文档库 最新最全的文档下载
当前位置:文档库 › 基于神经网络的欠驱动水下机器人地形跟踪控制

基于神经网络的欠驱动水下机器人地形跟踪控制

基于神经网络的欠驱动水下机器人地形跟踪控制
基于神经网络的欠驱动水下机器人地形跟踪控制

9.7 机器人神经网络自适应控制

声明:应部分读者的要求,本书第9章增加“机器人神经网络自适应控制”一节,图序、公式序顺延。 9.7 机器人神经网络自适应控制 机器人学科是一门迅速发展的综合性前沿学科,受到工业界和学术界的高度重视。机器人的核心是机器人控制系统,从控制工程的角度来看,机器人是一个非线性和不确定性系统,机器人智能控制是近年来机器人控制领域研究的前沿课题,已取得了相当丰富的成果。 机器人轨迹跟踪控制系统的主要目的是通过给定各关节的驱动力矩,使得机器人的位置、速度等状态变量跟踪给定的理想轨迹。与一般的机械系统一样,当机器人的结构及其机械参数确定后,其动态特性将由动力学方程即数学模型来描述。因此,可以采用自动控制理论所提供的设计方法,采用基于数学模型的方法设计机器人控制器。但是在实际工程中,由于机器人是一个非线性和不确定性系统,很难得到机器人精确的数学模型。 采用神经网络,可实现对机器人动力学方程中未知部分的精确逼近,从而实现无需建模的控制。本节讨论如何利用神经网络控制和李雅普诺夫(Lyapunov )方法设计机器人轨迹跟踪控制的问题,以及如何分析控制系统的稳定性和收敛性。 9.7.1 机器人动力学模型及其结构特性 n 关节机械手动态方程可表示为: ()()()(),d ++++=M q q V q q q G q F q ττ (9.30) 其中,n R ∈q 为关节转动角度向量,()M q 为n n ?维正定惯性矩阵,(),V q q 为n n ?维向心哥氏力矩,()G q 为1?n 维惯性矩阵,()F q 为1?n 维摩擦力,d τ为未知有界的外加干扰,n R ∈τ为各个关节运动的转矩向量,即控制输入。 机器人动力学系统具有如下动力学特性: 特性1:惯量矩阵M(q)是对称正定阵且有界; 特性2:矩阵(),V q q 有界; 特性3:()()2,-M q C q q 是一个斜对称矩阵,即对任意向量ξ,有 ()()()2,0T -=ξ M q C q q ξ (9.31)

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

基于神经网络的机器人模型辨识-自动化专业

第二章 神经网络 2.1神经网络基础 人的大脑中有众多神经元,它们连接在一起组成复杂的神经网络,因此大脑拥有高级的认知能力。人工神经网络实际上是对人大脑处理信息方法的简单化。 2.1.1神经网络概述 神经网络是推广众多简单处理单元构成的一种非线性动力学系统,能够大规模地进行信息分布式存储和并行处理。同时神经网络具有自学习的能力,当外界的环境发生了改变,神经网络经过训练能够在外界信息的基础上自动调整内部结构,对于给定的输入可以得到期望输出。 由图可知,神经元是一种性质为多输入单输出的系统,是由n 个输入i x 和一个输出j y 组成。 图2-1 神经元结构 j u :第j 个神经元的状态; j :第j 个神经元的阈值; i x :第i 个神经元的输入信号; ji w :第i 个神经元到第j 个神经元的连接权系数; 其中:激发状态时ji w 取正数,抑制情况下ji w 取的是负值;

j s :第j 个神经元的外部输入信号。 输出可以表示为 1n j ji i j j i Net w x s θ==+-∑ (2.1) ()j j u f Net = (2.2) ()()j j j y g u h Net == (2.3) 一般(.)g 是单位映射,也就是说()j j g u u = 。 j Net 表示第j 个神经元的输入; (.)f 表示第j 个神经元的激励函数; (.)g 表示第j 个神经元的输出函数。 激活函数往往采用这三种函数: (1)二值函数(阈值型): 1,0()0,0x f x x >?=?≤? (2.4) (2) S 型函数: 1 ()1x f x e α-= +,0()1f x << (2.5) (3)双曲正切函数: 1()1x x e f x e αα---=+,1()1f x -<< (2.6) 2.1.2神经网络的分类 以连接方式对神经网络可分为两大类:一是没有反馈的前向网络,二是相互结合型网络(含有反馈网络)[10]。 (1)前向神经网络

(完整word版)智能跟随机器人项目申请书

申请编号: 入选编号: 上海市研究生创新创业能力培养计划项目申请书 项目名称:智能跟随机器人 所在高校: 申请部门负责人: 申请部门负责人职务、职称: 上海市大学生科技创业基金会制表 填表日期:年月日

填表说明 一、填写本申请书前,应仔细阅读《上海市研究生创新创业能力培养计划管理办 法》、《关于开展2017年上海市研究生创新创业能力培养计划申报工作的通知》等有关文件,务必实事求是地填写。 二、本申请书作为上海市研究生创新创业能力培养计划评审入选与培养创业项目 存档备查之用,用A4纸打印,使用骑马钉左侧装订,封面之上不得另加其他封面。申请单位须在规定时间内将本申请书一式2份及表格电子版光盘报送上海市大学生科技创业基金会。 三、研究生申请书须经研究生教育管理单位(部门)审核,本科生申请书须经创 业基金会分会审核,签署明确意见并加盖公章后方可上报。 四、部分栏目填写说明: 1.封面上“申请编号”、“入选编号”由创业基金会填写。 2.学科门类名称、学科名称及其代码按照国务院学位委员会颁布的《学位授 予和人才培养学科目录(2011年)》填写。 3.本表中涉及的人员均指人事关系隶属本单位的在编人员,兼职人员不计在 内。除学术带头人简况外,表中涉及的成果(论文、专著、专利、科研奖项、教学成果等)指本学科人员署名本单位获得的成果,凡署名其他单位所获得的成果不填写、不统计。 4.封面“申请部门负责人”一般应为高校研究生教育管理部门或者分会负责 人;申请内容中的“项目申请人”应为申请培训的研究生或本科生,项目团队成员不超过5人。 5.本表填写内容不涉及国家秘密并可公开。 6.本申请书所有信息必须全部填写,空白处请一律填“无”。

神经网络α阶逆系统控制方法在机器人解耦控制中的应用

文章编号 2 2 2 神经网络Α阶逆系统控制方法在机器人解耦控制中的应用Ξ 戴先中孟正大沈建强阮建山 东南大学自动控制系南京 摘要 本文利用神经网络Α阶逆系统线性化解耦能力 将严重耦合的多自由度机械手解耦成多个二阶积分子系统 进一步采用线性系统设计方法对已解耦系统设计闭环控制器 成功地实现了位置快速跟踪 该控制方法不需要知道机器人系统的精确数学模型 并且结构简单 易于工程实现 关键词 机器人 神经网络 逆系统 多变量解耦 中图分类号 ×° 文献标识码 ΡΟΒΟΤΔΕΧΟΥΠΛΙΝΓΧΟΝΤΡΟΛΒΑΣΕΔΟΝΑΝΝ ΑΤΗ?ΟΡΔΕΡΙΝ?ΕΡΣΕΣΨΣΤΕΜΜΕΤΗΟΔ ? ÷ 2 ∞ 2 ≥ ∞ 2 2 ΑυτοματιχΧοντρολΕνγ Δεπτ οφΣουτηεαστΥνι? Ναν?ινγ Αβστραχτ Α 2 √ √ ? ∏ ?? ∏ ≥ ≥ ∏ × √ ∏ ∏ ∏ 2 √ √ ∞? ∏ √ ∏ ? ∏ ∏ ∏ Κεψωορδσ ∏ √ ∏ √ ∏ 1引言 Ιντροδυχτιον 由于多自由度机械手模型的非线性和强耦合性 机械手的轨迹快速跟踪控制一直是控制领域中富有挑战性的课题之一 基于局部线性化理论的传统°?和° ?控制器仅能使得系统在一个很小的工作空间内获得较好的跟踪性能 基于非线性全局线性化理论而提出的计算力矩法由于可以使闭环系统获得完全的解耦和线性化 从而能在整个工作空间中获得良好的跟踪特性 但是计算力矩法所需的模型参数完全准确以及不存在测量误差等条件在工程实际中较难得到满足 为此 一些学者又先后提出了自适应控制等方案 本文利用神经网络Α阶逆系统线性化解耦能力≈ 将严重耦合的多自由度机械手解耦成多个二阶积分子系统 进一步采用线性系统设计方法对已解耦系统设计闭环控制器 成功地实现了位置快速跟踪 2多变量系统的神经网络Α阶逆系统解耦控制方法 ΔεχουπλινγχοντρολμετηοδοφΜΙΜΟσψστεμβασεδονΑΝΝΑτη?ορδεριν?ερσεσψστεμ 考察一个用输入输出微分方程表示的 ρ 个输入Υ ρ个输出Ψ 非线性系统Ε Φ Ψ Α Ψ2 Υ 其中 第 卷第 期 年 月机器人ΡΟΒΟΤ? ∏ Ξ基金项目 国家自然科学基金资助项目 收稿日期

巡检目标自动识别跟踪的方法、系统及机器人与相关技术

图片简介: 一种巡检目标自动识别跟踪的方法,包括:使用云台相机拍摄包含有多个检测目标的原始图像;对原始图像中的多个检测目标进行识别与定位,对漏识别的检测目标进行人工标记,确认所有检测目标在所述原始图像中的位置;当前所述云台相机的拍摄中心与所述原始图像的中心点重合,以原始图像的中心点为原点,使用现有的计算几何中心的计算方式构建十字坐标系,将当前原点标记为第二坐标,将其他单个检测目标在原始图像中所在区域图像的中心点标记为多个第一坐标,并将多个第一坐标保存至数据库,通过第一坐标与第二坐标的转换使得所述云台相机能够对准检测目标进行拍照,而且本技术运算方法简单,适合在户外的云台相机运行。 技术要求 1.一种巡检目标自动识别跟踪的方法,其特征在于,包括: 使用云台相机拍摄包含有多个检测目标的原始图像;

对原始图像中的多个检测目标进行识别与定位,对漏识别的检测目标进行人工标记,确认所有检测目标在所述原始图像中的位置; 当前所述云台相机的拍摄中心与所述原始图像的中心点重合,以原始图像的中心点为原点,使用现有的计算几何中心的计算方式构建十字坐标系,将当前原点标记为第二坐标,将其他单个检测目标在原始图像中所在区域图像的中心点标记为多个第一坐标,并将多个第一坐标保存至数据库; 转动所述云台相机,使当前所述云台相机的拍摄中心从第二坐标转移至其中一个第一坐标,使单个检测目标位于当前所述云台相机的拍摄中心; 所述云台相机进行相应比例放大拍摄,获取该单个检测目标所在区域图像的放大图像,并将该第一坐标重新标记为第二坐标,调用数据库中其他第一坐标; 重复上述步骤,直至获取所有检测目标所在区域图像的放大图像,并将所有放大图像上传至云端。 2.根据权利要求1所述一种巡检目标自动识别跟踪的方法,其特征在于; 转动所述云台相机,包括获取云台相机的旋转角度,所述旋转角度包括水平方向的角度与垂直方向的角度; 其中获取旋转角度前,使用所述云台相机对一个参照物在不同距离下进行拍摄,获取所述参照物在不同拍摄距离下的像素值,通过多组像素值与拍摄距离之间的比例关系获取像素值与距离的线性关系,通过所述线性关系确认所述云台相机在一个像素值与距离对应的像素距离; 获取当前原始图像的像素值,通过所述像素距离计算所述云台相机到所述检测目标之间的实际距离; 将所述云台相机与所述检测目标之间的实际距离代入公式一计算得出所述旋转角度; 公式一:,其中dx为云台相机与检测目标的距离,lx为第一坐标与第二坐标的距离。

机器人神经网络控制

第一部分 机器人手臂的自适应神经网络控制 机器人是一具有高度非线性和不确定性的复杂系统,近年来各研究单位对机器人智能控制的研究非常热门,并已取得相当丰富的成果。 机器人轨迹跟踪控制系统的主要目的是通过给定各关节的驱动力矩,使得机器人的位置、速度等状态变量跟踪给定的理想轨迹。与一般的机械系统一样,当机器人的结构及其机械参数确定后,其动态特性将由动力学方程即数学模型来描述。因此,可采用经典控制理论的设计方法——基于数学模型的方法设计机器人控制器。但是在实际工程中,由于机器人模型的不确定性,使得研究工作者很难得到机器人精确的数学模型。 采用自适应神经网络,可实现对机器人动力学方程中未知部分的精确逼近,从而实现无需建模的控制。下面将讨论如何利用自适应神经网络和李雅普诺夫(Lyapunov )方法设计机器人手臂跟踪控制的问题。 1、控制对象描述: 选二关节机器人力臂系统(图1),其动力学模型为: 图1 二关节机器人力臂系统物理模型 ()()()()d ++++=M q q V q,q q G q F q ττ (1) 其中 1232 232232 22cos cos ()cos p p p q p p q p p q p +++??=? ?+??M q ,322 3122312 sin ()sin (,)sin 0p q q p q q q p q q --+?? =???? V q q

41512512cos cos()()cos()p g q p g q q p g q q ++??=??+?? G q ,()()0.02sgn =F q q ,()()0.2sin 0.2sin T d t t =????τ。 其中,q 为关节转动角度向量,()M q 为2乘2维正定惯性矩阵,(),V q q 为2乘2维向心哥氏力矩,()G q 为2维惯性矩阵,()F q 为2维摩擦力矩阵,d τ为 未知有界的外加干扰,τ为各个关节运动的转矩向量,即控制输入。 已知机器人动力学系统具有如下动力学特性: 特性1:惯量矩阵M(q)是对称正定阵且有界; 特性2:矩阵 () ,V q q 有界; 特性3:()()2,-M q C q q 是一个斜对称矩阵,即对任意向量ξ,有 ()()()2,0T -=ξ M q C q q ξ (2) 特性4:未知外加干扰d τ 满足 d d b ≤τ, d b 为正常数。 我们取[][]2 12345,,,, 2.9,0.76,0.87,3.04,0.87p p p p p kgm ==p ,两个关节的位置 指令分别为()10.1sin d q t =,()20.1cos d q t =,即设计控制器驱动两关节电 机使对应的手臂段角度分别跟踪这两个位置指令。 2、传统控制器的设计及分析: 定义跟踪误差为: ()()()d t t t =-e q q (3) 定义误差函数为: =+∧r e e (4) 其中0>∧=∧T 。 则 d =-++∧q r q e

基于神经网络的多任务学习机器人

基于神经网络的多任务学习机器人 目前绝大多数智能机器人具有较高的鲁棒性,但其基于具体行为的实现方法都需要程序员对相应的任务进行手工编程。然而,环境是复杂多样的,而要使得机器人能够在多种环境下进行任务,需要程序员将各种情况考虑在内,这样的系统对环境并不具有适应性,让机器人的应用受到了局限。基于此,提出的自主学习机器人以类人形机器人为基本模型,以神经网络为基础,通过人体对机器人进行示范,训练一个能识别人关节姿态的完备的神经网络。当机器人身处不同环境执行任务时,能够做出适应环境变化的动作。为此所设计的学习机器人系统的特色就在于使用神经网络具有学习能力,提高机器人对环境的适应能力,从而让任务执行更加灵活,使得机器人拥有更广阔的应用前景。 标签:自主学习;神经网络;姿態识别;机器人 doi:10.19311/https://www.wendangku.net/doc/e213056342.html,ki.16723198.2017.01.092 1引言 1.1机器人在现代社会中的重要性 随着城乡居民消费结构的持续升级,以及智慧中国战略的不断推进,智能机器人在家庭、农业、工业等生活的方方面面都有着极其广泛的应用。随着社会的不断发展,社会分工越来越细,与此同时工作也变得越来越单调。另外,社会上有些工作风险较高,若让人去做,不仅效率不高,而且更会产生生命危险。在这样高风险的作业领域,对机器人的需求越来越高。在这一背景下,各种各样的机器人被研制了出来,用它们代替人来完成枯燥、单调、高风险的工作。这极大的提高了劳动生产率和生产质量,创造出了更多的社会财富。 同时,社会服务也对机器人产生了大量的需求。从公共服务方面来说,目前我国老龄人口已超过总人口的10%,人口老龄化问题已成为中国需要面临的重大课题。此外,我国残疾人口占总人口的比重也位居世界较高国家之列。机器人的运用,可以为他们提供大量的护理服务,提高他们的生活质量。在医疗服务方面机器人也有很大的优势,手术机器人凭借其操作的精度及可长期工作等特性广泛应用于手术操作中。总而言之,机器人已成为我们的社会不可取代的一部分。 1.2当前机器人领域的现状及弊端 目前机器人正处于快速发展的阶段,但目前市场上的机器人仍存在着许多弊端。传统机器人需要设计者针对具体的任务进行手工编程,为了使机器人在环境改变时也能完成任务,设计者就需要尽量将各种情况考虑在内。但是这样的机器人存在一些问题:一方面程序员无法穷尽所有的可能情况,另一方面环境的复杂性也无形中加大了机器人可能出故障的概率,这使得机器人缺乏良好的环境自适应能力,给机器人的广泛应用带来了很大的限制。

水下机器人智能控制技术

水下机器人智能控制技术 机械工程学院张杰189020008 智能水下机器人作为一个复杂的系统集成了人工智能水下目标的探测和识别、数据融蛤智能控制以及导航和通信各子系统是一个可以在复杂海洋环境中执行各种军用和民用任务的智能化无人平台。目前主要采用的智能控制方法有:模糊控制、神经网络控制、专家控制、自适应控制、PID调节器、滑模控制等。本文比较全面地查阅了水下机器人运动控制理论相关的文献,阐述了几种主要控制方法的基本原理,给出了控制器结构的设计方法,对水下机 器人运行控制方法的选取、控制器的设计具有较好的参考意义。 水下机器人的运动控制是其完成特定任务的前提和保障,是水下机器人关键技术之一。 随着水下机器人应用范围的扩大,对其自主性,运动控制的精度和稳定性的要求都随之增 加,如何提高其运动控制性能就成了研究的一个重要课题。导致AUV难于控制的主要因素包括:①水下机器人高度的非线性和时变的水动力学性能;②负载的变化引起重心和浮心的改变;③附加质量较大,运动惯性较大,不能产生急剧的运动变化;④难于获得精确的水动力系数;⑤海流的干扰。这些因素使得AUV的动力学模型难以准确,而且具有强耦合和非线性的特点。目前已被采用的控制方法有:模糊控制、神经网络控制、专家控制、PID控制、自适应控制、S面控制等。 智能控制是一个由人工智能自动控制和运筹学的交叉构成的交叉学科近年来,智能控制技术成为水下机器人发展的一个重要技术水下机器人难于控制的原因有几个方面,水下机器人在运行中收到海流等外界极不稳定环境因素的干扰,使其控制变得更加困难;水下机器人各项参数的高度的非线性的特点;水下机器人的水动力性能在不同的海洋环境下会改变较明显;海底水下机器人水动力系数难以测量,不能获得一个较为准确的数据;水下机器人体积大质量大,因此所受惯性大,运动变化难以在较短的时间内实现;水下机器人在运动过程中重心和浮心易改变会引起控制较为困难等智能控制如果能用在水下机器人,可以更好的使其适应复杂的海洋环境。 智能控制系统的类型

基于卷积神经网络算法的机器人系统控制

第29卷一第4期 长一春一大一学一学一报 Vol.29一No.4 一2019年4月JOURNALOFCHANGCHUNUNIVERSITYApr.2019一 收稿日期:2018-01-20 基金项目:安徽省科技厅项目(17030901033) 作者简介:张松林(1981-)?男?安徽皖寿人?工程师?硕士?主要从事电子信息工程方面研究?基于卷积神经网络算法的机器人系统控制 张松林 (安徽信息工程学院信息系?安徽芜湖241000) 摘一要:随着计算机技术的不断成熟和数据分析技术的不断完善?近年来突出机器深度学习功能的智能算法取得重大突破?其中以卷积神经网络为代表的技术?可根据不同的控制要求进行相应数据训练?从而提高系统的控制效果?在机器人控制二目标识别等领域得到广泛应用?随着机器人应用环境的复杂化?设计基于卷积神经网络机器人控制算法在非结构化环境中实现精准化物体抓取?建立一个完整的机器人自动抓取规划系统? 关键词:机械臂?深度强化学习?策略搜索?卷积神经网络 中图分类号:TP183一一文献标志码:A一一文章编号:1009-3907(2019)04-0014-04 一一自20世纪中期开始?机器人系统逐步得到发展?从简单的机械结构到具有感知识别功能的智能机器人系统?已经在多个领域广泛应用?其中?物体抓取操作是机器人的重要功能?随着硬件技术的不断成熟?机器人系统通过传感器实现环境感知?并通过智能算法的设计来实现物体的任意抓取?由于机器人系统应用领域的复杂化?对机器人的控制算法提出了更高的要求?目前?工业机器人的抓取算法设计需要依赖预先建立好的物体抓取模型并整理为数据库?但对于在非结构化的环境中进行抓取的机器人来说?建立准确的数学模型难以实现?因此?要建立起能够对环境实时预测并快速整定的抓取规划算法?为优化这一问题?引入基于卷积神经网络的机器人规划算法?机器人通过传感器获取的环境信息?建立对应的抓取位姿映射关系?即通过环境模型库来存储机器人抓取经验?相比与传统的抓取控制算法而言?基于卷积神经网络的算法可以实现对未知物体的抓取经验迁移? 1一机器人抓取模型设计 机器人物体抓取可以视为机械臂对物体表面上一组接触点的施加力?以防止物体在外界扰动下发生运动?为提高机器人对物体抓取的控制性能?首先?需要建立机器人物体抓取的接触力数学模型[1]? 图1一物体与末端执行器接触模型的坐标系关系1.1一机器人与物体之间的接触力当需要通过机器人的机械臂进行物体抓取时?机 械臂的末端抓手会通过若干个接触点与物体进行关 联?一般情况下?在接触点上定义坐标系?并沿3个不 同维度设立坐标轴nl二pl二ql?其中?接触点上切平面 的单位法向量定义为nl?而pl二ql为符合右手定则的 在切平面相互垂直的两个单位向量?在接触点建立坐 标系如图1所示?机器人的物体抓取定义为爪手与物 体之间的运动?而接触面的形状以及爪手与物体之间 的摩擦系数共同决定了该运动的性质?在物体的接触 点上会提供一个单方向的约束[2]?以此防止物体向接触向量的方向偏移?机械臂爪手对物体施加的力和力

水下机器人ROV大坝安全检测

水下机器人ROV:大坝安全隐患检测 随着科技的进步,水下机器人ROV越来越接近我们的工作和生活,水下机器人要具备工业机器人的所有特点外,还要有良好的密封和抗腐蚀性能,随着水下机器人ROV的应用,人类可以进行更多的水下资源开发,如海洋能源、陆地河流、湖泊资源等,并且水下机器人ROV可以装备各种机械手,水下工具等进行水下作业。它已广泛应用与海洋工程、海洋军事和水下工程的各个领域,本文着重讲述水下机器人在大坝安全检测中的应用。 目前,水下机器人ROV配备有先进的导航、定位、推进和控制等设备,因而可以准确的到达预定的位置,最重要的,它可以到达潜水员无法到达的深度,替代潜水员,水下的危险环境不会危及人的生命安全,操作人员只要在水面进行操作就可以了。 通过水下机器人ROV遥控操作,可实现水下全方位扫描检测,重点部位可以“驻足”观测,不仅可以快速检测到大坝的整体情况,而且可以仔细检查局部病变的细节。ROV上搭载的的水下摄像机进行大坝表面状态如破损、裂缝等检测,并用激光尺度仪对破损尺度进行评估;用高分辨率图像声呐对堤坝表面进行三维测量;用剖面声呐对大坝内部进行三维检测;ROV载体携带上述探测仪器进行思维运动,实现对大坝的全覆盖扫描检测。 设备配置 一个框架式、模块化水下遥控式机器人(ROV)作为载体; 导航仪包括:罗经、测深仪、测高测距声呐、多普勒测速仪和推进器等。 探测仪包括:水下摄像机、高分辨率图像声呐、剖面声呐、多波束声呐等,还可以 搭载磁探仪、阴极保护测量装置等。 水面控制计算机通过脐带缆对ROV实施操作控制。 主要技术指标 最大巡检速度1米/s 最大下潜工作深度150米 运动模式:四自由度(前后、上下、左右和旋转) 长基线水声定位系统可对ROV水下位置定位,定位精度优于20cm。 高分辨率图像声呐高频图像声呐用于浑水环境下表面破损的成像探测与测量。 高分辨率剖面声呐剖面声呐的作用是发射可透射到坝体内部的声波,并接受由坝体中反向散射的声信号,据此对内部的缺陷进行测量、分析和定位。 水下摄像机在清水环境下,可以很高的分辨率观测堤坝及其他水下结构物表面的破损、缺陷、裂缝和腐蚀等状况。 大力金刚机器人ROV配备的摄像机是水下专用的数字CCD彩色摄像机,光学照度0.1lux,水下工作深度一般为300米,性能稳定,操作方便,大坝检测得心应手,如有更高需求可订制。

博士生课程空间机器人关键技术

博士生课程空间机器人关键技术

1空间机器人概述 2数学力学基础 3冗余自由度机器人 4柔性机械臂 5欠驱动机器人 6机器人灵巧手 (一)空间机器人的概述 1.空间机器人在空间技术中的地位 从20世纪50年代,以美国和苏联为首的空间技术大国就在空间技术领域展开了激烈的竞赛。 i 苏联 1957年8月3日,前苏联研制的第一枚洲际弹道导弹SS-6首次发射成功。不久,前苏联火箭总设计师柯罗廖夫从美国新闻界得知美国试图在1957-1958年的国际地球物理年里发射一颗人造地球卫星。于是,他立即将SS-6导弹稍加修改,将弹头换上一个结构简单的卫星,抢先将第一颗人造卫星送上了太空。 接着,在第一颗人造卫星发射后一个月,即11月3日,又用SS-6导弹作航天运输工具,将装有小狗“莱伊卡”的第二颗人造卫星送入太空的圆形地球轨道。 1959年5月,前苏联又将“月球”l号人造卫星送入了月球轨道。 ii 美国 在1958年以前,以“红石”近程导弹和“维金”探空火箭为基础,分别研制成“丘比特”C和“先锋”号等小型运载火箭,用于发射最初的几个有效载荷仅为数千克至十几千克的小卫星。 发展到今天,从地面实验室研究到人造卫星、空间站、载人飞船、航天飞机、行星表面探测器,空间技术大国都投入了大量人力、物力和财力。空间技术对于天文学、气象、通信、医学、农业以及微电子等领域都产

生了很大的效益。不仅如此,空间技术对于未来国家安全更具有重要的意义。在空间技术发展的过程中空间机器人的作用越来越明显。 20世纪60年代前苏联的移动机器人研究所(著名的俄罗斯Rover科技有限公司前身)研制了世界上第一台和第二台月球车Lunohod-1和Lunohod-2。1976年美国发射海盗一号和二号(Rover-1、Rover-2)的登陆舱相继在在火星表面登陆,通过遥操作机械臂进行火星表面土壤取样。 随着空间技术研究的日益深入,人类空间活动的日益频繁,需要进行大量的宇航员的舱外活动(EV A),这对宇航员不仅危险,而且没有大气层的防护,宇宙射线和太空的各种飞行颗粒都会对宇航员造成伤害。建造国际空间站,以及未来的月球和火星基地,工程浩大,只靠宇航员也是非力所能及的。还有空间产业、空间科学实验和探测,这些工作是危险的,但有一定重复性,各航天大国都在研究用空间机器人来代替宇航员的大部分工作。 此外许多空间飞行器长期工作在无人值守的状态,这些飞行器上面各种装置的维护和修理依靠发射飞船,把宇航员送上太空的办法既不经济,也不现实。在未来的空间活动中,许多工作仅靠宇航员的舱外作业是无法完成的,必须借助空间机器人来完成空间作业。 2空间机器人的任务和分类 1)空间建筑与装配。一些大型的安装部件,比如无线电天线,太阳能电池,各个舱段的组装等舱外活动都离不开空间机器人,机器人将承担各种搬运,各构件之间的连接紧固,有毒或危险品的处理等任务。有人预计,在不久将来空间站建造初期,一半以上的工作都将由机器人完成。 2)卫星和其他航天器的维护与修理。随着人类在太空活动的不断发展,人类在太空的资产越来越多,其中人造卫星占了绝大多数。如果这些卫星一旦发生故障,丢弃它们再发射新的卫星就很不经济,必须设法修理后使它们重新发挥作用。但是如果派宇航员去修理,又牵涉到舱外活动的问题,而且由于航天器在太空中,是处于强烈宇宙辐射的环境之下,有时人根本无法执行任务,所以只能依靠空间机器人。挑战者号和哥伦比亚号航天飞机的坠毁引起人们对空间飞行安全的关注,采用空间机械臂修复哈勃太空望远镜似乎是一件很自然的事情。安装上新的科学仪器(包括一台视野宽阔的摄象仪和一台摄谱仪)后,哈勃望远镜的观测能力可增强十倍以上。空

基于机器人的递归神经网络运动规划

基于机器人的递归神经网络运动规划 文章研究机器手臂的重复运动规划问题,在考虑关节角度极限和关节速度极限的情况下,将此模型转化为一个含不等式约束的二次规划问题,并利用简化对偶神经网络来求解该问题,从而实现机器手臂的关节重复运动。 标签:冗余机械臂;重复运动规划;二次规划;对偶神经网络 4 数值仿真 本节以平面六连杆冗余机械臂末端执行器作来回直线运动为例进行计算机仿真验证。直线长度为1m,观察其关节轨迹能否重合。末端执行器的运动周期为8s,关节变量的初始状态为:?兹(0)=(0,-?仔/4,0,?仔/2,0,-?仔/4)T弧度。仿真结果如图1所示,从图1也可以看出,在经过8s周期运动之后,平面六连杆机器手臂的各自关节状态都回到初始状态;仿真结果达到预期的目的,且其最大位置误差不大于1.79×10-6。可见,利用所提出的规划解析方案对带关节物理约束的机械臂进行重复运动规划是可行、有效的。 5 结束语 针对平面冗余机械臂重复运动规划问题,文章首先将机械臂重复运动问题转化为一个二次型规划问题,该二次规划方案可避开传统的伪逆解析方案难以求逆的问题,然后利用一种简单对偶神经网络来求解该含不等式约束的二次规划问题,该实现算法具有并行 性、快速实时处理能力和电路实现性。 6 致谢 感谢中山大学张雨浓教授提供相关源程序。 参考文献 [1]Malysz P,Sirouspour S.A kinematic control framework for single-slave asymmetric teleoperation systems. IEEE Transactions on Robotics,2011,27(5):901-917. [2]张智军,张雨浓.重复运动速度层和加速度层方案的等效性[J].自动化学报,2013,39(1):88-91. [3]Zhang Y N,Xie L,Zhang Z J,Li K N,Xiao L.Real-time joystick control and experiments of redundant manipulators using cosine-based velocity mapping. Proceedings of the 2011 IEEE International Conference on Automation and Logistics.

水下机器人研究现状与探索

《大学计算机基础》 课程报告 论文名称:水下机器人研究现状与探索二零一七年一月 目录 摘要 (2) 关键词 (2) 1 引言( Introduction) (3) 2水下机器人分类( The categories of underwater robot ) (4) 2.1遥控式水下机器人(remotely operated vehicles, ROV) (4) 2.2自主水下机器人(Autonomous underwater vehicles, AUV) (5) 2.3新概念水下机器人 (6) 3水下仿生机器人(bionic underwater robot) (7) 3.1水下仿生机器人主要研究和发展趋势( The (7) main research and development trends of (7) bionic underwater robot) (7) 3.2 水下仿生机器人的问题(The Problems of bionic underwater robot) (8) 3.3 驱动以及推进方式 (9) 4 仿生创新思路 (11) 4.1以乌贼为代表的海洋动物结构及运动方式 (11) 4.2 复合式水下仿生机器人 (12) 4.3 群体水下仿生机器人 (13) 5 结论 (13) 参考文献: (14)

水下机器人研究现状与探索 朱钰璇 摘要:本文总结了水下机器人的研究历史,现状与目前的发展趋势,具体分析了现代水下机器人应用的技术,指出他们的优缺点,并且针对未来的深海探索机器人的材料,结构,移动方式,动力来源,仿造乌贼等海洋软体动物提出设想,实际应用前景广阔。随着科学技术的发展, 水下仿生机器人在智能材料制成的驱动装置、游动机理方面会不断地完善, 在个体的智能化和群体的协作方面也会有很大的发展。 关键词:水下机器人;深海探索;仿生; PRESENT STATE AND FUTURE DEVELOPMENT OF UNMANNED UNDERWATER VEHICLE TECHNOLOGY RESEARCH ZHU Yuxuan Abstract: In this paper, the history, present situation and future of Unmanned underwater vehicle technology are summarized. We also further describe the mobile robot technologies concerning Unmanned underwater vehicle . In addition, point out

机器人神经网络控制汇总

(1) 第一部分 机器人手臂的自适应神经网络控制 机器人智能控制的研究非常热门,并已取得相当丰富的成果。 机器人轨迹跟踪控制系统的主要目的是通过给定各关节的驱动力矩, 机器人的位置、速度等状态变量跟踪给定的理想轨迹。 与一般的机械系统一样, 当机器人的结构及其机械参数确定后, 其动态特性将由动力学方程即数学模型 来描述。因此,可采用经典控制理论的设计方法一一基于数学模型的方法设计 机器人控制器。但是在实际工程中,由于机器人模型的不确定性,使得研究工 作者很难得到机器人精确的数学模型。 采用自适应神经网络,可实现对机器人动力学方程中未知部分的精确逼 近,从而实现无需建模的控制。 下面将讨论如何利用自适应神经网络和李雅普 诺夫(Lyapunov )方法设计机器人手臂跟踪控制的问题。 1、控制对象描述: 选二关节机器人力臂系统(图 1),其动力学模型为: 图1 二关节机器人力臂系统物理模型 M (q )q+V (q,d )q+G (q ) + F(q)+ T 其中 M (q )屮 1"P ;"2P 3COSq 2 P2+ P 3COSq2],V (q , q )斗一 P q q 2Sinq 2 L P2+P 3cosq 2 P 2 」 L 9361 Sinq 2 机器人是一具有高度非线性和不确定性的复杂系统, 近年来各研究单位对 使得 -P 3仙1 +q 2)sin q 2 P 2

6计鶯:鶯?],FZsgnq …W 0.2血。 其中,q 为关节转动角度向量,M (q )为2乘2维正定惯性矩阵,V (q q )为 2乘2维向心哥氏力矩,G (q )为2维惯性矩阵,F (q )为2维摩擦力矩阵,T 为 未知有界的外加干扰, T 为各个关节运动的转矩向量,即控制输入。 已知机器人动力学系统具有如下动力学特性: E T (M(q)-2C(q ,q ))E = 0 我们取 P =〔Pi, P 2, P 3, P 4, P >〔2.9, 0.76, 0.87, 3.04, ,两个关节的位置 指令 分别为q id =0.1sin (t ), q 2d=0.1coSt ),即设计控制器驱动两关节电 机使对应的手臂段角度分别跟踪这两个位置指令。 2、传统控制器的设计及分析: 定义跟踪误差为: e (t ) = qd (t )— q(t ) 定义误差函数为: r =e +A e 其中八=A T > 0。 贝U q=-r+q d + Ae 特性 1:惯量矩阵M (q )是对称正定阵且有界; 特性 2:矩阵V (q q )有界; 特性 3: M (q )-2C (q,q )是一个斜对称矩阵,即对任意向量 ,有 特性 4:未知外加干扰 T 满足 T - b d ,b d 为正常数。 (4)

激光跟踪焊接机器人系统技术方案

顺开机械手弧焊工作站 技术方案 沈阳新松机器人自动化股份有限公司 2009年7月

第一章方案概述 1.方案设计依据 甲方所提出的要求以及图片; 2.项目条件和要求 ?焊接工件名称:箱体总成最大 1000mm*1000mm*1800mm(W*L*H)(长度、宽度和 高度均有变化)。 ?材料:不锈钢;厚度:δ=3 mm; ?焊接方法:机器人MAG焊接方式; ?设备规划: 配置1套机器人及MAG焊接系统、1套机器人滑台、1台单轴变位机,1套机器人焊接夹具,激光检测和跟踪系统等。具体见设备布局参考图。 第二章焊接工艺分析 1.箱体工序划分: 工序1、人工点固工件(组焊夹具甲方设计制造,甲方自备焊接设备,箱体共4个部件); 示图:

工序2、人工将工件装在变位机夹具上,机器人焊接。焊接完成后人工卸件。 示图:机器人焊接如图所示的焊缝 2.焊接工艺(MAG): 1)焊丝直径选用Φ0.8-Φ1.0mm; 2)机器人MIG焊接的平均焊接速度取:6-8 mm/秒; 3)每条焊缝的机器人焊接辅助时间,即机器人平均移动时间取:3秒(包括机器 人变换姿态、加减速、空程运动时间,及焊接起弧、收弧时间); 第三章系统总体方案 1.方案总体介绍 本方案采用KUKA KR16L/6机器人和弗尼斯的TPS4000焊接系统,通过sevorobot 的DIGI-I激光传感器检测焊缝的位置进行焊接,并增加激光跟踪系统随时对焊接进行修正。 机器人夹具放在单轴变位机上,机器人安装在外部轴滑台上,保证焊接的姿态。 经过仿真:目前需用的机器人基本上可以满足最长1800的焊接。 关于夹具能适应多品种的问题:目前认为一套夹具可以通用,由于工件宽度及高度变动范围太大,为了适应有些型号的工件焊接,需要手工更换夹具上的部分底座。

一种欠驱动移动机器人运动模式分析

天津比利科技发展有限公司 李艳杰 ’马岩1,钟华2,吴镇炜2 ' 隋春平2 (1.沈阳理工大学机械工程学院,沈阳110168;2.中国科学院沈阳自动化研究所,沈阳110016) 摘要:介绍了一种欠驱动移动机器人的机械结构。分析了该欠驱动移动机器人在平地行进 模式的特点,提出一种越障控制模式。在该越障控制模式中加入了障碍物高度计算算法, 使得移动机器人在越障过程中的智能控制更加高效。利用VB编写控制程序人机界面,在移 动机器人实物平台上进行了实验,实验结果证明了控制方法的有效性。 关键词:AVR单片机;欠驱动移动机器人;越障模式 中图分类号:TP242文献标志码:A Analysis of a Underactuated Mobile Robot Moving Mode LI Yan-jie',MA Yan',ZHONG Hua2,WU2hen-wej2,SUI Chun-ping2 (l.School of Mechanical Engineering,Shenyang Ligong University,Shenyang110168,China;2.Robotics Lab,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang110016,China) Abstract:The mechanical structure of a kind of underactuated mobile robot was described in this paper.The charac- teristics of the underactuated mobile robot in the plains traveling mode was analyzed and a kind of obstacle-negotia- tion control mode was proposed.Due to calculate algorithm of obstacle's height was added to the the obstacle-nego- tiation control mode,the intelligent control of obstacle-negotiation becomes more efficient.The control procedure HMI was programmed by VB and the experiment was performed on the mobile robot platform.Experiment results show the control method was effective. Key words:AVR SCM;underactuated mobile robot;obstacle-negotiation mode 欠驱动机械系统是一类特殊的非线性系统,该容错控制的作用。因此,欠驱动机器人被广泛应用系统的独立控制变量个数小于系统的自由度个数【l】o于空间机器人、水下机器人、移动机器人、并联机器 欠驱动系统结构简单,便于进行整体的动力学分析人、伺服机器人和柔性机器人等行业。 和试验。有时在设计时有意减少驱动装置以此来增本文以四驱动、八自由度的欠驱动移动机器人加整个系统的灵活性。同时,由于控制变量受限等为实验对象,通过切换驱动器的工作模式来克服系原因,欠驱动系统又足够复杂,便于研究和验证各统不完全可控造成反馈控制失效【2】的缺点。以工控 种算法的有效性。当驱动器故障时,可能使完全驱机作为上位机,通过工控机的RS232串口与AVR 葫系统成为欠驱动系统,欠驱动控制算法可以起到单片机进行无线通讯。通过对驱动器反馈数据的分 收稿日期:2013-01-22:修订日期:2013-02-19 基金项目:国家科技支撑计划项目(2013BAK03801,2013BAK03802) 作者筒介:李艳杰(1969-),女,博士,教授,研究方向为智能机器人控制及机器人学;马岩(1988-),男,硕士研究生,研究方向为嵌入式控制;钟华(1977-),男,博士,副研究员,研究方向为机器人控制及系统集成。 Automation&Instrumentation2013(9) 一种欠驱动移动机器人运动模式分析

相关文档