文档库 最新最全的文档下载
当前位置:文档库 › 公路平曲线设计中的超高设计

公路平曲线设计中的超高设计

公路平曲线设计中的超高设计
公路平曲线设计中的超高设计

公路平曲线设计中的超高设计

摘要:本文结合商丘市内连接飞机场的二级公路改建工程,对公路超高计算过程进行了详细的说明,着重分析了超高值、超高缓和段长度及计算参数等的确定方法,阐明了设计计算的过程。

关键词:超高超高渐变率超高缓和段

在弯道上,当车辆行驶在双向横坡的车道外侧时,车重的水平分力将增大车辆的横向侧滑力,所以当采用的圆曲线半径小于不设超高的最小半径时,为抵消车辆在曲线路段上行驶时所产生的离心力,保证车辆的稳定性和舒适性,将曲线段上的路面做成外侧高于内侧的单向横坡的形式以全部或部分抵消车辆所受的离心力,这就是路面超高。超高的设计包括超高值的确定、超高过渡方式、缓和段的长度及超高渐变率的取值等关键问题。本文将结合商丘市内一连接飞机场的二级公路改造工程对超高设计计算中的一些具体环节进行说明。

1 工程概况

本项目为旧路改造工程,原有道路为县乡道路,为三、四级公路,路基宽度10,路面宽度7m,改建后其技术标准为双向单车道二级公路,设计速度采用80m/h,路基宽度15m,路面宽度12m,路拱横坡为2%,土路肩横坡为3%,无中央分隔带。由于需要,需在处设置超高,超高值确定为4%,圆曲线半径为800m。

平曲线设计 纵断面设计

平面线形设计 1.路线设计 1.1 道路等级和技术标准的确定 1.1.1 已知资料 该地区的初始年交通组成如表1.1.1,交通量年平均增长率6.5%。 1.1.2 交通量计算 由《公路工程技术标准》可知,确定公路等级要把各种汽车的交通量折合成小客车的交通量。各汽车代表车型与车辆折算系数见表1.1.2。 表1.1.2各汽车代表车型与车辆折算系数 于是初始年交通量: ) /(93730.31630.2)161128138266414(5.1)792827554(0.134100日辆=?+?+++++?+++?=N 1.1.3 公路等级确定

其初始年交通量已达9373辆/日,故根据《公路工程技术标准》可知其道路等级可能不是二级及以下的公路。因此假设公路设计年限为20年,则设计交通量N : )/(31011%)5.61(9373)1(12010日辆=+?=+?=--n k N N 由设计交通量N=31011(辆/日),根据《公路工程技术标准》,拟定该公路为四车道一级公路。 1.1.4 公路主要技术标准的确定 该一级公路路段作为湖南省重要干线公路,其交通量比较大,加之沿线地形比较平缓,地质条件良好,因此设计速度选用80Km/h ,服务水平为二级。其主要技术标准表见表1.1.4。 表1.1.4主要技术标准表 1.2 纸上选线 1.2.1 选址原则 路线方案的选择首先得考虑该方案能否在国家、省公路网中起到应有的作用,即是否能够满足国家的政治、经济和国防的要求和长远利益。 对于一级公路,其主要功能是作为人烟稀少地区的干线公路,部分控制出入,提供城市与城市、城市与较大城镇之间的直接交通服务,生成并吸引大部分远距离的出行。选线是在符合国家建设发展的需要下,结合自然条件选定合理路线,使筑路费用与使用质量得到正确的统一,达到行车迅速安全,经济舒适及构造物稳定耐久,易于养护的目的,选线人员必须

超全道路工程平面线型设计说明

一、道路平面线型概述 一、路线 道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。路线:是指道路中线的空间位置。 平面图:路线在水平面上的投影。 纵断面图:沿道路中线的竖向剖面图,再行展开。 横断面图:道路中线上任意一点的法向切面。 路线设计:确定路线空间位置和各部分几何尺寸。 分解成三步: 路线平面设计:研究道路的基本走向及线形的过程。 路线纵断面设计:研究道路纵坡及坡长的过程。

(二)平面线形要素 行驶中汽车的导向轮与车身纵轴的关系: 现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。 二、直线 一、直线的特点 1.优点: ①距离短,直捷,通视条件好。 ②汽车行驶受力简单,方向明确,驾驶操作简易。 ③便于测设。 2.缺点 ①线形难于与地形相协调 ②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。 ③易超速 二. 最大直线长度问题: 《标准》规定:直线的最大与最小长度应有所限制。 德国:20V(m)。 美国:3mile(4.38km)

我国:暂无强制规定 景观有变化≧20V;<3KM 景观单调≦20V 公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。 采用长的直线应注意的问题: 公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。 (1)直线上纵坡不宜过大,易导致高速度。 (2)长直线尽头的平曲线,设置标志、增加路面抗滑性能 (3)直线应与大半径凹竖曲线组合,视觉缓和。 (4)植树或设置一定建筑物、雕塑等改善景观。 三、直线的最小长度 直线的长度:前一个曲线终点到下一个曲线起点之间的距离。 YZ(ZH)-ZH(ZY) 之间的距离点击?工程资料免费下载 1.同向曲线间的直线最小长度 同向曲线:指两个转向相同的相邻曲线之间连以直线而形成的平面曲线 《规范》:当V≥60km时,Lmin≧6V; 当V≤40km时,参考执行

道路工程曲线设计(DOC)

道路工程曲线设计实习

一、设计目的 二、设计任务 三、设计地点 某大学校园 四、仪器选取 全站仪一台、经纬仪一台、钢尺、花杆。 五、踏勘选点 选取学校控制点R 、S ,即RS 为起始导线边。R 的坐标X ,Y=,Z=,R 点位于学校活动中心西南角。S 的坐标X=,y=,Z=,S 点位于学校活动中心正南。 然后踏勘选点,根据校园实际情况,我分别选取点A 、B 、C 、D 、E ,放向是由西向东,从而构成一条支导线。具体图形见附图。 六、设计步骤 1、导线坐标计算 由于R 和S 点已知坐标,所以,我可以根据公式计算出坐标方位角RS α RS RS RS x y ??=arctan α 式中RS x ?、RS y ?计算公式如下: RS RS RS D x αcos =? RS RS RS D y αsin =? 式中RS D 为控制点R 、S 的水平距离,这个距离可以用全站仪测出,也可以用钢尺量距测出,由于用钢尺会产生较大的误差,而且操作麻烦,所以我选择用全站仪测距。 将全站仪架在控制点S 上,就可以测出RSA ∠和R 、S 的距离RS D ,以及S 、A 的距离SA D 。一次类推,分别将仪器架在导线点A 、B 、C 、D 上,就可以测出我们所需要的数据,如下:

SAB ∠、AB D 、ABC ∠、BC D 、BCD ∠、CD D 、CDE ∠、DE D 。 由于起使边方位角RS α已知,这样,就可以分别计算出SA α、AB α、BC α、CD α、DE α。具体计算公式如下: ?-∠+=180RSA RS SA αα ?-∠+=180SAB SA AB αα ?-∠+=180ABC AB BC αα ?-∠+=180BCD BC CD αα ?-∠+=180CDE CD DE αα 注:如果最后计算出来的坐标方位角不在(?0—?360)之间,就用这个坐标方位角减去?360。 由于R 、S 坐标已知,各导线点坐标方位角已知,导线点间距离已知,这样就可以计算出导线点A 、B 、C 、D 、E 的坐标。计算公式如下: A 点坐标计算: SA SA SA D x αcos =? SA SA SA D y αsin =? SA S A x x x ?+= SA S A y y y ?+= B 点坐标计算: AB AB AB D x αcos =? AB AB AB D y αsin =? AB A B x x x ?+= AB A B y y y ?+=

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

纵断面设计——竖曲线设计

纵断面设计——竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。 当i1- i2为正值时,则为凸形竖曲线。当i1 - i2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: 若取抛物线参数为竖曲线的半径,则有: (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距通过推导可得: 2、竖曲线曲线长:L = Rω 3、竖曲线切线长:T= TA =TB ≈ L/2 = 4、竖曲线的外距:E = ⑤竖曲线上任意点至相应切线的距离: 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R—为竖曲线的半径,m。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求

城市道路平面线形设计

第四章城市道路平面设计1 平面设计的内容 平曲线形设计2 3 行车视距 4 城市道路平面线形设计

第一节平面设计的内容—主要任务 道路线形——道路路幅中心线(又称中线)的立体形状。 道路平面线形——道路中线在水平面上的投影形状。 平面设计的主要任务: 1)根据道路网规划确定的道路走向和道路之间的方位关系,以道路中线为准,考虑地形、地物、城市建设用地的影响。 2)根据行车技术要求确定道路用地范围内的平面线形,以及组成这些线形的直线、曲线和它们之间的衔接关系 3)对于小半径曲线,还应当考虑行车视距、路段的加宽和道路超高设置等要求。

第一节平面设计的内容——基本原则 平面设计的原则: 1)遵循城市道路网规划原则; 2)符合各级道路的技术指标原则; 3)处理好直线与平曲线的衔接,科学设置缓和曲线和超高、加宽等,合理行车视距并辅以适当的保护措施原则; 4)根据道路类别、等级、合理设置交叉口、沿线建筑物入口、停车场出入口、分隔带断口、公交停靠站位置等; 5)平面线形标准需分期实施时,应满足近期使用要求,兼顾远期发展,使远期工程尽可能减少对前期工程的废弃。

第一节平面设计的内容—基本要求 平面设计的基本要求: 1)适应汽车行驶轨迹; 汽车行驶轨迹特征——“三个连续”: ◆行车迹线是连续的,任何一点上不出现错头、折点或间断; ◆迹线的曲率是连续的,即在迹线上任何一点不出现两个曲率值; ◆轨迹线的曲率对里程或时间的变化率是连续的,轨迹线上任何一点 不出现两个曲率变化值。 2)合理确定平曲线形三要素 直线—曲率为零;圆曲线—曲率为常数;缓和曲线—曲率为变数

道路竖曲线计算

道路竖曲线计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

道路设计规范要求

道路设计规范要求 篇一:道路设计规范 目录 第一章绪论 1.1地区概况 1.2沿线地理特征 第二章路线设计 2.1公路等级确定 2.2路线方案确定 2.3平面线形设计 2.4纵断面线形设计 2.5平、纵面线形的组合设计 第三章路基、路面设计 3.1设计原则 3.2路基横断面 3.3路基设计与防护 3.4路面设计 3.5路基路面排水设计 第四章涵洞与通道设计

4.1路线交叉设计 4.2涵洞和通道设计 环境保护 5.1设计原则 5.2绿化设计 第六章小结 6.1小结 6.2设计中的不足 6.3思考 附录:主要参考资料 第一章绪论 该公路修建意义 本公路的修建将给当地带来新的发展机遇,带动沿线旅游业的发展,对当地经济发展具有重要意义。 2沿线地理特征 该地区属于公路自然区划ⅠⅤ4区,漳州位于北纬度到25度之间,属于亚热带季风性湿润气候,年平均温度21℃。198 5年最高日气温℃,最低℃。无霜期达330天以上,年日照2000-2300小时;年积温℃。年降雨量1000-1700毫米,雨季集中在三至六月。年平均风力二级。漳州每年六至九月常有台风袭来,最大风力达12级,台风常来暴雨或大暴雨,造成洪涝灾害。但在高温季节,台风也有助于降低气温和解

除旱象。 漳州气候条件优越,位处南、北纬度(回归线)附近,属于亚热带季风性湿润气候的地方并不多,如非洲的撒哈拉沙漠和澳大利亚的大沙漠,属于热带沙漠气候,印度、巴基斯坦和缅甸,属于热风季风气候,西半球的智利属高山气候,而漳州则是少数属于亚热带季风性湿润气候的地区之一。它整修地形依山面海,呈倾斜状和台阶状,山势走向由西北向东南,西北有武夷山脉和戴云山脉挡住寒流入侵,东南面临开阔的大海,温湿气流源源而来,构成了一个得天独厚的堠域性气候。 第二篇路线设计 交通量计算及公路等级确定 道路等级的确定 道路等级的确定应根据公路网的规划和远景交通量,从全局出发,结合公路的使用任务和性质综合确定。 交通量计算及公路等级的选用 公路等级为二级,二车道,日交通量为712辆/昼夜,设计年限n=20年。 路线方案设计 相关指标和原则 1):选线原则 以平面线形为主,合理解决避让、穿越、趋就等问题。

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

道路设计

一、道路设计的步骤、方法 (一)纸上定线 1、拟定路线走向 在给定的地形图上根据主要控制点研究线路总体布局,分析地形、地质及地物等情况,选择地势平缓、山坡顺直、河谷开阔等有利于展线的地点,拟定线路各种可能的走向。 2、试坡 当遇到纵坡的限制较严时,必须用平均纵坡i沿各种可能的走向由上而下进行试坡,设等高线间距为h,取计算等高线的平均长度a,a=h/i,用量规开度为 a(比例与地形图同),在图上试坡,得出均坡线。 3、定导向线 分析均坡线,结合地形、地物及艰巨工程等情况,选择相应的中间控制,从而调整控制点相应线路的纵坡,重新试坡,得出导向线。 4、修正导向线 参照导向线作平面试线,注明平曲线半径,量出地形变化点桩号及标高,绘制纵断面图。并设计纵坡,得出各桩位概略设计标高。 5、定线 在所定向线的基础上,按规定的技术标准反复试线才能得到满意的结果。 6、纵断面设计 路线确定后,量出路中心线穿过每一等高线的标号和高程,绘制纵断面图和进行纵断面设计。纸上定线是个反复试定的过程,试线修改次数越多,最后所定路线的质量相对来说越高,直至取得最佳线路方案为止,纸上定线工作才能算完成。 (二)公路平面设计 1、圆曲线半径的原则 (1)确定圆曲线半径的原则 ①各级公路的圆曲线半径应尽量采用较大的半径,在一般情况下,宜选用大于《标准》所规定的该级一般最小半径。只有当地形、地物或其他条件限制时,方可采用小于一般最小半径,不要轻易采用极限最小半径。 ②圆曲线半径的选定,除要与弯道本身所在位置的地形、地物条件相适应,使曲线沿理想的位置通过外,还要考虑与弯道前后的线形标准相协调。 ③圆曲线半径过大也失去意义,因此最大半径不宜超过 10000m,以利于设计与施工。 ④各级公路不论转角大小,均应设置曲线(包括圆曲线和缓和曲线)。 (2)确定路线导线交点转角 首先在地形图上,从起点由左向右编写转角号,即JD1、JD2、JD3 ……。确定路线导线交点转角要用正切法。不得用量角器直接量取。 (3)考虑圆曲线半径选定的原则和转角值,确定该路段每个交点的圆曲线半径,并计算或查曲线册设用表确定圆曲线要素。 2、将各交点处圆曲线半径与教材或规范对比,当圆曲线半径小于不设超高的圆曲线最小半径,应在该交点处圆曲线两端设置缓和曲线,缓和曲线计算步骤如下: (1)利用教材相应公式确定缓和曲线最小长度,采用数值大者,并用整5米倍数。 (2)利用相应公式计算切线角、缓和曲线常数p和q 。 (3)利用相应公式计算有缓和曲线的单曲线的切线长Th 、曲线长Lh 、外距Eh 、超距Dh 。 3、桩距采用20米,加桩视地形变化而定,加桩采用整米数。 (1)直线上整桩(20、40 ……)与平面线基本的量法见下图:

四级公路设计规范

四级公路设计规范文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

主要:平原微丘:计算行车速度40km/h,行车道宽度:,路基宽度一般值,变化值,极限最小半径60m,停车视距40m,最大纵坡6%。山岭重丘:计算行车速度20km/h,路基宽度,极限最小半径15m停车视距20m,最小坡长60m,最大纵坡9%,最大可增加1%。最小纵坡%,采用平坡(0%)或小于%的纵坡时,其边沟应做纵向排水设计。(上一个设计中,最大纵坡为12)直线最大长度:1000米(左右),最小长度:同向曲线间40米(左右)反向曲线间无超高加宽可相接,无超高有加宽须10m以上缓和短。有超高时不小于15m。相邻回头曲线间直线不小于100(80)m。 圆曲线:最大超高8%,超高时一般最下半径30m,极限最小半径15m,不超高时最小半径150m,最大半径10000m。 缓和曲线(一般使用回旋线)长度最小值:计算速度20km/h时为25m,40km/h时为50m。 不设缓和曲线的最小圆曲线半径:260m。 平曲线最小长度:设计速度20km/h时为40m,40km/h时为70m。 转角等于或小于7度时的平曲线长度。设计速度20km/h的一般值280/转角。低限值40m。设计速度40km/h的一般值 500/转角。低限值70m。 直线最大长度:设计速度20km/h的为400m,直线最小长度同向曲线间50m,反向曲线间40m 最短坡长:设计速度20km/h的为60m。:设计速度40km/h的为100m

最大坡长:设计速度20km/h的3%无限制,4%为1200m,5%为1000m,6%为 800m,7%为600m,8%为400m,9%为200m。 凸形竖曲线最小半径一般值200m,极限值100m。最小长度20m。 凹形竖曲线最小半径一般值200m,极限值100m。 四级路控制坡度10%以内,最好9%以下。挖填局部4、5米皆可。坡长不用特别在意。

道路平面设计直线加平曲线

1 有关参数计算 1.1 停车视距S 1.1.1 对于出沟的重车 1.反应距离1S 1S =3.6vt =34 2.5 23.63.6?=m 式中 v-出沟的重车车速,取v=34km/h ; t-反应时间,取t=1.5s+1.0s=2.5s 。 2.制动距离2S 22254()kv S i ?=±=2 1.434254(0.20.02)??±=28.9m 式中:?— 路面纵向摩阻系数 ,与路面种类和状况有关,这里 取(0.5~0.6)=??0.4=0.2 i — 道路纵坡,上坡为“+”下坡为“-”,取i=0; V —设计速度,取v=34km /h K -制动系数,一般在1.2~1.4之间,取K=1.4。 3.安全距离0S 0S 一般取5~10m ,这里取0S =10m 。 综上知,出沟的重车的停车视距S=1S +2S +0S =23.6+28.9+10=62.5m ,取S=70m 。 1.1.2 对于返回空车 1.1.1 对于出沟的重车 1.反应距离1S

1S =3.6vt =45 2.5 31.253.6?=m 式中 v-出沟的重车车速,取v=45km/h ; t-反应时间,取t=1.5s+1.0s=2.5s 。 2.制动距离2S 22254()kv S i ?=±=2 1.445254(0.20.02)??±=62m 式中:?— 路面纵向摩阻系数 ,与路面种类和状况有关,这里 取(0.5~0.6)0.40.2=?=?; i — 道路纵坡,上坡为“+”下坡为“-”,取i=0; V —设计速度,取v=45km /h K -制动系数,一般在1.2~1.4之间,取K=1.4。 3.安全距离0S 0S 一般取5~10m ,这里取0S =10m 。 综上知,出沟的重车的停车视距S=1S +2S +0S =31.25+62+10=103.25m ,取S=110m 。 1.2 圆曲线半径R 1.2.1 出入沟圆曲线半径R 不设横坡(不设超高): max v =,既有: 2m ax m in v R g ?==29.4 9.80.2=?50.1,取m in R =120m 1.2.2 排土场圆曲线半径R 不设横坡(不设超高):

高等级道路竖曲线的计算方法

高速公路竖曲线计算方法 【摘要】本文从竖曲线的严密计算公式入手,推导竖曲线上点的设计高程和里程的精确计算方法。分析和比较了近似公式和严密公式的差别及对设计高 程和里程的影响。在道路勘测设计中用本方法可取得精确、方便、迅速的效果, 建议取代传统的近似方法。 一、引言 在传统的道路纵断面设计中,竖曲线元素及对应桩号里程和设计高程均采用 近似公式计算,在低等级道路及计算工具很落后的时代曾起到过很大的作用。 但是随着高级道路的快速发展,道路竖曲线半径的不断加大,设计和施工的精度要求越来越高,因此,对勘测设计工作提出了很高的要求。采用近似的方法进 行勘测设计已难以满足高精度、高效灵活的要求。为此本文给出了实用、精确的竖曲线计算公式,以解决实际工作中存在的问题。 二、计算原理 1. 近似计算公式 如图1所示,设道路纵坡的变坡点为I,其设计高程为H I,里程为D I,两侧的纵坡度分别为i1、i2,竖曲线设计半径为R,竖曲线各元素的近似计算公式如下:

图 1 2. 精确计算公式 如图2所示,在图中建立以水平距离为横坐标轴d,铅垂线为纵坐标轴H′的dOH′直角坐标系,A点的坐标为(d A,0),Z点的坐标为(0,H Z′),竖曲线各元素的精确计算公式如下: α1=arctani 1 (1) α2=arctani 2 (2) ω=α1-α2(3) T=Rtan(4) E=R(sec-1) (5) d I=Tcosα1 (6) d A=Rsinα1 (7) H Z′=Rcosα1 (8) 竖曲线在直角坐标系中的方程为: (d-d A)2+H′2=R2 (9)

由式(9)可推算出竖曲线上任一与Z点的里程差为d的点的纵坐标值H′,则 0≤d≤dY (10) 并可立即推算点的设计高程和里程: H=H′-ΔH (11) D=D Z+d (D Z=D I-d I) (12) 式中,α1,α2分别为纵坡线与水平线的夹角;ω为变坡角;Τ为切线长;Ε为外矢距;d I为纵坡变坡点I与Z点的里程差;d A为竖圆曲线圆心A与Z点的里程差;H′为竖圆曲线上任一点的纵坐标值;d为竖圆曲线上任一点与Z点的里程差;H为竖圆曲线上任一点的设计高程;ΔH=H′Z-H Z为Z点纵坐标值与Z 点设计高程之差(H Z=H I-d I.i1);D为竖曲线上任一点的里程。 由式(10)可知,当d=d A时,则里程D N=D Z+d A的N点为竖圆曲线的变坡点, 其高程H N=H N′-ΔH=R-ΔH=max,N点在现场施工中具有很重要的指导意义。 三、计算实例 某山岭重丘的二级公路的纵坡变坡点I,其设计高程H I=68.410 m,里程D I

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

5种基本平曲线线型

在进行道路平面线形设计时,一般会遵循下列原则:1、平面线形应直捷、连接、顺适,并与地形地物相适应,与周围环境相协调;2、必须满足行驶力学要求,视觉和心理上的要求对高速路应尽量满足;3、保持平面线形的均衡与连贯;4、应避免连续急弯的线形;5、平曲线应有足够的长度。一般来说道路线型分为以下六类: 1、基本型 直线+缓和曲线+圆曲线+缓和曲线+直线,这种线型和地铁平曲线里的大部分线型是一样的。 2、S型 缓和曲线1+圆曲线1+缓和曲线1+(反向)+缓和曲线2+圆曲线2+缓和曲线2 S型曲线几点注意: (1)相邻两个回旋参数A1和A2宜相等,当采用不同参数时,A1/A2<2.0,有条

件时应<1.5; (2)两反向曲线之间不设直线,不得已插入直线时,必须尽量短,其直线长度或重合段的长度应满足L≤(A1+A2)/40。 (3)S型两圆曲线半径之比不宜过大,宜为:R2/R1=11/3。 3、卵型 缓和曲线1+圆曲线1+缓和曲线(过渡)+圆曲线2+缓和曲线2 卵型曲线的几点注意: (1)卵型上的回旋参数A不应小于该级公路关于回旋线最小参数的规定,同时宜在下列界限内:R2/2≤ A≤ R2(R2为小圆半径); (2)两圆曲线半径之比宜在下列界限之内:0.2≤R2/R1≤ 0.8(R1为大圆半径);(3)两圆曲线的间距,宜在下列界限之内:0.003≤D/R2≤ 0.03(D为两圆曲线最小间距)。 4、凸型 直线+缓和曲线1+(同向)缓和曲线2+直线

5、复合型 直线+缓和曲线1+(同向)缓和曲线2+圆曲线+…… 6、C型 圆曲线1+缓和曲线1+(同向)缓和曲线2+圆曲线2

竖曲线计算实例

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

公路线形设计

线形设计 9.1 一般规定 9.1.1 路线设计应使公路线形同地形、地物、景观相协调,应使线形流畅、连续、视 觉良好,保证行驶安全、舒适与经济。 9.1.2 公路线形是由平、纵、横三个面组成的立体形状,选线时,必须综合考虑平、 纵、横三个面的组合。 9.1.3 同一设计速度的设计路段长度不宜过短,线形技术指标应尽量保持相对均衡。 两相邻不同设计路段之间其技术指标应逐渐变化。 9.1.4 线形设计的要求与内容随公路等级和设计速度的不同而异。 高速公路、一级公路以及设计速度为≥60km/h的公路,应注重立体线形设计, 尽量做到立体线形连续、指标均衡、景观协调,使行驶视觉良好、安全舒适。 设计速度愈高,线形设计所考虑的因素应愈周全。对于平原区高速公路还应避 免长距离采用单调乏味的单一线形。 设计速度为≤40km/h的公路,首先应在保证行驶安全的前提下,正确地运用线 形要素,在条件允许情况下力求做到各种线形要素的合理组合,并尽量避免和 减轻不利的组合,以提高服务质量。 9.1.5 线形设计除应从行驶力学上保证汽车行驶的安全、舒适,在营运上达到经济、 合理外,还应注重驾驶者的视觉、心理及生理方面的要求。 9.1.6 应根据设计条件尽量选用较高的技术指标,不应轻易采用技术指标的最小(或 最大)值,并保持各种线形要素的均衡性、连续性,避免线形突变。 9.1.7 在路线交叉前后应尽可能采用技术指标较高的线形。 9.1.8 平面线形设计应结合地形、地物、地质、大型构造物(桥梁、互通立交、隧道) 等不同特点,选用相应技术指标进行组合设计,应合理运用直线和曲线(圆曲 线、回旋线)线形要素,不得片面强调以直线或以曲线为主,或必须高于某一 比例。 9.1.9 对立体线形应运用公路路线透视图,或动态连续透视图,或公路路线动态模拟系 统进行检验与评价。

道路设计平曲线和竖曲线半径的确定

道路设计平曲线和竖曲线半径的确定道路设计平曲线和竖曲线半径的确定 1)平曲线与竖曲线应相互重合,且平曲线应稍长于竖曲线。 这种组合是使竖曲线和平曲线对应,最好使竖曲线的起、终点分别放在平曲线的两个缓和曲线内,即所谓的“平包竖”。 对于等级较高的道路应尽量做到这种组合,并使平、竖曲线半径都大一些才显得协调,特别是凹形竖曲线处车速较高,二者半径更应该大一些。 2)平曲线与竖曲线大小应保持均衡 所谓均衡,是指平、竖曲线几何要素要大体平衡、匀称、协调,不要把过缓与过急、过长与过短的平曲线和竖曲线组合在一起。 根据德国计算统计,若平曲线半径小于1000m,竖曲线半径大约为平曲线半径的10,20倍时,便可达到均衡的目的。 3)暗弯、明弯与凸、凹竖曲线 暗弯与凸形竖曲线及明弯与凹形竖曲线的组合是合理的组合。 对暗与凹、明与凸的组合,当坡差较大时,会给 1 / 3 人以错觉:舍弃平坦坡道及近路不走,而故意爬坡、绕弯的感觉。此种组合在山区难以避免,只要坡差不大,矛盾也不很突出。 4)平、竖曲线应避免的组合 设计车速?40km/h的公路,凸形竖曲线的顶部和凹形竖曲线的底部,不得插入小半径平曲线。 凸形竖曲线的顶部或凹形竖曲线的底部,不得与反向平曲线的顶点重合。 小半径竖曲线不宜与缓和曲线相互重叠。

平面转角小于7?的平曲线不宜与坡度角较大的凹形竖曲线组合在一起。 5)在完全通视的条件下,长上坡路段的平面线形多次转向形成蛇形的组合线形,应极力避免。 直线上一次变坡是较好的平、纵组合,从美学观点讲以包括一个凸形竖曲线为好,而包括一个凹形线次之;直线中短距离内二次以上变坡会形成反复凸凹的“驼峰”和“凹陷”,看上去线形既不美观也不连贯,宜使驾驶员的视线中断。 道路作为一种线形构造物,应将其视为景观对象来研究。修建道路会对自然景观产生影响,有时甚至产生一定破坏作用。而道路两侧的自然景观会影响道路上汽车的行驶,特别是对驾驶员的视觉、心理以及 2 / 3 驾驶操作等都有很大影响 3 / 3

关于道路平曲线逐桩坐标计算

论文题目:关于道路平曲线逐桩坐标的计算作者:贾陇春 单位:陕西省宝鸡市市政工程公司 日期:二○○六年十二月十日

关于道路平曲线逐桩坐标的计算 —CASIOfx-4500P计算器程序开发和应用 作者:贾陇春单位:宝鸡市市政工程公司 简介:近年来,随着我国公路建设的不断发展,公路等级越来越高,对道路测量精度的要求也越来越高。现在公路施工设计图一般只提供直线及转角一览表,有些道路虽然提供部分整桩号的坐标,但在实际施工中有些地方却无法进行测设,而需要在破桩号处进行测设,这就需要我们进行逐桩计算或补充一些点的坐标。结合测量学的专业知识,利用CASIO-4500P计算器独有的编程功能,通过不断的摸索和实践,编制了一套能完整计算道路平曲线要素及逐桩坐标、距离道路中线两侧任意一点坐标的程序,这个程序不但能计算出圆曲线上各点的坐标,还能计算出带有缓和曲线的圆曲线上任意一点的坐标。 关键字:平曲线程序坐标计算 前言:近年来,随着我国公路建设的不断发展,公路等级越来越高,对道路测量精度的要求也越来越高。随着测量手段及测量仪器的不断发展,测量精度和测量效率有了明显的提高。全站仪的应用为我们的测量工作带来了极大的方便,全站仪不但测量精度高,而且测量效率高,利用提供的高等级导线点能精确的测设出想要的目标点。 现在公路施工设计图一般只提供直线及转角一览表,有些道路虽然提供部分整桩号的坐标,但在实际施工中有些地方却无法进行测设,而需要在破桩号处进行测设,这就需要我们进行逐桩计算或补充一些点的坐标。结合测量学的专业知识,利用CASIO-4500P计算器独有的编程功能,通过不断的摸索和实践,编制了一套能完整计算道路平曲线要素及逐桩坐标、距离道路中线两侧任意一点坐标的程序,这个程序不但能计算出圆曲线上各点的坐标,还能计算出带有缓和曲线的圆曲线上任意一点的坐标。这样以来,在施工测量中利用CASIO-4500P计算器工作平台,就能很快计算出想要测设点的坐标,结合全站仪坐标放样功能,就能精确测设出需要的目标点。 编制的这个应用程序由两大部分组成,第一部分是主程序,主要用于计算平曲线要素及各点的坐标;第二部分是子程序,主要用于计算交点之间的计算方位角。下面对这个程序进行详细的介绍。 平曲线计算(PQXJS/CASIOfx-4500P) F1(主程序名PQXJS) L1 C“HJX”D“HJY”U“JX”V“JY” :B=U-C:Q=V-D:Prong2:F◢W=(B2+Q2)◢A:Fix3 输入HJ(X,Y);JD(X,Y);计算距离W和方位角F并输出; 输入JD转角A(左为负值,右为正直)取小数点后三位。 L2 Lb1:{RH}—输入JD半径R,缓和曲线长度H L3 B=90H/(πR) L4 P=H2/(24R) L5 Q=H/2-H3/240R2 L6 T=(R+P)tgA/2+Q:T◢—输出切线长T L7 L=πRA/180+H:L◢—输出曲线长L L8 E=(R+P)secA/2-R:E◢—输出外距值E L9 I“D”=2T-L◢—输出切曲差D L10 J“JD”—输入交点桩号

RoadPro道路设计软件说明

RoadPro道路设计软件说明 前言: 使用RTK测量系统可以大大提高道路勘测放样的作业效率,所以RTK测量系统在道路勘测放样中的比重越来越大。 使用RTK测量系统进行道理勘测放样作业,最重要的步骤,就是勘测放样前的道路设计,可以说道路设计正确完成后,就完成了道路勘测放样一半的工作。 道路设计的目的:从A到B需要修建一条新的公路,标准公路一般是由直线,圆曲线和综合曲线组合而成,修建公路之前,首先设计单位需要设计出公路《直曲表》,就是该条公路的参数数据,然后勘测方会根据该《直曲表》进行勘测放样工作,勘测放样前就需要使用道路设计,将设计方提供的《直曲表》在软件中输入生成道路设计文件,使用该道路设计文件进行勘测放样作业。 直曲表:有多个叫法,其它的叫法还有:《直线曲线及转角表》、《曲线要素表》、《曲线表》等,我们统称为《直曲表》;它是设计单位提供的道路要素数据表。基本上,设计方都会提供《直曲表》给道路勘测放样施工方,施工方根据《直曲表》,首先使用交点法或者元素法,生成道路设计文件(*.rod),然后才能使用生成的道路设计文件开始道路勘测放样施工。直曲表中,都是以每个交点为最小单元的,每个交点下对应一段单元线路。 《直曲表》中的主要项目: 坐标和桩号:起始点和各交点的里程和坐标。 计算方位角:直线的方位角。 曲线间直线长:直线长度。 转角:Y表示右偏,Z表示左偏;元素法设计中,转角左偏时,半径需要输入负号。 半径:圆曲的半径。 曲线长度:一般包含第一缓曲长、圆曲长和第二缓曲长。 曲线总长:第一缓曲长+圆曲长+第二缓曲长(某些直曲表中,参数值比较特殊,只有第一、第二缓曲长和曲线总长,就需要通过计算得到圆曲长)。 逐桩坐标表:根据《直曲表》中的道路要素数据计算出来的逐桩坐标;设计方提供《直曲表》的同时,也会提供《逐桩坐标表》,施工方通过道路设计软件(如工程之星)生成道路设计文件时,道路设计软件也会生成逐桩坐标,施工方首先会对比道路设计软件生成的逐桩坐标,和设计方提供的《逐桩坐标表》是否一致,如果一致,才能开始道路勘测放样施工。 道路设计分为两种方法,分别是:元素法和交点法。下面对这两种方法分别进行介绍。 元素法: 元素法是道路设计两种方法的一种,主要步骤是:按道路设计《直曲表》中元素的顺序,依次输入个元素。元素包括:点、直线、圆曲、缓曲。有且只有第一个元素为点,另外第二个元素一定是直线。 各元素需要输入的数据 点:第一个元素必须是点,且除了第一个元素外,后面的元素均不能为点。输入点时,需要输入点的北坐标和东坐标。 直线:第二个元素必须是直线,长度可以为零,但必须输入方位角。不是第二个元素的直线,不知道方位角可以不用输入,软件会自动计算。 缓曲:缓曲只需输入缓曲长。

相关文档