2 压铸模的加工、使用、维修和保养

模具设计手册中已详细介绍了压铸模设计中应注意的问题,但在确定压射速度时,最大速度应不超过100m/S。速度太高,促使模具腐蚀及型腔和型芯上沉积物增多;但过低易使铸件产生缺陷。因此对于镁、铝、锌相应的最低压射速度为27、18、12m/s,铸铝的最大压射速度不应超过53m/s,平均压射速度为43m/s。

在加工过程中,较厚的模板不能用叠加的方法保证其厚度。因为钢板厚1倍,弯曲变形量减少85%,叠层只能起叠加作用。厚度与单板相同的2块板弯曲变形量是单板的4倍。另外在加工冷却水道时,两面加工中应特别注意保证同心度。如果头部拐角,又不相互同心,那么在使用过程中,连接的拐角处就会开裂。冷却系统的表面应当光滑,最好不留机加工痕迹。中国热模网首发

电火花加工在模具型腔加工中应用越来越广泛,但加工后的型腔表面留有淬硬层。这是由于加工中,模具表面自行渗碳淬火造成的。淬硬层厚度由加工时电流强度和频率决定,粗加工时较深,精加工时较浅。无论深浅,模具表面均有极大应力。若不清除淬硬层或消除应力,在使用过程中,模具表面就会产生龟裂、点蚀和开裂。消除淬硬层或去应力可用:①用油石或研磨去除淬硬层;②在不降低硬度的情况下,低于回火温度下去应力,这样可大幅度降低模腔表面应力。

模具在使用过程中应严格控制铸造工艺流程。在工艺许可范围内,尽量降低铝液的浇铸温度,压射速度,提高模具预热温度。铝压铸模的预热温度由100~130℃提高至180~200℃,模具寿命可大幅度提高。

焊接修复是模具修复中一种常用手段。在焊接前,应先掌握所焊模具钢型号,用机械加工或磨削消除表面缺陷,焊接表面必须是干净和经烘干的。所用焊条应同模具钢成分一致,也必须是干净和经烘干的。模具与焊条一起预热(H13为450℃),待表面与心部温度一致后,在保护气下焊接修复。在焊接过程中,当温度低于260℃时,要重新加热。焊接后,当模具冷却至手可触摸,再加热至475℃,按25mm/h保温。最后于静止的空气中完全冷却,再进行型腔的修整和精加工。模具焊后进行加热回火,是焊接修复中重要的一环,即消除焊接应力以及对焊接时被加热淬火的焊层下面的薄层进行回火。

热点模具网博客

模具使用一段时间后,由于压射速度过高和长时间使用,型腔和型芯上会有沉积物。这些沉积物是由脱模剂、冷却液的杂质和少量压铸金属在高温高压下结合而成。这些沉积物相当硬,并与型芯和型腔表面粘附牢固,很难清除。在清除沉积物时,不能用喷灯加热清除,这可能

导致模具表面局部热点或脱碳点的产生,从而成为热裂的发源地。应采用研磨或机械去除,但不得伤及其它型面,造成尺寸变化。

经常保养可以使模具保持良好的使用状态。新模具在试模后,无论试模合格与否,均应在模具未冷却至室温的情况下,进行去应力回火。当新模具使用到设计寿命的1/6~1/8时,即铝压铸模10000模次,镁、锌压铸模5000模次,铜压铸模800模次,应对模具型腔及模架进行450—480℃回火,并对型腔抛光和氮化,以消除内应力和型腔表面的轻微裂纹。以后每12000~15000模次进行同样保养。当模具使用50000模次后,可每25000~30000模次进行一次保养。采用上述方法,可明显减缓由于热应力导致龟裂的产生速度和时间。

在冲蚀和龟裂较严重的情况下,可对模具表面进行渗氮处理,以提高模具表面的硬度和耐磨性。但渗氮基体的硬度应在35-43HRC,低于35HRC时氮化层不能牢固与基体结合,使用一段时间后会大片脱落:高于43HRC,则易引起型腔表面凸起部位的断裂。渗氮时,渗氮层厚度不应超过0.15mm,过厚会于分型面和尖锐边角处发生脱落。

热点模具网

3 热处理

热处理的正确与否直接关系到模具使用寿命。由于热处理过程及工艺规程不正确,引起模具变形、开裂而报废以及热处理的残余应力导致模具在使用中失效的约占模具失效比重的一半左右。

压铸模型腔均由优质合金钢制成,这些材料价格较高,再加上加工费用,成本是较高的。如果由于热处理不当或热处理质量不高,导致报废或寿命达不到设计要求,经济损失世大。因此,在热处理时应注意以下几点:

(1)锻件在未冷至室温时,进行球化退火。

(2)粗加工后、精加工前,增设调质处理。为防止硬度过高,造成加工困难,硬度限制在

25-32HRC,并于精加工前,安排去应力回火。

(3)淬火时注意钢的临界点Ac1和AC3及保温时间,防止奥氏体粗化。回火时按20mm/h保温,回火次数一般为3次,在有渗氮时,可省略第3次回火。

(4)热处理时应注意型腔表面的脱碳与增碳。脱碳会记过迅速引起损伤、高密度裂纹;增碳会降低冷热疲劳抗力。

(5)氮化时,应注意氮化表面不应有油污。经清洗的表面,不允许用手直接触摸,应戴手套,以防止氮化表面沾有油污导致氮化层不匀。

(6)两道热处理工序之间,当上一道温度降至手可触摸,即进行下道,不可冷至室温。

4 压铸模常见故障原因及排除

压铸模常见故障原因及排除方法参见表1

如何提高压铸模寿命

如何提高壓鑄模壽命 (学员自学) 压铸模由于生产周期长、投资大、制造精度高,故造价较高,因此希望模具有较高的使用寿命。但由于材料、机械加工等一系列内外因素的影响,导致模具过早失效而报废,造成极大的浪费。 压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。造成压铸模失效的主要原因有:材料自身存在的缺陷、加工、使用、维修以及热处理的问题。 1、材料自身存在的缺陷 众所周知,压铸模的使用条件极为恶劣。以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉应力。开模顶件时,型腔表面承受极大的压应力。数千次的压铸后,模具表面便产生龟裂等缺陷。 由此可知,压铸使用条件属急热急冷。模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。H13(4Cr5MoV1Si)是目前应用较广泛的材料,据介绍,国外80%的型腔均采用H13,现在国内仍大量使用3Cr2W8V,但3Cr2W8V工艺性能不好,导热性很差,线膨胀系数高,工作中产生很大热应力,导致模具产生龟裂甚至破裂,并且加热时易脱碳,降低模具抗磨损性能,因此属于淘汰钢种。马氏体时效钢适用于耐热裂而对耐磨性和耐蚀性要求不高的模具。钨钼等耐热合金仅限于热裂和腐蚀较严重的小型镶块,虽然这些合金即脆又有缺口敏感性,但其优点是有良好的导热性,对需要冷却而又不能设置水道的厚压铸件压铸模有良好的适应性。因此,在合理的热处理与生产管理下,H13仍具有满意的使用性能。 制造压铸模的材料,无论从哪一方面都应符合设计要求,保证压铸模在其正常的使用条件下达到设计使用寿命。因此,在投入生产之前,应对材料进行一系列检查,以防带缺陷材料造成模具早期报废和加工费用的浪费。常用检查手段有宏观腐蚀检查、金相检查、超声波检查。 (1) 宏观腐蚀检查。主要检查材料的多孔性、偏柝、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝。 (2) 金相检查。主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。 (3) 超声波检查。主要检查材料内部的缺陷和大小。 2、压铸模的加工、使用、维修和保养 模具设计手册中已详细介绍了压铸模设计中应注意的问题,但在确定压射速度时,最大速度应不

锂电池循环充放电寿命问题

锂电池循环充放电寿命问题 锂电池寿命问题:循环充放电一次就是少一次寿命吗?回答这个问题前,我们先来说说锂电池循环寿命的测试条件。 循环就是使用,我们是在使用电池,关心的是使用的时间,为了衡量充电电池到底可以使用多长时间这样一个性能,就规定了循环次数的定义。实际的用户使用千变万化,因为条件不同的试验是没有可比性的,要有比较就必须规范循环寿命的定义。 锂电池充电器 1国标规定的锂电池循环寿命测试条件及要求:在环境温度20℃±5℃的条件下,以1C充电,当电池端电压达到充电限制电压4.2V时,改为恒压充电,直到充电电流小于或等于1/20C,停止充电,搁置0.5h~1h,然后以1C电流放电至终止电压2.75V,放电结束后,搁置0.5h~1h,再进行下一个充放电循环,直至连续两次放电时间小于36min,则认为寿命终止,循环次数必须大于300次。 2国标规定的解释: A.这个定义规定了循环寿命的测试是以深充深放方式进行的 B.规定了锂电池的循环寿命按照这个模式,经过≥300次循环后容量仍然有60%以上 然而,不同的循环制度得到的循环次数是截然不同的,比如以上其它的条件不变,仅仅把4.2V的恒压电压改为4.1V的恒压电压对同一个型号的电池进行循环寿命测试,这样这个电池就已经不是深充方式了,最后测试得到循环寿命次数可以提高近60%。那么如果把截止电压提高到3.9V进行测试,其循环次数应该可以增加数倍。3这个关于循环充放电一次就少一次寿命的说法,我们要注意的是,锂电池的充电周期的定义:

一个充电周期指的是锂电池的所有电量由满用到空,再由空充电到满的过程。而这并不等同于充电一次。另外大家在谈论循环次数的时候不能忽视循环的条件,抛开规则谈论循环次数是没有任何意义的,因为循环次数是检测电池寿命的手段,而不是目的!4▲误区:许多人喜欢把手机锂离子电池用到自动关机再充电,这个完全没有必要。 实际上,用户不可能按照国标测试模式对电池进行使用,没有一个手机会在2.75V 才关机,而其放电模式也不是大电流恒流放电,而是GSM的脉冲放电和平时的小电流放电混合的方式。 有另外一种关于循环寿命的衡量方法,就是时间。有专家提出一般民用的锂离子电池的寿命是2~3年,结合实际的情况,比如以60%的容量为寿命的终止,加上锂离子电池的时效作用,用时间来表述循环寿命我认为更为合理。 注意事项 对于锂离子电池,没有必要用到关机再充电,锂离子电池本来就适合用随时充电的方式进行使用,这也是他针对镍氢电池的最大优势之一,请大家善加利用这个特性。锂电池完全充放电一次(完全充放电并不等同于一次充放电),循环寿命才减少一次。 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始使用电池的话,电池的电量就会明显下降,就算以后想充满也充不满了。所以保养镍氢电池的重要方式就是:电必须用完了才能开始充电,充满了电了才允许投入使用。现在常用的锂电池的记忆效应是可以小到忽略不计的。2 完全充电,完全放电

影响人均寿命的因素的统计分析

影响人均寿命的因素的统计分析 摘要:本文利用相关与回归分析的统计学方法对亚洲各国人均GDP、成人识字率及疫苗接种率对这些国家人均寿命的影响进行统计分析,结果表明以上三个因素与人均寿命有很大的相关性。 关键词:人均寿命人均GDP 成人识字率疫苗接种率 Abstract: The thesis mainly uses correlation and regression analysis to investigate the influences of per capita GDP, literary rate of grown-ups and vaccine coverage rate on average lifespan in Asia. The results reveals that there were obvious relationship between the above three factors and average lifespan. Keywords: average lifespan per capita GDP literary rate of grown-ups vaccine coverage rate 0.引言 随着多学科交叉发展的进行,统计学与自然科学、人文科学、社会科学的结合也焕发出了勃勃生机,并极大地推动了这些学科的发展。统计学与自然科学的结合可以推动科研的发展,提高生产力;统计学与人文学科结合是人文科学发展的必然,只有结合统计学,结论才更有说服力,才能避免主观臆断的危险。否则,就会造成“公说公有理,婆说婆有理”的局面,大家各执己见,这样以来打的只是口水仗,问题却丝毫不能解决。是统计学的介入结束了英美国学者争论不休的一首作者不详的诗是否为莎士比亚所作的问题,随后统计学在确定一些美国匿名作品作者到底是谁的问题上发挥了重要的作用;统计学与社会科学结合可以发现与人类生活息息相关的问题,进一步分析产生这些问题的根源,从而帮助国家或者团体做出正确的决策,解决问题。本文的话题与每个生命个体息息相关,对该问题进行分析依赖统计知识,依赖统计数据和统计方法。 随着经济的发展和人们生活水平的提高,健康问题受到越来越多的人的关注。其中健康的一个重要表现形式就是寿命,那寿命的长短究竟与哪些因素有关呢?要想得出合理的解释还要依靠统计数据,我们要让数据来说话,这样结论才更有说服力。一些学者就可能影响平均寿命的三个因素:人均GDP,成人识字率及疫苗接种率在亚洲22个国家和地区展开调查调查。笔者用统计学的方法对这些数据进行分析,发现平均寿命的确与上述因素有关(具体数据见附表)。 1.研究设计 1.1研究问题 本研究主要探讨亚洲各国人均寿命与人均GDP、成人识字率及疫苗接种率的相关性。具体问题包括: 1)人均GDP与亚洲各国的人均寿命是否有影响? 2)成人识字率与亚洲各国的人均寿命是否有影响? 3)疫苗接种率与亚洲各国的人均寿命是否有影响? 1.2研究对象 本文的研究对象包括日本、中国香港、韩国、新加坡、泰国、马来西亚、斯里兰卡、中国大陆、菲律宾、朝鲜、蒙古、印度尼西亚、越南、缅甸、巴基斯坦、老挝、印度、孟加拉国、柬埔寨、尼泊尔、不丹、阿富汗在内的亚洲22个国家和地区的人均寿命、人均GDP,成人识字率及疫苗接种率的关系。 1.3研究工具与研究程序

锂电池放电放得越尽,电池的损耗就会越大

锂电池放电放得越尽,电池的损耗就会越大 “锂电池放电放得越尽,电池的损耗就会越大,”艾克郎大学,帮助美国太空总署NASA研究延长电池寿命的电子工程教授TomHartley,说到,“给电池充电充得越满,电池的损耗也会越大。锂电池最好是处于电量的中间状态,那样的话电池寿命最长。” 1 过高和过低的电量状态对锂电池的寿命有最不利的影响,而充放电循环次数反而是次要的。其实,大多数售卖电器或电池上标识的可反复充电次数,都是以放电百分之80为基准测试得出的。实验表明,对于一些笔记本电脑的锂电池,经常让电池电压超过标准电压0.1伏特,即从4.1伏上升到4.2伏,那么电池的寿命会减半,再提高0.1伏,则寿命减为原来的3分之一;长期低电量或者无电量的状态则会使电池内部对电子移动的阻力越来越大,于是导致电池容量变小。美国宇航局NASA让其哈勃太空望远镜上电池的消耗电量设定在总容量的百分之10,以确保电池可以反复充放电10万次而不必更新。2 其次,温度对锂电池寿命也有较大的影响(手机和其他小型电子设备对此点可忽略)。冰点以下的环境有可能使锂电池在电子产品打开的瞬间烧毁,而过热的环境则会缩减电池的容量。因此,如果笔电长期使用外接电源也不将电池取下来,电池就长期处于笔记本排出的高热当中,更主要的是,电池长期处于百分之100的电量状态,很快就会报废(包括我自己的笔电电池就是这么玩完的)。3 由以上,我们可以总结出以下几点确保锂电池容量和寿命的 注意事项 :4

不需要将锂电池充到百分之100满电,更不要将电量使用殆尽。在情况允许的情况下,尽量使电池的电量维持在半满状态附近,充电与放电的幅度越小越好;5 通用ChevyVolt电动车的出厂设计就是强制将电池电量维持在20%至80%,而苹果笔电的内置电池可能也是运用了这一方法(包括其他一些笔电和电子产品),让电池的可充放电周期数增加。6 不要将锂电池(尤其是笔记本锂电池)长期在设备使用外接电源的情况下。就算您的笔记本散热良好,长期百分之100的电量就等于对锂电池的谋杀。7 如果你长期用外接电源为笔记本电脑供电,或者电池电量已经超过80%,马上取下你笔记本的电池、平时充电不需将电池充满,充至80%左右即可;调整操作系统的电源选项,将电量警报调至20%以上,平时电池电量最低不要低于20%,在下降到20%以前即要进行充电;8 手机等小型电子设备,充好电了就应立刻断开电源线(包括充电功能的USB接口),一直接着会损害电池;要经常充电,记起来就充,但不必非得把电池充满;9 无论是对笔记本还是手机等,都一定不要让电池耗尽;10 如果要外出旅行,把电池充满吧,但请记得在条件允许的情况下随时为电器充电,为了电池寿命,一定不要等到电池放干; 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始使用电池的话,电池的电量就会明显下降,就算以后想充满也充不满了。所以保养镍氢电池的重要方式就是:电必须用完了才能开始充电,充满了电了才允许投入使用。

压铸模具的管理以及维护保养

压铸模具的管理以及维护保养 模具是压铸生产中三大必备因素之一,模具使用的好坏直接影响到模具的寿命,生产效率和产品的质量,关系着压铸的成本。对于压铸车间来说,模具良好的维护和保养是正常生产顺利进行的有力保障,有利于产品质量的稳定性,在很大程度上降低无形的生产成本,从而提高生产效率。根据在实际生产中遇到的问题,我们探讨一下怎么去把模具的维护保养做得更好。 首先:建立模具档案,做好准备—— (1)也就是给每一套模具在入厂时建立一套完整的使用记录,这是保证以后保养和维护的一个重要依据,每一条都要做的细致,清晰,包括每日的生产模次在内。 (2)作为一名模具管理人员,模具自入厂以后,模具每一部分的结构配件必须要详细记入模具档案里,并且要根据需要,把模具内的易损部分列出,提前准备配件,比如顶杆,型芯,等~~设立易损备件的最低库存量,从而不至于因准备不足而延误生产。因为在公司里这样的教训很多,有备才能无患。如果因为自己没有准备备件而耽误生产,对于压铸企业来说所造成的成本是很大的,时间,人力,保温炉用电(或者液化气)等都不是小数字,最主要是延误了生产,耽误了交货损失会更大! (3)给模具在做履历卡的同时有必要在模具本身刻上永久性标记,易于分辨。这样只要不傻的人都不会造成装错模具的闹剧。 (4)如果附带有油缸抽芯器的模具,尽快给其配上快换接头,不然每次拆装模具从油缸里漏出的油所浪费的钱足够你支付好几个员工一个月的工资,你也可以用省下来的钱给员工改善一下伙食。这样也大大缩短了压铸操作工装卸模具的时间,一举几得的事。切记买一些质量好的快接头,否则适得其反。 (5)提前制定模具管理规定,对员工进行系统培训,切实的执行下去。 其次,模具在生产过程中的注意事项~提到模具的维护与保养,在很多压铸操作工的脑海里会立即闪现出一个概念,总认为那是模修工的事,和他关系不大,其实正好相反。所有模具的命运如何可以说都在压铸操作工的手里掌握着。打个比方说,你是有一部车,开了几年坏掉了,你能说都是那些个洗车的造成的吗?所以模具在使用过程中以下几点要特别注意: (1)模具冷却系统的使用。模具冷却水在正确使用的情况下不仅延长模具的使用寿命,而且提高生产效率。在实际生产中我们常常忽视了它的重要性,操作工也图省事,接来接去的太麻烦,就不去接冷却水管了,有的公司甚至在定制模具的时候为了节约成本竟然不要冷却水,从而造成了很严重的后果。模具的材料一般都是专用的模具钢通过各种处理制作出来的,再好的模具钢也都有它们使用的极限性,就比如温度。模具在使用状态下,如果模温太高,很容易就会使模芯表面早早出现龟裂纹,有的模具甚至还没有超过2000模次龟裂纹就大面积出现。甚至模具在生产中因为模具温度太高模芯都变了颜色,经过测量甚至达到四百多度,这样的温度再遇到脱模剂激冷的状态下很容易出现龟裂纹,生产的产品也容易变形,拉伤,粘模等情况出现。在使用模具冷却水的情况下可大大减少脱模剂的使用,这样操作工

压铸模具失效形式以及如何提高寿命

压铸铝合金零件失效分析 摘要:本文结合工厂地压铸模具地实际失效情况,总结分析了压铸模地主要失效形式,系统地提出了分析压铸模具失效地方法和手段.从工程实用地角度提出了避免早期失效、提高模具寿命地方法. 压铸是一种节能、低价、高效地金属成形方式.压铸件具有尺寸精度高,表面光洁,强度和硬度高地特点,一般不需要机械加工或稍经加工便可使用,适合批量生产.但是在使用过程中,由于各种原因压铸模容易失效. 关键字:压铸模具失效提高寿命 1 压铸模具常见失效形式 下面结合工厂实际情况分析了压铸模具地失效形式和失效机理. 1.1 热裂 热裂是模具最常见地失效形式,如图1所示.热裂纹通常形成于模具型腔表面或内部热应力集中处,当裂纹形成后,应力重新分布,裂纹发展到一定长度时,由于塑性应变而产生应力松弛使裂纹停止扩展.随着循环次数地增加,裂纹尖端附近出现一些小孔洞并逐渐形成微裂纹,与开始形成地主裂纹合并,裂纹继续扩展,最后裂纹间相互连接而导致模具失效.b5E2RGbCAP

1.2整体脆断 整体脆断是由于偶然地机械过载或热过载导致模具灾难性断裂.材料地塑韧性是与此现象相对应地最重要地力学性能.材料中有严重缺陷或操作不当,会引起整体脆断,如图2所示.P^anqFDPw 1.3侵蚀或冲刷 这是由于机械和化学腐蚀综合作用地结果,熔融铝合金高速射入型腔,造成型腔表面地机械磨蚀.同时,金属铝与模具材料生成脆性地铁铝化合物,成为热裂纹新地萌生源.此外,铝充填到裂纹之中与裂纹壁产生机械作用,并与热应力叠加,加剧裂纹尖端地拉应力,从而加快了裂纹地扩展.提高材料地高温强度和化学稳定性有利于增强材料地抗腐蚀能 力.DXDiTa9E3d 2压铸模具常见失效分析方法 为了延长模具地使用寿命,节约成本,提高生产效率,就必须研究模具地失效形式和导致模具失效地原因以及模具失效地内部机理.由于压铸模具失效地原因比较复杂,要从模具地设计、材料选择、工作状态等很多方面来进行分析.图3为压铸模具常见失效分析

影响疲劳寿命的因素

影响橡胶疲劳寿命的因素 一环境条件 环境影响在疲劳过程中特别是在长寿命的橡胶材料中起着关键作用。橡胶应力-应变关系和疲劳老化性能发展的方式在很大程度上依赖于材料的温度以及橡胶成分周围化学反应物的存在和浓度 A温度 升高的温度对橡胶形核寿命和疲劳裂纹增长速率产生有害的影响,这种有害影响在无定形橡胶中表现的最为明显,对于纯的丁苯橡胶处于可控测试中,随着温度从0°到100°,疲劳寿命化降低10000倍,而对于纯的天然胶而言,在相同条件下,疲劳寿命降低4倍。填料的加入可能降低对温度的依赖性。在疲劳裂纹增长测试中类似的影响可能被观察到。 上述温度的影响与由于老化或进一步教交联所发生的化学变化无关。温度对这些化学过程的速率产生很大的影响这种影响能够在升温或长时间内导致附加分解。温度实际对长期行为地影响程度取决于配方设计;固化剂,抗氧化剂等这些因素以后讨论。 B臭氧 在一个长期的疲劳测试中,有臭氧存在很大程度上会增大裂纹的增长速率和缩短寿命。由于应力集中,弹性体网链在裂纹尖端很容易与臭氧反应,臭氧与主要聚合物分子链的碳-碳双键发生反应引起断链。 当瞬间的能量释放速率超过一个小的起点,就会发生由于臭氧袭击而引起的裂纹增长,这个起点由Gz表示,Gz通常比机械疲劳起点T更小,Gz的值恨得程度上取决于配方设计,特别是抗氧化剂和抗臭氧剂存在。对于没有加入任何这些物质的橡胶来说,Gz = 0.1J/m2,当有抗臭氧剂存在时,Gz会增大10倍或更多,相比较而言,机械疲劳起点大约为T = 50 J/m2,臭氧看起来不影响机械疲劳起点的值,其他化学物质能够以一种类似臭氧的方式侵袭橡胶。Gent和Mrath 研究了在一个很大的范围内温度对臭氧增长速的影响。两个物理量被发现可以控制列为裂纹增长率da/dt,在玻璃化转变温度附近裂纹增长速率是与v温度成比例的,而与臭氧无关。在足够高的温度下(Q-Tg >100°),裂纹增长速率完全依赖于臭氧浓度而与温度无关。总的裂纹增长速率由下列方程式近似的给出

压铸模使用必须注意的几个要点

压铸模使用必须注意的几个要点 一、压铸模的使用特点 在压铸生产过程中,压铸模的零件成形条件极其恶劣,它们经受着机械的磨蚀、化学的侵蚀和热疲劳的反复作用。 1)金属液在高压、高速下进入模具型腔,对模具型腔的表面产生激烈的摩擦和冲击,使模具表面产生侵蚀和磨损。 2)金属液在浇注过程中难免有熔渣带入,熔渣对成形零件表面产生复杂的化学作用,铝和铁的化合物像尖劈一样,加速了压铸模裂纹的形成和发展。 3)热应力是模具成形零件表面产生裂纹的主要原因,在每一个压铸件生产过程中,成形件表面除了受到金属液的高速、高压冲刷外,还存在着吸收金属在凝固过程中放出的热量,产生了热交换。此外由于模具材料热传导的关系,使成形件表面层温度急剧上升,与内部产生了很大的温差,从而产生了内应力。当金属液充填型腔时,型腔表层首先达到高温而膨胀,而内层模温较低,相对的膨胀量小,使表层产生压应力。开模后,型腔表面与空气接触,受到压缩空气及涂料的激冷而产生拉应力。这种交变应力随着生产的延续而增加,当超过模具材料的疲劳极限时,使模具表面层产生塑性变形而产生裂纹。 为了保持型面的耐用,要求型面具有抗热疲劳性能、耐磨损、不粘模、易脱件。所以对成形零件采用了目前应用较好的4Cr5MoSiV1(H13)材料制造。 二、合金熔液的温度 压铸模生产过程中为了能更好地填充到压铸模所有凹孔和深处,保证金属流动时彼此融和,在使用压铸模时,应正确选择金属的浇注温度,合金压铸液体浇注温度如下: 材料名称压铸液体温度/℃ 锌合金420-500 铝合金620-690 镁合金700-740 铜锌合金850-960 压铸合金温度选用原则: 1)浇入的金属温度越低,压铸模的寿命越长; 2)用低温压铸,才有可能减少排气槽深度的增大,降低金属液溅出的危险;

锂纽扣电池可靠性预测和应用寿命估算

锂纽扣电池可靠性预测和应用寿命估算 工业设备尤其是便携式设备均离不开嵌入的锂纽扣电池--系统的“源动力”。据此,锂纽扣电池的制造厂商及产品又是层出无穷、品种繁多,从而导致使许多最终用户在对其锂纽扣电池的使用寿命和选用上不是茫茫然就是束手无策。为此,如何解决这致关系统可靠安全的重要问题及如何寻找出新方案、新产品等新途径就成为其重中之重。目前国际上有不少著名制造厂商, 能提供有备用锂纽扣电池的非易失存储器(NVM—Non volatile MEMORY)或实时时钟(RTC)的应用产品,以确保当系统(微控制器、嵌入式等系统)掉电时保存数据或信息。这些产品的典型规格是在没有系统电源的条件下提供10年的使用寿命。因为最终应用是不确定的,所以对使用寿命的预测还是比较保守的。最终用户针对锂纽扣电池的具体应用, 应评估(电池结构/特征、电池测试/筛选、容量等)或预期出使用寿命,特别是对那些工作环境超出了典型范围或所需应用时间超过10年的用户来说。必须了解这电池可靠性模型,这将有助于用户单独选购电池控制器, 从而又将电池控制器与电池组装在一起构成性能价格比较高的锂纽扣电池,也就解决了不必购买包含电池控制器和电池在内的高成本模块问题。本文论述了备用锂纽扣电池应用寿命估算及寿命对IC集成电路(指SRAM--静态随机存取存储器或RTC)影响的有关问题。这儿指IC均属于是由系统电源供电或锂备用电池供电。为此,首先要说明为何选用备用电池?为何选用备用电池众所周知,系统断电时,有多种保存数据的方案,当对读写速度或周期数要求比较严格时,有备用电池的SRAM是一种较为可靠的替代方案。闪存或EEPROM同样提供NV(非易失)数据存储,但在简易性和速度指标上存在不足。而有备用电池的SRAM, 其主要缺陷是电池是一个消耗品,产品选择必须慎重考虑电池容量并确定其产品最终的使用寿命。对于没有系统电源供电同时要保持信息或计时功能,并需要提供一定的电能才能维持晶振工作,则用电池提供电流是非常适合的.IC集成电路所需电流如果IC(SRAM或RTC)将由电池供电,则需要在IC工作时的电流、使用寿命与电池容量之间加以匹配。购买电池和IC时,其数据手册将提供与IC负载相对应的有关估算电池寿命的信息,如果购买集IC和电池于一体的模块,则最终用户应依靠模块厂商对模块产品的适当筛选来保证系统使用寿命的要求。半导体制造厂商为其所有电池供电产品制订了测试条件,以保证在电池容量的允许范围内为最终器件提供10年的使用时间。而Dallas Semiconductor公司对这种应用的IC进行优化设计并利用先进的处理工艺满足低电流的需求。对于其它供货商提供的高密度SRAM需作特殊的筛选才能满足模块使用寿命的要求。图1来自于由锂纽扣电池供货商-松下公司提供的电池容量报告,图中四条线代表最常用的电池尺寸(BRl225、BRl632、BR2330和BR3032)。电池供应商提供的额定电池容量(单位为mAH-毫安时)与电池尺寸相对应。电池结构/特征在其需要有备用电池的模块内选用一次性锂钮扣电池,这些电池的额定电压为3V,对系统典型工作电压为2.7V来说,则该锂钮扣电池作为备用电源非常合适。电池电压在放电状态下保持稳定平坦(见图2所示),电池放电接近终止时仍能提供与新电池几乎相同的电压。平坦的放电曲线对于备用电池而言是极为理想的特性,但它为估算电池的剩余电量增添了难度。一次性锂钮扣电池具有较好的可预测性,它的开路电压或内部阻抗等关键参数的离散性极小,极小的离散性使电池厂商筛选电池时很容易设置电池检测的条件,从而便于剔除有缺陷的电池,同时也有助于电池用户鉴别有故障的IC/电池系统。例如,电池电压离散性或电压与电池负载的对应关系是已知的,则电池加载后的电池电压可用以指示其电池的负载情况。如果电池负载与IC所需要的电流一致,则负载电压的离散性极小。根据从外部测得的负载电压可以检测异常IC或电池,从而排除潜在的可靠性风险。电池测试/筛选电池制造商经过100%的测试使产品性能极其一致,但是,任何用户为其系统选用电池时还需对电池作进一步测试,以确保最终产品选用工作正常的电池。经过适当的筛选可以检测出三种类型的缺陷:首先是那些被电池制造商的测试系统所遗漏的电池,这类电池最易检测;第二类缺陷是低水平的内部泄漏,这些电池可能经过一段时间后才能显现出它的内部故障,对于这类电池的检测不仅要了解其合适的测试电平,还要预先了解其测试结果的离散性;第三类缺陷是电池用户在处理或系统制造过程中产生的,由于电池容量是有限的,如果有意想不

锂离子电池循环寿命影响因素分析

锂离子电池循环寿命影响因素分析 摘要:随着电子科学技术的不断发展,越来越多的电子产品使用锂离子电池作 为能量的供给,但是锂离子电池目前在使用上还存在许多问题,其中锂离子电池 的循环寿命就对整个电子产品的使用有关键的影响作用.当电池的寿命较低时,电子产品的使用寿命也会受到影响,即使及时更换新的电池也不能达到原来电池的 高匹配程度,所以有必要对锂离子电池循环寿命的影响因素进行探索。本文对锂 离子电池使用过程中循环寿命的影响因素进行分析和探讨,其中包括锂离子电池 设计和制造工艺、锂离子电池所使用的材料老化和衰退的情况、锂离子电池所使 用的环境和充放电制度等方面展开详细的探讨,并提出相应的对策。 关键词:锂离子电池;循环寿命;影响因素 锂离子电池作为最常用的充电电池,具有单体电压高、质量轻、自放电小、工作温度范围广、环境容纳度高等出色优点,其他类型电池很少全面具备这样的性能。但是锂离子电池依然存 在缺点,例如有些锂离子电池在经过一定周期的充电和放电循环之后,电池的容量下降过快,达不到标准500次循环的,本文将对锂离子电池的循环性能进行探讨。影响锂离子电池循环 性能的因素有很多,其中,电池在使用过程中,在其内部发生的化学反应是直接影响电池循 环寿命的,除此以外,电池制备所使用的材料、制作设计工艺等也会对电池的循环寿命造成 影响。本文就这几方面的内容进行探讨。 一、简述锂离子电池的构成和原理 (一)锂离子电池的构成 虽然锂离子电池从发明到使用经历较多改进,但是锂离子电池的本质构成并不复杂。锂 离子电池主要由正极、负极、电解液、隔膜、集流体以及电池外壳所构成。正负极所采用的 材料各自不同,但是都有一定的要求。电解液的选择需要满足良好的离子导体和电子绝缘体 的要求,同时应具备良好的热稳定性及化学稳定性。合适的集流体能够保证极片在工作过程 中处于稳定的状态。每一个部分的合理构成可以保证锂离子电池正负极反应的顺利进行。 (二)锂离子电池的反应原理 锂离子电池在工作过程中所发生的反应主要为:充电时,锂离子从正极经过电解液穿过 隔膜嵌入到负极,同时有相同数量的电子经外电路传递到负极,保证电荷平衡;而进行放电时,则相反,锂离子从负极脱嵌,经过电解液穿过隔膜再回到正极,此时相同数量的电子经 外电路传递到正极。在锂离子电池进行首次充电时,有机电解液在碳负极表面发生还原分解,形成一层电子绝缘、离子可导的钝化膜,这层钝化膜被称为固体电解质界面膜(solid electrolyte interface,SEI),该钝化膜能够阻止电解液与碳负极的反应以及溶剂分子共插对负极结构的破坏,对负极进行保护。 二、影响锂离子电池循环寿命的因素 影响锂离子电池循环寿命的因素包括内部和外部因素,内部因素主要是锂离子电池进行 充电和放电过程的化合反应,外部因素主要是在使用过程中的环境控制等。我们讨论在可控 范围内对锂离子电池循环寿命造成影响的因素,希望能够发现并且控制这些因素的办法,延 长电池的循环寿命,使锂离子电池能够得到更加良好的应用。

模具寿命管理办法

无锡吉冈精密机械有限公司编号JGMD003 版本/版次A/1 文件类别 B 三级文件页码1/3页 文件名称模具寿命管理办法生效日期2013、12、20 为了确保模具的使用处于受控状态,防止已报废模具被使用,并根据模具寿命申请备用模具,使公司对模具的使用寿命进行有效的管理。 2.适用范围 适用于公司的压铸模具。 3.职责 3、1压铸模具工负责对压铸模具寿命的评估申请; 3、2开发负责对压铸模具寿命的评估及判定; 3、3压铸模具由开发工程师及项目工程师进行评估申请及判定。 4、内容: 4、1压铸模具 4、1、1在新模试产合格后移交至压铸车间时,模具工根据《模具库管理办法》建立模具履历等相关资料。在生产现场每一次归还模具时,模具工在模具履历上填写使用的相关模数,并根据《压铸模具保养规程》进行保养。当模具生产使用到寿命时,及时提交<模具寿命评估表>。压铸模具使用寿命判定如下: (1)当压铸模的总寿命达到表1的额定使用寿命规定后,若模具已严重磨损无法使用,则需要提交《模具报废申请表》进行审批; (2) 提交《模具寿命评估报告》进行评估后若仍可继续使用,使用的模具则每生产满5000模次后,需进行一次二级保养。 表1 压铸模的额定使用寿命 (万次) 模仁材质压铸合金壁厚≥2、0mm 壁厚≤2、0mm DAC55铝合金8 8 SKD61 锌合金30 30 无锡吉冈精密机械有限公司编号JGMD003 版本/版次A/1 编制审核核准 日期日期日期

文件类别 B 三级文件页码2/3页 文件名称模具寿命管理办法生效日期2013、12、20 4、2、1开发在模具移交至生产的时候,工程师或项目工程师负责提供模具履历档案信息与易 损件,包括模具设计寿命、镶针设计图面、模具水路图等资料。 4、2、2外协单位每次借用/归还模具时需采购按流程填写《固定资产调拨单》,在压铸车间 《模具进出登记表》登记,每次借出模具的生产数量、日期以及维修事项记录于模具履历表内。 4、2、3模具工对每次模具生产完毕后将生产数量记录到模具履历表中,模具生产数量已达 到设计寿命的50%以上的模具由模具工统计出来将统计结果反馈到开发与销售部门,提出计划开备用模具的申请。 4、2、4模具使用部门可以根据模具寿命统计表进行模具寿命评估申请(包括以下三种情况): a、当模具的使用寿命达到模具设计寿命的50%以上,使用部门可以提出申请对模具的状况 进行评估,并依据模具寿命标准将评估内容填入《模具寿命评估表》中、。 b、对于模具生产状况发生巨大变化时(如模具大面积龟裂或影响到质量要求),材质及氮化不 良寿命不易控制时,模具使用单位可以提前向开发部门提出申请对模具的状况进行评估,并依据模具寿命标准将评估内容填入《模具寿命评估表》中,并由开发部门组织对提前报废的模具进行分析,找出原因并制定备模改善措施。 c、模具生产数量已超过规定的寿命时,使用部门可以提出申请对模具进行评估,并填写《模 具寿命评估表》。 4、2、5评估小组由开发部门、模具使用部门、品质部门相关责任人组成,并由生产部门主导, 评估小组结合业务状况对模具进行全面、客观的评价定论出临时措施与长期措施。 4、2、6,模具超过寿命评估方案:当模具表面无龟裂且生产出的产品无裂痕或不影响质量、 品质稳定、尺寸良好,外观无缺陷时,可能会临时延长模具使用寿命; 无锡吉冈精密机械有限公司编号JGMD003 版本/版次A/1 文件类别 B 三级文件页码3/3页 文件名称模具寿命管理办法生效日期2013、12、20 编制审核核准 日期日期日期

人的寿命与哪些因素有关

人的寿命与以下因素有关: 1.性别 从不同国家在不同时期男女平均寿命统计,历来女性长于男性。而且,随着人类寿命的延长,男女平均寿命的差别更为明显。 2.先天因素 人体细胞有46条染色体,配成23对,其中有一对决定性别的性染色体,男性为XY型配对,女性为XX型配对,X染色体粗大,具有完整的遗传信息;Y染色体弱小,所含遗传成分很少。如果妇女的某一个X染色体中有一个致命的成为遗传性疾病的基因;第二个x染色体可提供一个修复这种状况的基因;而男性只有一个x染色体,一旦有一个致命的基因,没有改正的机会,容易潜伏遗传性疾病。也有的专家指出,妇女有两套免疫系统,一个是保护妇女本身,一个是保护胎儿。而男性则没有后者,因而,其免疫力不如妇女强。 3.后天因素 男性一般能量消耗比女性大(基础代谢男性比女性人5%-7%,能量消耗男性比女性大30%-40%),以及男性一般从事的工种较复杂、艰巨,因战争和各种意外事故而死亡也较多,精神与身体过度损伤较女性多等,也对两性寿命差别起一定作用。 4.优生 据统计,近亲婚姻的遗传性疾病比非近亲婚姻的高出十倍以上。长寿者很少是近亲婚姻产生的,因近亲婚姻容易使下一代得遗传性疾病,而遗

传性疾病对人的健康和寿命有很大影响。人类现已证实的遗传性疾病有3000多种,人类疾病中约有1/4~1/3与遗传因素有密切关系。科学调查还发现,长寿者中约2/3属第一、二胎生,即生于父母生命力最旺盛的时期;而且晚婚、少育长寿者的生活能力较强,高血压病患病率也较低。 5.心理状态 老年人的心理状态对他的健康和寿命有明显影响。我们常见到有的癌症病人在得知自己患癌症后,心理压力很大,精神萎靡不振,病情很快恶化,以至加速死亡。而有的病人,能正确对待疾病,不气馁、不麻痹,积极配合治疗,病情就相对稳定。老年人如常有衰老感、孤独感和忧郁心理,会使之情绪低沉,意志减退,体力减弱,加重原有疾病和易得新的疾病。相反心理上如能保持“青春”,则可使之情绪稳定,精神振作,抗病能力增强,充满生命活力,可以延缓或推迟生理上的老化,有益于健康长寿。 6.性格修养 长寿的人多心胸宽阔,性格开朗,不务名利,道德观念很强。据调查统计,我国长寿老人21%43%性格开朗、乐观,远离毒气或放射源。 饮用被细菌污染的水可得痢疾、霍乱、伤寒等传染病,这些都会影响人的健康和寿命。老年人饮用的水,一般以煮沸为宜,浑浊度不超过每升5毫克。水中不含任何肉眼可见的杂质,无异臭异味。 7.阳光

锂电池的寿命

锂电池的寿命 锂离子电池只能充放电500次? 相信绝大部分消费者都听说过,锂电池的寿命是“500次”,500次充放电,超过这个次数,电池就“寿终正寝”了,许多朋友为了能够延长电池的寿命,每次都在电池电量完全耗尽时才进行充电,这样对电池的寿命真的有延长作用吗?答案是否定的。锂电池的寿命是“500次”,指的不是充电的次数,而是一个充放电的周期。 一个充电周期意味着电池的所有电量由满用到空,再由空充到满的过程,这并不等同于充一次电。比如说,一块锂电在第一天只用了一半的电量,然后又为它充满电。如果第二天还如此,即用一半就充,总共两次充电下来,这只能算作一个充电周期,而不是两个。因此,通常可能要经过好几次充电才完成一个周期。每完成一个充电周期,电池容量就会减少一点。不过,这个电量减少幅度非常小,高品质的电池充过多次周期后,仍然会保留原始容量的80%,很多锂电供电产品在经过两三年后仍然照常使用。当然,锂电寿命到了最终后仍是需要更换的。 而所谓500次,是指厂商在恒定的放电深度(如80%)实现了625次左右的可充次数,达到了500个充电周期。 (80%*625=500)(忽略锂电池容量减少等因素) 而由于实际生活的各种影响,特别是充电时的放电深度不是恒定的,所以"500个充电周期"只能作为参考电池寿命。

寿命及影响因素 锂电池一般能够充放300-500次。最好对锂电池进行部分放电,而不是完全放电,并且要尽量避免经常的完全放电。一旦电池下了生产线,时钟就开始走动。不管你是否使用,锂电池的使用寿命都只在最初的几年。电池容量的下降是由于氧化引起的内部电阻增加(这是导致电池容量下降的主要原因)。最后,电解槽电阻会达到某个点,尽管这时电池充满电,但电池不能释放已储存的电量。 锂电池的老化速度是由温度和充电状态而决定的。下表说明了两种参数下电池容量的降低。 温度充电40% 充电100% 0°C 一年后容量98% 一年后容量94% 25°C 一年后容量96% 一年后容量80% 40°C 一年后容量85% 一年后容量65% 60°C 一年后容量75% 三个月后容量60% 由图可见,高充电状态和增加的温度加快了电池容量的下降。 如果可能的话,尽量将电池充到40%放置于阴凉地方。这样可以在长时间的保存期内使电池自身的保护电路运作。如果充满电后将电池置于高温下,这样会对电池造成极大的损害。(因此当我们使用固定电源的时候,此时电池处于满充状态,温度一般是在25-30°C之间,这样就会损害电池,引起其容量下降)。

模具寿命管理规定

模具寿命管理规定公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

1. 为了确保模具的使用处于受控状态,防止已报废模具被使用,并根据模具寿命申请备用模具,使公司对模具的使用寿命进行有效的管理。 2.适用范围 适用于公司的压铸模具。 3.职责 压铸模具工负责对压铸模具寿命的评估申请; 开发负责对压铸模具寿命的评估及判定; 压铸模具由开发工程师及项目工程师进行评估申请及判定。 4.内容: 压铸模具 4.1.1在新模试产合格后移交至压铸车间时,模具工根据《模具库管理办法》建立模具履历等相关资料。在生产现场每一次归还模具时,模具工在模具履历上填写使用的相关模数,并根据《压铸模具保养规程》进行保养。当模具生产使用到寿命时,及时提交<模具寿命评估表>。压铸模具使用寿命判定如下: (1)当压铸模的总寿命达到表1的额定使用寿命规定后,若模具已严重磨损无法使用,则需要提交《模具报废申请表》进行审批; (2) 提交《模具寿命评估报告》进行评估后若仍可继续使用,使用的模具则每生产满5000模次后,需进行一次二级保养。 表1 压铸模的额定使用寿命(万次)

4.2.1开发在模具移交至生产的时候,工程师或项目工程师负责提供模具履历档 案信息和易损件,包括模具设计寿命、镶针设计图面、模具水路图等资料。 4.2.2外协单位每次借用/归还模具时需采购按流程填写《固定资产调拨单》,在 压铸车间《模具进出登记表》登记,每次借出模具的生产数量、日期以及维修事项记录于模具履历表内。 4.2.3模具工对每次模具生产完毕后将生产数量记录到模具履历表中,模具生产 数量已达到设计寿命的50%以上的模具由模具工统计出来将统计结果反馈到开发和销售部门,提出计划开备用模具的申请。 4.2.4模具使用部门可以根据模具寿命统计表进行模具寿命评估申请(包括以下三种情况): a.当模具的使用寿命达到模具设计寿命的50%以上,使用部门可以提出申请对模 具的状况进行评估,并依据模具寿命标准将评估内容填入《模具寿命评估表》中.。 b.对于模具生产状况发生巨大变化时(如模具大面积龟裂或影响到质量要 求),材质及氮化不良寿命不易控制时,模具使用单位可以提前向开发部门提出申请对模具的状况进行评估,并依据模具寿命标准将评估内容填入《模具寿命评估表》中,并由开发部门组织对提前报废的模具进行分析,找出原因并制定备模改善措施。 c. 模具生产数量已超过规定的寿命时,使用部门可以提出申请对模具进行评估, 并填写《模具寿命评估表》。 4.2.5评估小组由开发部门、模具使用部门、品质部门相关责任人组成,并由生产

压铸模产生龟裂的原因

产生龟裂的原因 1) 模具在压铸生产过程中温度偏高(最好附加冷却系统). (2)模具在压铸生产过程中脱模剂喷洒不合理. (3)模具热处理不理想,主要是硬度(硬度应不小于HRC--47). (4)模具钢材质不好,推荐使用8407或精练H13 早期龟裂一般情况下是因毛坯锻打起锻温度过高(俗称过烧)过烧是一种不可补救的缺陷,因此应严格控制毛坯制造过程中的起锻温度.淬火工艺上也如此,并应严格控制加热时间防止脱炭,材料选择好之后就是热处理了,在生产了一定的数量后注意去应力,还有就是设计合理,尽量避免应力集中,注意R角的大小控制。在大约1万模次的时候,模具要注意回火去应力,内力集中加工残余应力未去除压铸过程热应力未得到很好去除总之龟裂就是应力集中的表现,可以采用多次回火去除应力从而可以增加模具寿命。 铝合金压铸模具在生产一段时间后龟裂的原因主要有以下几点: (1)模具温度偏高应力过大 (2)模具模仁material使用8407,skd61 (3)模具热处理硬度过高 (4.定期保养,5k times1 回火,15k times1 回火30k times. 预防压铸模龟裂问题,提高模具使用寿命,要做好以下几点: 1.压铸模成型部位(动、定模仁、型芯)热处理要求硬度要保证在HRC43~48 (材料可选用SKD61或8407) 2.模具在压铸生产前应进行充分预热作业,其作用如下: 2.1使模具达到较好的热平衡,使铸件凝固速度均匀并有利于压力传递. 2.2保持压铸合金填充时的流动性,具有良好的成型性和提高铸件表面质量. 2.3减少前期生产不良,提高压铸生产率. 2.4降低模具热交变应力,提高模具使用寿命. 具体规范如下:

模具寿命管理办法

1.目的 为了确保模具的使用处于受控状态,防止已报废模具被使用,并根据模具寿命申请备用模具,使公司对模具的使用寿命进行有效的管理。 2.适用范围 适用于公司的压铸模具。 3.职责 3.1压铸模具工负责对压铸模具寿命的评估申请; 3.2开发负责对压铸模具寿命的评估及判定; 3.3压铸模具由开发工程师及项目工程师进行评估申请及判定。 4.内容: 4.1压铸模具 4.1.1在新模试产合格后移交至压铸车间时,模具工根据《模具库管理办法》建立模具履历等相关资料。在生产现场每一次归还模具时,模具工在模具履历上填写使用的相关模数,并根据《压铸模具保养规程》进行保养。当模具生产使用到寿命时,及时提交<模具寿命评估表>。压铸模具使用寿命判定如下: (1)当压铸模的总寿命达到表1的额定使用寿命规定后,若模具已严重磨损无法使用,则需要提交《模具报废申请表》进行审批; (2) 提交《模具寿命评估报告》进行评估后若仍可继续使用,使用的模具则每生产满5000模次后,需进行一次二级保养。 表1 压铸模的额定使用寿命(万次)

4.2.1开发在模具移交至生产的时候,工程师或项目工程师负责提供模具履历档案信息和易损 件,包括模具设计寿命、镶针设计图面、模具水路图等资料。 4.2.2外协单位每次借用/归还模具时需采购按流程填写《固定资产调拨单》,在压铸车间《模 具进出登记表》登记,每次借出模具的生产数量、日期以及维修事项记录于模具履历表内。 4.2.3模具工对每次模具生产完毕后将生产数量记录到模具履历表中,模具生产数量已达到设 计寿命的50%以上的模具由模具工统计出来将统计结果反馈到开发和销售部门,提出计划开备用模具的申请。 4.2.4模具使用部门可以根据模具寿命统计表进行模具寿命评估申请(包括以下三种情况): a.当模具的使用寿命达到模具设计寿命的50%以上,使用部门可以提出申请对模具的状况进 行评估,并依据模具寿命标准将评估内容填入《模具寿命评估表》中.。 b.对于模具生产状况发生巨大变化时(如模具大面积龟裂或影响到质量要求),材质及氮 化不良寿命不易控制时,模具使用单位可以提前向开发部门提出申请对模具的状况进行评估,并依据模具寿命标准将评估内容填入《模具寿命评估表》中,并由开发部门组织对提前报废的模具进行分析,找出原因并制定备模改善措施。 c. 模具生产数量已超过规定的寿命时,使用部门可以提出申请对模具进行评估,并填写《模具 寿命评估表》。 4.2.5评估小组由开发部门、模具使用部门、品质部门相关责任人组成,并由生产部门主导,评 估小组结合业务状况对模具进行全面、客观的评价定论出临时措施和长期措施。 4.2.6,模具超过寿命评估方案:当模具表面无龟裂且生产出的产品无裂痕或不影响质量、 品质稳定、尺寸良好,外观无缺陷时,可能会临时延长模具使用寿命;

相关文档