文档库 最新最全的文档下载
当前位置:文档库 › 图的应用(最小生成树、拓扑排序、关键路径、最短路径)汇总

图的应用(最小生成树、拓扑排序、关键路径、最短路径)汇总

图的应用(最小生成树、拓扑排序、关键路径、最短路径)汇总
图的应用(最小生成树、拓扑排序、关键路径、最短路径)汇总

详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)

这篇文章主要介绍了图的应用(最小生成树、拓扑排序、关键路径、最短路径),需要的朋友可以参考下

1.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树

1.1 问题背景:

假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢?

1.2 分析问题(建立模型):

可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。即无向连通图的生成树不是唯一的。连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。

图G5无向连通图的生成树为(a)、(b)和(c)图所示:

G5

G5的三棵生成树:

可以证明,对于有n 个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1 条边。

1.3最小生成树的定义:

如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。

最小生成树的性质:

假设N=(V,{ E}) 是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,

则必存在一棵包含边(u,v)的最小生成树。

1.4 解决方案:

两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。时间复杂度O(N^2)

假设G=(V,E)为连通图,其中V 为网图中所有顶点的集合,E 为网图中所有带权边的集合。设置两个新的集合U 和T,其中

集合U(顶点集)用于存放G 的最小生成树中的顶点,

集合T (边集合)存放G 的最小生成树中的边。

T ,U的初始状态:令集合U 的初值为U={u1}(假设构造最小生成树时,从顶点u1 出发),集合T 的初值为T={}。

Prim 算法的思想是:从所有u∈U,v∈V-U 的边中,选取具有最小权值的边(u,v)∈E,将顶点v 加入集合U 中,将边(u,v)加入集合T 中,如此不断重复,直到U=V 时,最小生成树构造完毕,这时集合T 中包含了最小生成树的所有边。

Prim 算法可用下述过程描述,其中用wuv 表示顶点u 与顶点v 边上的权值。

(1)U={u1},T={};

(2)while (U≠V)do

(u,v)=min{wuv;u∈U,v∈V-U }

T=T+{(u,v)}

U=U+{v}

(3)结束。

按照Prim 方法,从顶点1 出发,该网的最小生成树的产生过程如图:

为实现Prim 算法,需设置两个辅助closedge,用来保存U到集合V-U 的各个顶点中具有最小权值的边的权值。对每个Vi∈(V-U )在辅助数组中存在一个相应的分量closedge[i-1],它包括两个域:

typedef struct ArcNode

{

int adjvex; //adjex域存储该边依附的在U中的顶点

VrType lowcost; //lowcost域存储该边上的权重

}closedge[MAX_VERTEX_NUM];

显然:

初始状态时,U={v1}(u1 为出发的顶点),则到V-U 中各项中最小的边,即依附顶点v1的各条边中,找到一条代价最小的边(u0,v0)= (1,3)为生成树上一条边。

同时将v0(=v3)并入集合U中。然后修改辅助数组的值。

1)将closedge[2].lowcost = 0;//表示顶点V3三已经并入U

2) 由于边(v2,v3)的权值小于closedge[1].lowcost,故需修改closedge[1]为边(v2,v3)及其权值,同理修改closedge[4],closedge[5].

closedge[1].adjvex = 3.

closedge[1].lowcost = 5.

closedge[4].adjvex = 1.

closedge[4].lowcost = 5.

closedge[5].adjvex = 3.

closedge[5].lowcost = 6.

以此类推,直至U = V;

下图给出了在用上述算法构造网图7.16的最小生成树的过程中:

Prim 算法实现:

按照算法框架:

(1)U={u1},T={};

(2)while (U≠V)do

(u,v)=min{wuv;u∈U,v∈V-U }

T=T+{(u,v)}

U=U+{v}

(3)结束。

当无向网采用二维数组存储的邻接矩阵存储时,Prim 算法的C 语言实现为:

假设网中有n个顶点,则第一个进行初始化的循环语句的频度为n,第二个循环语句的频度为n-1。其中有两个内循环:其一是在closedge[v].lowcost中求最小值,其频度为n-1;其二是重新选择具有最小代价的边,其频度为n。由此,普里姆算法的时间复杂度为O(n2),与网中的边数无关,因此适用于求边稠密的网的最小生成树。

2.克鲁斯卡尔(Kruskal):由点到线,适合边稀疏的网。时间复杂度:O(e * loge)

Kruskal 算法是一种按照网中边的权值递增的顺序构造最小生成树的方法。

基本思想是:

1) 设无向连通网为G=(V,E),令G 的最小生成树为T,其初态为T=(V,{}),即开始时,最小生成树T 由图G 中的n 个顶点构成,顶点之间没有一条边,这样T 中各顶点各自构成一个连通分量。

2) 在E中选择代价最小的边,若该边依附的顶点落在T中不同的连通分量,则将此边加入到T中,否则舍弃此边而选择下一条边(若该边依附的两个顶点属于同一个连通分量,则舍去此边,以免造成回路)。依此

类推,当T 中的连通分量个数为1 时,此连通分量便为G 的一棵最小生成树。

按照Kruskal 方法构造最小生成树的过程如图所示:

在构造过程中,按照网中边的权值由小到大的顺序,不断选取当前未被选取的边集中权值最小的边。依据生成树的概念,n 个结点的生成树,有n-1 条边,故反复上述过程,直到选取了n-1 条边为止,就构成了一棵最小生成树。

Kruskal 算法的实现:

算法的框架:

构造非连通图T=(V,{})

k = i= 0;//k为边数

while(k《< n-1){

i++;

检查边E中第i条边的权值

最小边(u,v)

若(u,v)加入T不是T产生回路,

则(u,v)加入T,且k++

}

c语言实现:

C 语言实现Kruskal 算法,其中函数Find 的作用是寻找图中顶点所在树的根结点在数组father 中的序号。需说明的是,在程序中将顶点的数据类型定义成整型,而在实际应用中,可依据实际需要来设定。

2. AOV网与拓扑排序:由偏序定义得到拓扑有序的操作便是拓扑排序。建立模型是AOV网2. 1.AOV网(Activity on vertex network)

所有的工程或者某种流程可以分为若干个小的工程或阶段,这些小的工程或阶段就称为活动。若以图中的顶点来表示活动,有向边(弧)表示活动之间的优先关系,则这样活动在顶点上的有向图称为AOV 网(A ctivity On Vertex Network)。在AOV 网中,若从顶点i到顶点j之间存在一条有向路径,称顶点i是顶点j 的前驱,或者称顶点j 是顶点i的后继。若是图中的弧,则称顶点i是顶点j 的直接前驱,顶点j 是顶点i 的直接后驱。

AOV 网中的弧表示了活动之间存在的制约关系。例如,计算机专业的学生必须完成一系列规定的基础课和专业课才能毕业。学生按照怎样的顺序来学习这些课程呢?这个问题可以被看成是一个大的工程,其活动就是学习每一门课程。这些课程的名称与相应代号如表所示。

课程之间的优先关系图:

该图的拓扑有序系列:

注意:

在AOV-网中不应该出现有向环,因为存在环意味着某项活动应以自己为先决条件。若设计出这样的流程图,

工程便无法进行。而对程序的数据流图来说,则表明存在一个死循环。因此,对给定的AOV-网应首先判定网中是否存在环。检测的办法是对有向图构造其顶点的拓扑有序序列,若网中所有顶点都在它的拓扑有序序列中,则该AOV-网中必定不存在环。

2.2.拓扑排序

离散数学基础知识:

首先复习一下离散数学中的偏序集合与全序集合两个概念。

若集合A 中的二元关系R 是自反的、非对称的和传递的,则R 是A 上的偏序关系。集合A 与关系R 一起称为一个偏序集合。

若R 是集合A 上的一个偏序关系,如果对每个a、b∈A 必有aRb 或bRa ,则R 是A上的全序关系。集合A 与关系R 一起称为一个全序集合。

直观地看,偏序指集合中仅有部分成员之间可比较,而全序指集合中全体成员之间均可比较。

[例如],图7.25所示的两个有向图,图中弧(x,y)表示x≤y,则(a)表示偏序,(b)表示全序。若在(a)的有向图上人为地加一个表示v2≤v3的弧(符号“≤”表示v2领先于v3),则(a)表示的亦为全序,且这个全序称为拓扑有序(Topological Order),而由偏序定义得到拓扑有序的操作便是拓扑排序。

2.3 拓扑排序算法

对AOV 网进行拓扑排序的方法和步骤是:

1、从AOV 网中选择一个没有前驱的顶点(该顶点的入度为0)并且输出它;

2、从网中删去该顶点,并且删去从该顶点发出的全部有向边;

3、重复上述两步,直到剩余的网中不再存在没有前驱的顶点为止。

这样操作的结果有两种:一种是网中全部顶点都被输出,这说明网中不存在有向回路;另一种就是网中顶点未被全部输出,剩余的顶点均不前驱顶点,这说明网中存在有向回路。

以下图(a)中的有向图为例,图中v1,和v6没有前驱,则可任选一个。假设先输出v6, 在删除v6及弧之后,只有顶点v1没有前驱,则输出vl且删去vl及弧,之后v3和v4都没有前驱。依次类推,可从中任选一个继续进行。最后得到该有向图的拓扑有序序列为:

v6 - v1 - v4 - v3 - v2 - v5

图AOV-网及其拓扑有序序列产生的过程

(a)AOV-网;(b)输出v6之后;(c)输出v1之后;(d)输出v4之后;(e)输出v3之后;(f)输出v2之后

为了实现上述算法,对AOV 网采用邻接表存储方式,并且邻接表中顶点结点中增加一个记录顶点入度的数据域,即顶点结构设为:

顶点表结点结构的描述改为:

typedef struct vnode{ /*顶点表结点*/

int count /*存放顶点入度*/

VertexType vertex; /*顶点域*/

EdgeNode * firstedge; /*边表头指针*/

}VertexNode;

当然也可以不增设入度域,而另外设一个一维数组来存放每一个结点的入度。算法中可设置了一个堆栈,凡是网中入度为0 的顶点都将其入栈。为此,拓扑排序的算法步骤为:

1、将没有前驱的顶点(count 域为0)压入栈;

2、从栈中退出栈顶元素输出,并把该顶点引出的所有有向边删去,即把它的各个邻接顶点的入度减1;

3、将新的入度为0 的顶点再入堆栈;

4、重复②~④,直到栈为空为止。此时或者是已经输出全部顶点,或者剩下的顶点中没有入度为0 的顶点。

为了避免重复检测入度为零的顶点,可另设一栈暂存所有入度为零的顶点。

3. 关键路径(AOE网):在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度,路径长度最长的路径叫做关键路径(Critical Path)。

3.1AOE网:(Activity on edge network)

AOE网示意图若在带权的有向图中,以顶点表示事件,以有向边表示活动,边上的权值表示活动的开销(如该活动持续的时间),则此带权的有向图称为AOE网。

3.2 实际问题:

如果用AOE网来表示一项工程,那么,仅仅考虑各个子工程之间的优先关系还不够,更多的是关心整个工程完成的最短时间是多少;哪些活动的延期将会影响整个工程的进度,而加速这些活动是否会提高整个工程的效率。因此,通常在AOE网中列出完成预定工程计划所需要进行的活动,每个活动计划完成的时间,要发生哪些事件以及这些事件与活动之间的关系,从而可以确定该项工程是否可行,估算工程完成的时间

以及确定哪些活动是影响工程进度的关键。

如图是一个假想的有11项活动的AOE-网:

其中有9个事件v1,v2,v3,…,v9,每个事件表示在它之前的活动已经完成,在它之后的活动可以开始。如v1表示整个工程开始,v9表示整个工程结束,v5表示a4和a5已经完成,a7和a8可以开始。与每个活动相联系的数是执行该活动所需的时间。比如,活动a1需要6天,a2需要4天等。

和AOV-网不同,对AOE-网有待研究的问题是:

(1)完成整项工程至少需要多少时间?

(2)哪些活动是影响工程进度的关键?

3.3 关键路径

由于在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上各活动持续时间之和,不是路径上弧的数目)。路径长度最长的路径叫做关键路径(Critical https://www.wendangku.net/doc/ef2397043.html,Path)。

AOE网有关的概念:

1)路径长度:路径上各个活动的持续时间之和

2)完成工程的最短时间:由于AOE网中有活动是并行进行的,所以完成工程的最短时间就是从开始点到完

成点的最长路劲长度。

3)活动最早开始时间(earlist time)(e(i)):从开始点到顶点vi的最长路径称为事件vi的最早发生时间。这个时间决定了以vi为尾的弧表示的活动的最早开始时间.

4)活动最晚开始时间(latest time)(l(i)):在不推迟整个工程完成的前提下,活动最迟开始的时间

5)完成活动的时间余量:该活动的最迟开始时间减去最早开始时间

6)关键路径(critical path):路径长度最长的路径称为关键路径

7)关键活动(critical activity):关键路径上的活动称为关键活动,关键活动的特点是:e(i)=l(i)分析关键路径的目的就是辨别在整个工程中哪些是关键活动,以便争取提高关键活动的工作效率,缩短整个工程的工期。3.4 解决方案:

由上分析可知,辨别关键活动就是要找e(i)=l(i)的活动。为了求得AOE-网中活动的e(i)和l(i),首先求事件的最早发生时间ve(j)和最迟发生时间vl(j)。如果活动ai由弧表示,其持续时间记为dut(),则有如下关系:

e(i ) = ve(j)

l(i) = vl(k)-dut()

求ve(j)和vl(j)需分两步进行:

(1)从ve(0)开始向前递推

其中,T是所有以第j个顶点为头的弧的结合。

(2)从vl(n-1)=ve(n-1)起向后递推

其中,S是所有以第i个顶点为尾的弧的集合。

这两个递推公式的计算必须分别在拓扑有序和逆拓扑有序的前提下进行。也就是说ve(j-1)必须在vj的所有前驱的最早发生时间求得之后才能确定,而vl(j-1)则必须在vj的所有后继的最迟发生时间求得之后才能确定。因此,可以在拓扑排序的基础上计算ve(j-1)和vl(j-1)。

3.5 关键路径的算法:

(1)输入e条弧,建立AOE-网的存储结构;

(2)从源点v0出发,令ve[0]=0,按拓扑有序求其余各顶点的最早发生时间ve[i] (1≤i≤n-1)。如果得到的拓扑有序序列中顶点个数小于网中顶点数n,则说明网中存在环,不能求关键路径,算法终止;否则执行步骤(3)。

(3)从汇点vn出发,令vl[n-1]=ve[n-1],按逆拓扑有序求其余各顶点的最迟发生时间vl[i](n-2≥i≥0);

(4)根据各顶点的ve和vl值,求每条弧s的最早开始时间e(s)和最迟开始时间l(s)。若某条弧满足条件e(s) =l(s),则为关键活动。

先将拓扑排序算法:TopologicalOrder()

CriticalPath便为求关键路径的算法:

数据结构课程设计图的遍历和生成树求解

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 6014389 题目: 图的遍历和生成树求解实现 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 12 月 09 日 完成时间: 2012 年 12 月 26 日 课程设计成绩: 指导教师签名:年月日

目录 摘要 (3) 引言 (4) 1 需求分析 (5) 1.1任务与分析 (5) 1.2测试数据 (5) 2 概要设计 (5) 2.1 ADT描述 (5) 2.2程序模块结构 (7) 软件结构设计: (7) 2.3各功能模块 (7) 3 详细设计 (8) 3.1结构体定义 (19) 3.2 初始化 (22) 3.3 插入操作(四号黑体) (22) 4 调试分析 (22) 5 用户使用说明 (23) 6 测试结果 (24) 结论 (26)

摘要 《数据结构》课程主要介绍最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。进行数据结构课程设计要达到以下目的: ?了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; ?初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; ?提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。 这次课程设计我们主要是应用以前学习的数据结构与面向对象程序设计知识,结合起来才完成了这个程序。 因为图是一种较线形表和树更为复杂的数据结构。在线形表中,数据元素之间仅有线性关系,每个元素只有一个直接前驱和一个直接后继,并且在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,本程序是采用邻接矩阵、邻接表、十字链表等多种结构存储来实现对图的存储。采用邻接矩阵即为数组表示法,邻接表和十字链表都是图的一种链式存储结构。对图的遍历分别采用了广度优先遍历和深度优先遍历。 关键词:计算机;图;算法。

最小生成树问题的算法实现及复杂度分析—天津大学计算机科学与技术学院(算法设计与分析)

算法设计与分析课程设计报告 学院计算机科学与技术 专业计算机科学与技术 年级2011 姓名XXX 学号 2013年5 月19 日

题目:最小生成树问题的算法实现及复杂度分析 摘要:该程序操作简单,具有一定的应用性。数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。而最小生成树算法是算法设计与分析中的重要算法,最小生成树也是最短路径算法。最短路径的问题在现实生活中应用非常广泛,如邮递员送信、公路造价等问题。本设计以Visual Studio 2010作为开发平台,C/C++语言作为编程语言,以邻接矩阵作为存储结构,编程实现了最小生成树算法。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM 经典算法的算法思想,最后用这种经典算法实现了最小生成树的生成。 引言:假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n(n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个,他们之间的权值之和相等。一棵生成树的代价就是树上各边的代价之和。而实现这个运算的经典算法就是普利姆算法。

数据结构课程设计-图的遍历和生成树的求解实现说明书

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2012年春季学期 算法与数据结构课程设计 题目:图的遍历和生成树的求解实现 专业班级:计算机科学与技术 姓名:*** 学号:1234567 指导教师:**** 成绩:

目录 摘要 (3) 前言 (4) 正文 (5) 1.问题描述: (5) 2.采用类C语言定义相关的数据类型 (5) 3.各模块流程图及伪码算法 (6) 4.函数的调用关系图 (8) 5.调试分析 (9) 1.调试中遇到的问题及对问题的解决方法 (9) 2.算法的时间复杂度和空间复杂度 (9) 6.测试结果 (10) 参考文献 (14)

图是一种复杂的非线性数据结构,一个图G(Grah)由两个集合V和E 构成,图存在两种遍历方式,深度优先遍历和广度优先遍历,广度优先遍历基本思路是假设从图中某顶点U出发,在访问了顶点U之后依次访问U的各个未访问的领接点,然后分别从这些领接点出发依次访问他们的领接点,并使先访问的顶点的领接点先于后访问的顶点被访问。直至所有领接点被访问到。深度优先的基本思路是从某个顶点出发,访问此顶点,然后依次从V的未被访问的领接点出发深度优先检索土。直至图中所有顶点都被访问到。PRIM算法—KRUSKAL算法;可以对图形进行最小生成树的求解。 主要问题是: (1)当给出一个表达式时,如何创建图所表达的树,即相应的逻辑结构和存储结构? (2)表达式建立好以后,如何求出其遍历?深度优先和广度优先遍历。 (3)计算它的最小生成树?主要是prim算法和kruscal算法两种形式。

数据结构查找排序经典试题

数据结构查找排序经典试题 一、填空 1、针对有n条记录的顺序表做顺序查找,假定各记录的查找机会均等,则平均查找长度 ASL=_______。 2、在二叉平衡树中,平衡因子hl-hr的所有可能取值有____________。 3、在排序操作中,待排序的记录有n条,若采用直接插入排序法,则需进行 _________趟的 插入才能完成排序。 4、在排序操作中,待排序的记录有n条,若采用冒泡排序法,则至多需进行_________趟的 排序。 5、直接插入排序算法的时间复杂度为________________。 6、按()遍历二叉排序树,可以得到按值递增的关键字序列,在下图 所示的二叉排序树中,查找关键字85的过程中,需和85进行比较的关键字序列为()。 50 95 20 55 70 10 30 85 二、判断

1、平衡二叉树中子树的深度不能大于1。() 2、快速排序法是稳定的排序方法。() 3、任何一种排序方法都必须根据关键字值比较的结果来将记录从一个地方移动到另一个地 方。() 4、冒泡排序法是稳定的排序方法。() 5、折半插入排序法是稳定的排序方法。() 三、选择 1、在排序操作中,待排序的记录有n条,若采用直接插入排序法,则需进行_________趟的 插入才能完成排序。 A、n B、(n-1)/2 C、n+1 D、n-1 2、采用顺序查找法查找长度为n的线性表时,平均查找长度为() A、n B、(n-1)/2 C、n/2 D、(n+1)/2 3、用折半查找法在{11,33,55,77,99,110,155,166,233}中查找155需要进行()次比较。 A、1 B、2 C、3 D、4 4、请指出在顺序表(2,5,7,10,14,15,18,23,35,41,52)中,用折半查找法查找12需做()次比较。 A、5 B、4 C、3 D、2 5、如果待排序序列中两个数据元素具有相同的值,在排序前后它们的相互位置发生颠倒,

分别利用prim算法和kruskal算法实现求图的最小生成树

/*分别利用prim算法和kruskal算法实现求图的最小生成树*/ #include #include #define MaxVertexNum 12 #define MaxEdgeNum 20 #define MaxValue 1000 typedef int Vertextype; typedef int adjmatrix[MaxVertexNum][MaxVertexNum]; typedef Vertextype vexlist[MaxVertexNum]; int visited[MaxVertexNum]={0}; struct edgeElem {int fromvex; int endvex; int weight; }; typedef struct edgeElem edgeset[MaxVertexNum]; void Creat_adjmatrix(vexlist GV,adjmatrix GA,int n,int e) {int i,j,k,w; printf("输入%d个顶点数据",n); for(i=0;i

if(i==j) GA[i][j]=0; else GA[i][j]=MaxValue; printf("输入%d条无向带权边",e); for(k=0;k

最小生成树算法分析

最小生成树算法分析 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 [输入] n(城市数,1<=n<=100) e(边数) 以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。 [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边。那么选哪n-1条边呢?设图G的度为n,G=(V,E),我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE)

,图的遍历及最小生成树实验报告

实验三最小生成树问题 班级:计科1101班 学号:0909101605 姓名:杜茂鹏 2013年5月23日

一、实验目的 掌握图的存储表示和以及图的最小生成树算法。 二、实验内容 1.实现图的存储,并且读入图的内容。 2.利用普里姆算法求网络的最小生成树。 3.实现构造生成树过程中的连通分量抽象数据类型。 4.以文本形式输出对应图的最小生成树各条边及权值。 三、实验要求 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 四、概要设计、 首先采用图的邻接矩阵存储结构,然后从终端输入图的顶点名称、弧以及弧的权值建立邻接矩阵,并将图存储在文件Graph.txt中。 然后利用已经建好的图,分别对其进行深度、广度优先遍历,一次输出遍历的顶点 最后建立此图的最小生成树,并将对应的边及权值写入文件graph_prim.txt 中。 六、详细设计 实验内容(原理、操作步骤、程序代码) #include #include #include #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 int visited[MAX_VERTEX_NUM]; typedef struct ArcCell{ int adj; int *info; //该弧相关信息的指针 }ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct close { char adjvex; int lowcost; }closedge[MAX_VERTEX_NUM];

图+查找+排序解答题,程序题

1.画出该图的邻接矩阵和邻接表。根据邻接表从A 开始求DFS 和BFS 序列。(12分) 【答案】 011000 101000 100001 010010 000101 001010 DFS 序列BFS 序列:ABCDFE 2. 已知序列{70,73,69,23,93,18,11,68}请给出直接插入排序作升序排序每一趟的结果和快速排序作升序排序时一趟的结果。(10分) 【答案】直接插入排序 70,73,69,23,93,18,11,68 [70,73],69,23,93,18,11,68 [70,69,73], 23,93,18,11,68 [23,70,69,73], 93,18,11,68 [23,70,69,73, 93],18,11,68 [18,23,70,69,73, 93], 11,68 [11,18,23,70,69,73, 93], 68 [11,18,23,68,70,69,73, 93] 快速排序:[68,11,69,23,18] ,70,[93,73] 3.设有一组关键字关键码集为 {47,7,29,11,16,92,22,8,3},哈希表表长为11, Hash(key)=key mod 11,用线性探测法处理冲突,构造哈希表,并求它成功查找的ASL 。(8分) 【答案】 ASL=5/3 4.定义有序表抽象数据类型,并据此类型设计折半查找算法。 typedef struct { int key;

float info; }JD; int binsrch(JD r[],int n,int k) { int low,high,mid,found; low=1; high=n; found=0; while((low<=high)&&(found==0)) { mid=(low+high)/2; if(k>r[mid].key) low=mid+1; else if(k==r[mid].key) found=1; else high=mid-1; } if(found==1) return(mid); else return(0); } 5. 用prim 算法求下图的最小生成树,写出最小生成树的生成过程。(5分) 6.设关键字的输入序列为{4,5,7,2,1,3,6} (1)(8分)从空树开始构造平衡二叉树,画出每加入一个新结点时二叉树的形态,若发 生不平衡,指明需做的平衡旋转类型及平衡旋转的结果。 (2)(4分)上面的数据作为待排序的数据,写出用快速排序进行一趟划分后的数据序列

求出下图的最小生成树

求出下图的最小生成树 解:MATLAB程序: % 求图的最小生成树的prim算法。 % result的第一、二、三行分别表示生成树边的起点、终点、权集合 % p——记录生成树的的顶点,tb=V\p clc;clear; % a(1,2)=50; a(1,3)=60; % a(2,4)=65; a(2,5)=40; % a(3,4)=52;a(3,7)=45; % a(4,5)=50; a(4,6)=30;a(4,7)=42; % a(5,6)=70; % a=[a;zeros(2,7)]; e=[1 2 20;1 4 7;2 3 18;2 13 8;3 5 14;3 14 14;4 7 10;5 6 30;5 9 25;5 10 9;6 10 30;6 11 30;7 8 2;7 13 5;8 9 4;8 14 2;9 10 6;9 14 3;10 11 11;11 12 30]; n=max([e(:,1);e(:,2)]); % 顶点数 m=size(e,1); % 边数 M=sum(e(:,3)); % 代表无穷大 a=zeros(n,n); for k=1:m a(e(k,1),e(k,2))=e(k,3); end a=a+a';

a(find(a==0))=M; % 形成图的邻接矩阵 result=[];p=1; % 设置生成树的起始顶点 tb=2:length(a); % 设置生成树以外顶点 while length(result)~=length(a)-1 % 边数不足顶点数-1 temp=a(p,tb);temp=temp(:); % 取出与p关联的所有边 d=min(temp); % 取上述边中的最小边 [jb,kb]=find(a(p,tb)==d); % 寻找最小边的两个端点(可能不止一个) j=p(jb(1));k=tb(kb(1)); % 确定最小边的两个端点 result=[result,[j;k;d]]; % 记录最小生成树的新边 p=[p,k]; % 扩展生成树的顶点 tb(find(tb==k))=[]; % 缩减生成树以外顶点 end result % 显示生成树(点、点、边长) weight=sum(result(3,:)) % 计算生成树的权 程序结果: result = 1 4 7 8 14 7 9 13 10 10 14 10 11 4 7 8 14 9 13 10 2 5 11 3 6 12 7 10 2 2 3 5 6 8 9 11 1 4 30 30 weight = 137 附图 最小生成树的权是137

离散数学--最小生成树实验报告

一、实验目的:掌握图的存储表示和以及图的最小生成树算法。 二、实验内容: 1.实现图的存储,并且读入图的内容。 2.利用克鲁斯卡尔算法求网络的最小生成树。 3.实现构造生成树过程中的连通分量抽象数据类型。 4.以文本形式输出对应图的最小生成树各条边及权值。 三、实验要求: 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 需求分析: 1、利用克鲁斯卡尔算法求网的最小生成树; 2、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列; 3、输入为存在边的顶点对,以及它们之间的权值;输出为所得到的邻接矩 阵以及按权排序后的边和最后得到的最小生成树; 克鲁斯卡尔算法:假设WN=(V,{E}) 是一个含有n 个顶点的连通网,按照构造最小生成树的过程为:先构造一个只含n 个顶点,而边集为空的子图,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至只有一棵树,也即子图中含有n-1条边为止。 测试数据: 自行指定图进行运算

四、详细设计 源程序 #include #include #define M 20 #define MAX 20 typedef struct { int begin; int end; int weight; }edge; typedef struct { int adj; int weight; }AdjMatrix[MAX][MAX]; typedef struct { AdjMatrix arc; int vexnum, arcnum; }MGraph; void CreatGraph(MGraph *); void sort(edge* ,MGraph *); void MiniSpanTree(MGraph *); int Find(int *, int ); void Swapn(edge *, int, int); void CreatGraph(MGraph *G) {

图的遍历与最小生成树

图论1——图的遍历与图的最小生成树一、图的遍历 图的遍历:从图的某顶点出发,访问图中所有顶点,并且每个顶点仅访问一次。在图中,访问部分顶点后,可能又沿着其他边回到已被访问过的顶点。为保证每一个顶点只被访问一次,必须对顶点进行标记,一般用一个辅助数组visit[n]作为对顶点的标记,当顶点vi未被访问,visit[i]值为0;当vi已被访问,则visit[i]值为1。 有两种遍历方法(它们对无向图,有向图都适用) 深度优先遍历 广度优先遍历 1、深度优先遍历 从图中某顶点v出发: 1)访问顶点v; 2)依次从v的未被访问的邻接点出发,继续对图进行深度优先遍历; 对于给定的图G=(V,E),首先将V中每一个顶点都标记为未被访问,然后,选取一个源点v V,将v标记为已被访问,再递归地用深度优先搜索方法,依次搜索v的所有邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,如果从v出发有路的顶点都已被访问过,则从v的搜索过程结束。此时,如果图中还有未被访问过的顶点(该图有多个连通分量或强连通分量),则再任选一个未被访问过的顶点,并从这个顶点开始做新的搜索。上述过程一直进行到V中所有顶点都已被访问过为止。 例:在下图中,从V0开始进行一次深度遍历的过程如图所示: 深度优先遍历得到的遍历序列为:

序列1:V0,V1,V3,V7,V4,V2,V5,V6 序列2:V0,V1,V4,V7,V3,V2,V5,V6 由于没有规定访问邻接点的顺序,深度优先序列不是唯一的。 但是,当采用邻接表存储结构并且存储结构已确定的情况下,遍历的结果将是确定的。例如:对下图(a)的邻接表存储(图b)的遍历过程如图(c)。 图a 图b 图c DFS序列:c0 → c1→ c3→ c4→ c5→ c2 采用邻接表存储结构的深度优先遍历算法实现: Pascal语言: procedure dfs(g:adjgraph;i:integer); var p:edgenode; begin writeln('visit vertex:',g.adjlist[i]^.vertex); visited[i]:=true; p:=g.adjlist[i]^.firstedge; while p<>nil do begin if not visited[p^.adjvex]then dfs(g,p^.adjvex); p:=p^.next; end;

查找排序习题讲解

第7章查找 【例7-1】有序表按关键字排列如下:7,14,18,21,23,29,31,35,38,42,46,49,52,在表中查找关键字为14和22的数据元素,并画出折半查找过程的判定树。 解:折半查找的过程描述如下: ①low=1;high=length;//设置初始区间 ②当low>high时,返回查找失败信息//表空,查找失败 ③low≤high,mid=(low+high)/2; //取中点 a. 若kxtbl.elem[mid].key,low=mid+1;转②//查找在右半区进行 c. 若kx=tbl.elem[mid].key,返回数据元素在表中位置//查找成功 ●查找关键字为14的过程如下: low=1 ①设置初始区间high=13 ─────────────────────────── ↑②表空测试,非空; mid=7 ③得到中点,比较测试为a情形 ↑↑ low=1 high=6 high=mid-1,调整到左半区 ──────────────────────────── ↑②表空测试,非空; mid=3 ③得到中点,比较测试为a情形 ↑↑ low=1 high=2 high=mid-1,调整到左半区 ──────────────────────────── ↑②表空测试,非空; mid=1 ③得到中点,比较测试为b情形 ↑↑ low=2 high=2 low=mid+1,调整到右半区 ──────────────────────────── ↑②表空测试,非空; mid=2 ③得到中点,比较测试为c情形 查找成功,返回找到的数据元素位置为2 ●查找关键字为22的过程如下: low=1 ①设置初始区间high=13 ──────────────────────────── ↑②表空测试,非空; mid=7 ③得到中点,比较测试为a情形 ↑↑ low=1 high=6 high=mid-1,调整到左半区 ─────────────────────────── ↑②表空测试,非空; mid=3 ③得到中点,比较测试为b情形

大二数据结构复习-查找排序练习题

数据结构查找与排序练习题 一、选择题 1.对N个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为( ) A.(N+1)/2 B. N/2 C. N D. [(1+N)*N ]/2 2.适用于折半查找的表的存储方式及元素排列要求为( ) A.链接方式存储,元素无序 B.链接方式存储,元素有序 C.顺序方式存储,元素无序 D.顺序方式存储,元素有序 3.当在一个有序的顺序存储表上查找一个数据时,即可用折半查找,也可用顺序查找,但前者比后者的查找速度( ) A.必定快 B.不一定 C. 在大部分情况下要快 D. 取决于表递增还是递减4.有一个长度为12的有序表,按二分查找法对该表进行查找,在表内各元素等概率情况下查找成功所需的平均比较次数为()。 A.35/12 B.37/12 C.39/12 D.43/12 5.折半查找的时间复杂性为() A. O(n2) B. O(n) C. O(nlogn) D. O(logn) 6.对有18个元素的有序表作折半查找,则查找A[3]的比较序列的下标为() A.1,2,3 B.9,5,2,3 C.9,5,3 D.9,4,2,3 7.设有序表的关键字序列为{1,4,6,10,18,35,42,53,67,71,78,84,92,99},当用二分查找法查找健值为84的结点时,经()次比较后查找成功。 A.2 B. 3 C. 4 D.12 8.用n个键值构造一棵二叉排序树,最低高度为() A.n/2 B.、n C.logn D.logn+1 9.分别以下列序列构造二叉排序树,与用其它三个序列所构造的结果不同的是( ) A.(100,80, 90, 60, 120,110,130) B.(100,120,110,130,80, 60, 90) C.(100,60, 80, 90, 120,110,130) D.(100,80, 60, 90, 120,130,110) 10.设有一组记录的关键字为{19,14,23,1,68,20,84,27,55,11,10,79},用链地址法构造散列表,散列函数为H(key)=key% 13,散列地址为1的链中有()个记录。A.1 B. 2 C. 3 D. 4 11.已知一采用开放地址法解决Hash表冲突,要从此Hash表中删除出一个记录,正确的做法是() A.将该元素所在的存储单元清空。 B.将该元素用一个特殊的元素代替 C.将与该元素有相同Hash地址的后继元素顺次前移一个位置。 D.用与该元素有相同Hash地址的最后插入表中的元素替代。 12.假定有k个关键字互为同义词,若用线性探测法把这k个关键字存入散列表中,至少要进行多少次探测?( ) A.k-1次 B. k次C. k+1次D. k(k+1)/2次 13.散列表的地址区间为0-17,散列函数为H(K)=K mod 17。采用线性探测法处理冲突,并将关键字序列26,25,72,38,8,18,59依次存储到散列表中。 (1)元素59存放在散列表中的地址是()。 A. 8 B. 9 C. 10 D. 11 (2)存放元素59需要搜索的次数是()。 A. 2 B. 3 C. 4 D. 5 14.将10个元素散列到100000个单元的哈希表中,则()产生冲突。 A. 一定会 B. 一定不会 C. 仍可能会

查找与排序练习题

查找和排序练习题 选择题 1.静态查找表与动态查找表的根本区别在于() A.它们的逻辑结构不一样B.施加在其上的操作不一样 C.所包含的数据元素不一样D.存储实现不一样 2.在表长为n的顺序表上实现顺序查找,在查找不成功时与关键字比较的次数为()A.n B.1 C.n+1 D.n-1 3.顺序查找适用于存储结构为()线性表 A.散列存储B.压缩存储C.顺序存储或链式存储D.索引存储 4.用顺序表查找法对具有n个结点的线性表查找一个结点的时间复杂度为()A.O(log2n2) B.O(nlog2n) C.O(n) D.O(log2n) 5.适用于折半查找的表的存储方式及元素排列要求为() A.链接方式存储,元素无序B.链接方式存储,元素有序 C.顺序方式存储,元素无序D.顺序方式存储,元素有序 6.有一个长度为12的有序表,按折半查找法对该表进行查找,在表内各元素等概率情况下查找成功所需的平均比较次数为() A.35/12 B.37/12 C.39/12 D.43/12 7.在有序表{1,3,9,12,32,41,62,75,77,82,95,100}上进行折半查找关键字为82的数据元素需要比较()次 A.1 B.2 C.4 D.5 8.设散列长度为14,散列函数为H(key)=key%11。当前表中有4个结点,addr(15)=4,addr(38)=5,addr(61)=6,addr(84)=7。如用二次探测在散列处理冲突,则关键字为49的结点的地址是() A.8 B.3 C.5 D.9 9.散列函数有一个共同的性质,即函数值应当以()取其值域的每个值。 A.最大概率B.最小概率C.平均概率D.同等概率 10.假定有k个关键字互为同义词,若用线性探测法把这k个关键字存入散列表中,至少要进行多少次探测() A.k-1次B.k次C.k+1次D.k(k+1)/2次 11.在散列函数H(k)=k%m中,一般来讲,m应取() A.奇数B.偶数C.素数D.充分大的数 12.在采用线性探测法处理冲突所构成的散列表上进行查找,可能要探测多个位置,在查找成功的情况下,所探测到的这些位置上的键值() A.一定是同义词B.一定不是同义词C.都相同D.不一定是同义词13.采用分块查找时,若线性表中有625个元素,查找每个元素的概率相同,假设采用顺序法查找来确定结点所在的块,每块应分()结点最佳 A.10 B.25 C.6 D.625 14.下列关于m阶B树的说法错误的是() A.根结点至多有m棵子树 B.所有叶子上都在同一层次上 C.非叶结点至少有m/2(m为偶数)或m/2+1(m为奇数)棵子树 D.根结点中的数据是有序的

最小生成树问题,图形输出最小生成树

数据结构课程设计 系别电子信息系 专业计算机科学与技术 班级学号 姓名 指导教师 成绩 2012年7 月12日

目录 1 需求分析 (2) 2 概要设计 (2) 2. 1抽象数据类型定义 (2) 2 . 2模块划分 (3) 3 详细设计 (4) 3. 1数据类型的定义 (4) 3. 2主要模块的算法描述 (6) 4 调试分析 (10) 5 用户手册 (10) 6 测试结果 (11) 7 附录(源程序清单) (13) 参考文献 (20)

一、需求分析 1.要在n个城市之间建设通信网络,只需要架设n-1条线路即可,而要以最低的经济代价建设这个通信网,就需要在这个网中求最小生成树。 (1)利用克鲁斯卡尔算法求网的最小生成树。 (2)实现教科书 6.5 节中定义的抽象数据类型 MFSet 。以此表示构造生成树过程中的连通分量。 (3)输入顶点个数,输入顶点序号(用整型数据[0,1,2,……,100]表示),输入定点之间的边的权值(整型数据)。系统构造无向图,并求解最小生成树。 (4)以图形和文本两种形式输出最小生成树。 2.程序执行的命令包括: (1)随机生成一个图; (2)输入图坐标信息; (3)以文本形式输出最小生成树; (4)以图形形式输出最小生成树; (5)以图形形式输出构造的图; (6)结束。 3.测试数据 (1)用户输入需要构造的图形顶点个数,假设顶点个数为4; (2)C语言函数随机生成的图形,顶点分别为a,b,c,d,权值分别为: ab=75,ac=99,ad=80,bc=33,bd=93,cd=19; (3)最小生成树边的权值分别为:ab=75,bc=33,cd=19; (4)结束。 二、概要设计 1. 图的抽象数据类型定义 ADT Gragh{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R: R={VR} VR={| v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息 } 基本操作P: CreateGraph(&G,V,VR); 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGragh(&G); 初始条件:图G存在。 操作结果:销毁图G。 GetVex(G,v); 初始条件:图G存在,v是G中某个顶点。 操作结果:返回v的值。 FirstAdjvex(G,v); 初始条件:图G存在,v是G中某个顶点。

二叉排序树的查找

#include #include #include #define INFMT "%d" #define OUTFMT "%d " /* #define NULL 0L */ #define BOOL int #define TRUE 1 #define FALSE 0 #define LEN 10000 typedef int ElemType; typedef struct BSTNode { ElemType data; struct BSTNode *lchild, *rchild; } BSTNode, *BSTree; /* 插入新节点*/ void Insert(BSTree *tree, ElemType item) { BSTree node = (BSTree)malloc(sizeof(BSTNode)); node->data = item; node->lchild = node->rchild = NULL; if (!*tree) *tree = node; else { BSTree cursor = *tree; while (1) { if (item < cursor->data) { if (NULL == cursor->lchild) { cursor->lchild = node;

} cursor = cursor->lchild; } else { if (NULL == cursor->rchild) { cursor->rchild = node; break; } cursor = cursor->rchild; } } } return; } /* 查找指定值*/ BSTree Search(BSTree tree, ElemType item) { BSTree cursor = tree; while (cursor) { if (item == cursor->data) return cursor; else if ( item < cursor->data) cursor = cursor->lchild; else cursor = cursor->rchild; } return NULL; }

无向图的生成两种遍历方法以及最小生成树的构建c++代码实现

无向图的遍历及其算法 #include #include #define max 50 int n,e; int visited1[max]; //访问标记 int visited2[max]; int visited3[max]; double quan[max][max]; //存取权值 int visited4[max]; double zh=0.0; //权值之和 struct link //结点定义 { int data; double cost; link *next; }; struct syz //存取路径的两个端点及其权值 { int h; int l; double z; }syz[max]; struct Adjlist //存取顶点 { int v; link *next; }Adjlist[max]; void c_cbs_graph (int n, int e ) //创建无向图 { int i,j,k ; double c; link *s ; for (i=1; i<=n; i++) { /*建立邻接表头结点*/ Adjlist[i].v=i ; Adjlist[i].next=NULL; } cout<

for (k=1; k<=e;k++) { cout<<"请输入第"<>i>>j>>c; cout<data=j ; s->cost=c; s->next=Adjlist[i].next ; Adjlist[i].next=s ; s=new link; s->data=i ; s->cost=c; s->next=Adjlist [j].next ; Adjlist[j].next=s ; } }; void DFS( int i ) //深度优先遍历 { // i是遍历起始点的在邻接表中的下标值,其下标从1开始 link *p; cout<'; visited1[i]=1; p = Adjlist[i].next; while(p!=NULL) { if (visited1[p->data]==0) DFS (p->data); p=p->next; } }; void BFS(int i) //广度优先遍历 { int q[max]; /*定义队列*/ int fro,rea; link *p ; /*P为搜索指针*/ fro=rea=0 ; cout<'; visited2[i]=1 ; rea++; q[rea]=i ; /*进队*/ while (fro

动态查找表(二叉排序树)

北京理工大学珠海学院计算机学院课程设计 动态查找表 摘要 数据结构是研究与数据之间的关系 我们称这一关系为数据的逻辑结构 简 称数据结构。当数据的逻辑结构确定以后 数据在物理空间中的存储方式 称为数据的存储结构。相同的逻辑结构可以具有不同的存储结构 因而有不同的算法。本次课程设计 程序中的数据采用“树形结构”作为其数据结构。具体采用 的是“二叉排序树” 并且使用“二叉链表”来作为其存储结构。本课程设计实现了二叉排序树的创建、中序遍历、插入、查找和删除二叉排序树中某个结点。本课程主要实现动态查找表的功能 通过“二叉排序树”的算法和“二叉链 表”的存储结构来实现。本课程设计说明书重点介绍了系统的设计思路、总体设计、各个功能模块的设计与实现方法。 关键词 数据结构 C语言二叉排序树动态二叉链表 1

2 目录 摘要 (1) 1ABSTRACT (3) 2 3抽象数据类型动态查找表定义 (4) 4 3 系统总体分析 (5) 3.1系统模块划分 (5) 3.2 二叉树的生成过程 (5) 3.3 主要功能模块设计 (5) 3.4 系统详细设计 (7) 3.4.1 主函数菜单模块 (7) 3.4.2 查找模块 (10) 3.4.3 删除模块 (11) 3.4.4 插入模块 (13) 3.4.5 中序输出模块 (15) 参考文献 (17) 心得体会 (18) 教师评语 (19) 附录 (20) 2

1 Abstract(摘要) Data structure is the relationship between research and data, we call this relationship as a logical data structure, referred to as data structures. When the data logical structure is determined, the data stored in the physical space, is known as the data storage structure. The same logical structure can have different storage structure, which has a different algorithm. The curriculum design, program data is "tree" as its data structure. Specific uses "binary sort tree" and use "binary list" as its storage structure. The course is designed to achieve a binary sort tree creation, in-order traversal, insert, find and delete a binary sort tree nodes. This course is mainly the function of dynamic look-up table, through the "binary search tree" algorithm and "binary list" of storage structures. This course is designed to highlight the system design concept, overall design, each functional module design and implementation. Keywords: C Language Data Structure Dynamic Binary Search Tree, Binary List 3

相关文档
相关文档 最新文档