文档库 最新最全的文档下载
当前位置:文档库 › 空调膨胀阀工作原理

空调膨胀阀工作原理

空调膨胀阀工作原理
空调膨胀阀工作原理

膨胀阀工作原理及正确维护

内容提要:膨胀阀工作状况的好坏,直接决定专业空调运行状况的好坏。本文介绍了膨胀阀的工作原理,并对膨胀阀的运行进行了具体分析,从增大制冷量、节约能源的角度,提出要对膨胀阀进行定期检查和调整。

膨胀阀的合理维护

叶明哲

摘要膨胀阀工作状况的好坏,直接决定专业空调运行状况的好坏。本文介绍了膨胀阀的工作原理,并对膨胀阀的运行进行了具体分析,从增大制冷量、节约

能源的角度,提出要对膨胀阀进行定期检查和调整。

关键词膨胀阀MSS线匹配过热度

1.概述

热力膨胀阀是组成制冷装置的重要部件,是制冷系统中四个基本设备之一。它实现冷凝压力至蒸发压力的节流,同时控制制冷剂的流量;它的体积虽小,但作用巨大,它的工作好坏,直接决定整个系统的工作质量。但是在实际中,膨胀阀的运行情况往往被忽视,使膨胀阀成为空调运行与维护中的一个死角。而定期检查和调整膨胀阀,对空调的运行寿命,节约能源,降低运行成本,却有着重要的意义。

2.膨胀阀的工作过程分析

2.1.膨胀阀工作原理:

热力膨胀阀是控制蒸发器出口气态制冷剂的过热度来控制进入蒸发器的制冷剂流量。按照平衡方式不同,膨胀阀分为外平衡式和内平衡式。在专用空调空调中,由于蒸发器有分路并采用莲蓬头分液器,压降比较大,造成蒸发器进出口温度各不相同。在这种情况下,使用内平衡式膨胀阀会因蒸发器出口温度

过低而造成热力膨胀阀过度关闭,以至膨胀阀丧失对蒸发器的供液调节功能。所以专用空调均采用外平衡式膨胀阀,目前所使用的风冷式专用空调,如HIRO SS、STULZ、ISOVEL、AIREDELE和法亚均采用这种结构。采用外平衡式可以避免膨胀阀过度关闭的情况,保证有压降的蒸发器也得到正常的供液。膨胀阀的结构如图一所示:热力膨胀阀由感应机构、执行机构、调整机构和阀体组成。感应机构中充注氟利昂工质,感温包设置在蒸发器出口处。由于过热度的影响,

其出口处温度与蒸发温度之间存在温差,通常称为过热度。感温包感受到蒸发器出口温度后,使整个感应系统处于对应的饱和压力P b。如图一,该压力将通过膜片传给顶杆直到阀芯。在压力腔上部的膜片仅有P b存在,膜片的下方有调整弹簧的弹簧力P t和蒸发压力P0,三者处于平衡时有P b=P t+P o,当P b>P t+P o时,表示蒸发器热负荷偏大,出口过热度偏高,通过膜片到顶杆传递这一压力信号,使阀芯下移,膨胀阀开启变大,制冷剂流量按比例增加。反之,膨胀阀开启变小,制冷剂流量按比例减小。

2.2.膨胀阀的最佳“匹配”

专业空调的膨胀在出厂后,已经与蒸发器进行最佳“匹配”。“匹配”就是要求膨胀阀和蒸发器一起工作能够稳定运行的同时,产生最大的能量。每台蒸发器均存在一条最小的稳定信号线(MSS线),如图二。从图可知,在蒸发器的MS

S线上,不同的制冷剂均对应一临界过热度;当蒸发器工作在MSS线左侧,则制冷系统将不稳定,若工作在MSS线右侧,系统工作稳定但过热度太大而蒸发器的利用率不高;斜线为热力膨胀阀的静态线,理论上,工作点A应该是最佳匹配点,此时蒸发器过热度处于临界状态,制冷量最大且处于临界稳定状态。

2.3. 确定正确的过热度

要保证膨胀阀工作在最佳匹配点,就必须保证膨胀阀合适的过热度。专用空调的膨胀阀合适的过热度是5~8℃,它由静装配过热度与有效过热度组成。图四显示了专用空调膨胀阀的典型静态性能曲线,它的静态特性指出了其容量和蒸发器出口气态制冷剂过热度的关系。使阀门开始开启所需要的过热度称为开启过热度(A 点),又叫静装配过热度,一般的静装配过热度约为3℃。从热力膨胀阀开始开启至额定开度所需要的过热度增量(即线段AB),称为膨胀阀的有效过热度或可

变过热度。其数值的大小与弹簧的刚度及阀芯的行程有关,一般有效过热度约为2~5℃,通常把热力膨胀阀的静装配过热度与有效过热度之和称为工作过热度,即平时所说的过热度。因此,我们只有保证过热度在A、B两点之间,膨胀阀才能达到最大冷量,又不会引起湿冲程。专业空调过热度都要求在5~8℃之间。如果发现过热度不在该范围内,就要进行调整。

3.定期检查调整膨胀阀的原因

专业空调刚投入运行,膨胀阀是不用调整,但是在空调连续使用几年后,由于阀针的磨损、系统有杂质、阀孔部分有堵塞及弹簧弹力减弱等原因,影响了膨胀阀的开启度,使得膨胀阀偏离了它的工作点,表现为膨胀阀开启度偏小或过大。膨胀阀开启度太小的话,就会造成供液不足(见图四曲线3),使得没有足够的氟利昂在蒸发器内蒸发,制冷剂在蒸发管内流动的途中就已经蒸发完了,在这以后的一段蒸发器管中没有液体制冷剂可供蒸发,只有蒸汽被过热,因此,相当的一部分管路在传热上未能充分发挥其效能,造成制冷量不足,降低了空调的制冷效果。专业空调的压缩机大多采用蒸发器回来的蒸汽来冷却压缩机,如果膨胀阀开启不够,就造成蒸汽过热度过大,冷却作用减小,压缩机的排气温度增高,润滑油质量降低;压缩机长时间高温,会严重影响压缩机的工作寿命,和睦模块ISOVEL空调就曾发生压缩机长时间高温造成烧机现象。另外由于机房温度降

不下来,又增加了压缩机的开启台数,增加了耗电量。与此相反,如果膨胀阀开启过大,即膨胀阀向蒸发器的供液量大于蒸发器负荷,会造成部分制冷剂来不及在蒸发器内蒸发,同气态制冷剂一起进入压缩机,引起湿冲程,甚至冲缸事故,损坏压缩机。99年,杭州市电信分公司景芳二楼程控机房一台ISOPAK专业空调就因为膨胀阀开启过大,造成一个压缩机阀片击穿。因此,有必要定期检查调整膨胀阀。定期检查调整膨胀阀,就是尽量让膨胀阀工作在最佳匹配点。

4. 膨胀阀的调整

4.1.膨胀阀调整前的检查

在调整膨胀阀之前,必须确认空调制冷异常是由于膨胀阀偏离最佳工作点引起的,而不是因为氟利昂少、干燥过滤器堵塞、滤网、风机皮带等原因所引起的。同时,必须保证感温包采样信号的正确性,专用空调的感温包必须水平安装在管的下侧方45度的位置,绝对不可安装在管道的正下方,以防管子底部积油等因素影响感温包正确感温。更不能安装在立管上。检查冷凝器风机控制方式是否是调速,只有调速风机才能保证冷凝压力恒定,如果是压力开关控制,则冷凝压力必须高于14kg/cm2,以防压力开关频繁动作造成压力波动,影响调试的准确性。

4.2.膨胀阀调整时注意事项

热力膨胀阀的调整工作,必须在制冷装置正常运行状态下进行,由于蒸发器出口处无法放置温度计,可以利用压缩机的吸气压力作为蒸发器内的饱和压力来校核过热度。调整中,如果感到过热度太小,即流量太大,则可把调节螺杆按顺时针方向转动半圈或一圈(即增大弹簧力,减小膨胀阀开启度),使流量减小,反之,若感到过热度太大,即供液不足,则可把调节螺杆朝相反方向(逆时针)转动,使流量增大。由于实际工作中的热力膨胀阀感温系统存在在着一

定的热惰性,形成信号传递滞后,因此整个调整过程必须耐心细致,调节螺杆转动的圈数一次不宜过多(直杆式膨胀阀的调节螺杆转动一圈,过热度变化大概改变1~2℃),两次调整膨胀阀之间必须间隔15分钟以上。耐心地经多次调整直至满足要求为止。

4.3.膨胀阀具体的调整步骤

4.3.1膨胀阀过热度的测量

过热度如图五所示测量,步骤如下:

1) 停机。将数字温度表的探头插入到蒸发器回气口处的保温层内,准

备读出蒸发器回气的温度T1。将压力表与压缩机低压阀的三通相连

(HIROSS40UA等没有低压阀的空调,则将压力表与蒸发器上的接头

相连),准备读出蒸发器出口压力所对应的温度T2。

2) 开机,让压缩机运行15分钟以上,进入正常运行状态,使系统压力

和温度达到一恒定值。现场测得高压压力为18Kg/cm2,高压开关始

终处于闭合运行状态,故对系统影响不大,不用作特别处理。

3) 读出蒸发器出口温度T1与蒸发器出口压力所对应的温度T2,过热

度为两读数之差。注意,必须同时读出这两个读数,因为膨胀阀是

一个机械结构,它的动作会同时引起T1和T2的改变。

膨胀阀过热度应在5-8℃之间,如果不是,则进行调整。

4.3.2具体调整步骤

1) 拆下膨胀阀的防护盖;

2) 转动调整螺杆2—4圈;(专业空调的膨胀阀一般采用压杆式和

散型齿轮式,散型齿轮式是用一个小齿轮带动一个大齿轮,调节的

圈数比较多,一般可以调2~4圈;压杆式可调圈数比较少,每次调

1/4圈;O65空调的膨胀阀采用散型齿轮式)

3) 等10分钟后,从新测量过热度,是否在正常范围,不是的话,

重复上述操作。调节过程必须小心仔细。(如果膨胀阀油堵严重,应

用无水乙醇进行清洗,再从重新装上;失去调节功能的膨胀阀应更

换;更换时,注意安装位置和做好保温)

5.膨胀阀调整实例

现根据上述步骤对杭州市电信分公司惠兴路七局程控机房的HIROSS空调膨胀阀进行了调整,具体过程如下。

惠兴路七局程控机房市话容量6万门,装有三台HIROSS,二台为O55型(9 4年安装),一台为40UA型(99年安装),能满足制冷量要求。当时室外温度3 4.8℃,在检查中发现一台94年安装的HIROSS055型空调在两个压缩机都运行的情况下,进回风温差偏小(回风22.5℃,送风16.8℃)空调制冷效果不明显。观察视液镜和干燥过滤器,发现氟利昂充足,排除少氟和过滤器堵塞,进一步检查,发现两台空调压缩机回气有过热、膨胀阀出口处温度偏低现象,用数字

式温度计测得其中蒸发器出口温度为18℃,压力表测得回气压力为3.2kg/cm 2

,对应的温度为-5℃,过热度为23℃,明显偏离正常的过热度,从而诊断为膨胀阀开启度不够,决定调整膨胀阀开启度。进行正确调整后,蒸发器出口温度为12℃,用压力表测得回气压力为4.8kg/cm 2,对应的温度为4.5℃,相减后过热度为7.5℃。

现场调整前后的具体数据如下:

(注:厂家

调试标准值由HIROSS 空调上海办事处提供)

本次调整中,1#、2#系统过热度分别为7.6℃和7.9℃,进一步向下调整,系统压力开始出现波动,表明膨胀阀工作超出了MSS 线,进入不稳定区,故本次调整,最佳过热度分别为7.6℃和7.9℃。

膨胀阀调整前后的进回风温、湿度如下:

1) 查湿空气的焓湿图,可以知道22.5 ℃、54.8% 时,湿空气的含湿量X=9.4g/kg ,湿空气

的密度可用下例公式计算

ρ=P(1+x)/461.5*(273.15+t)(0.622+x),kg/m3 (该公式引自于《空调与制冷手册》p22)

空气压力P=101325Pa 。

x为空气的含湿量。

空调的空气质量循环量为G=ρ*风量循环量,HIROSSO55空调的风量循环量为19800M3/S,折算为5.5M3/S,故空气质量循环量

G=101325(1+0.0094)/[461.5*(273.15+22.5)(0.622+0.0094)]*5.5 =6.41 kg/s

根据h=1.005t+x(2500+1.84t),kJ/kg (该公式引自于《空调与制冷手册》P6)分别算出:

h1=1.005*22.5+0.0094(2500+1.84*22.5)=45.50kJ/kg

h2=1.005*16.8+0.0094(2500+1.84*16.8)=40.67kJ/kg h’2=1.

005*14.3+0.0094(2500+1.84*14.3)=38.11kJ/kg

故调整前制冷量

Q=G(h1-h2)=6.41*(45.50-40.67)=30.96KJ/S=30.96KW 调整后的制冷量

Q’=G(h1-h’2)=6.41*(45.50-38.11)=47.31 KW

非常接近HIROSSO55空调的标准制冷量(回风温度22 、湿度50%时,标准制冷量为5

1.5KW)。

调整后制冷量比调整前增大了

47.31-30.96=16.35kw 。

2)通过电流表检测,压缩机调整后电流如下:(压缩机额定电流为14A)

膨胀阀调整前后,压缩机电流每相只增加了1个多安培,不到1/10,但制冷量却增加了近1/3,故增加制冷量的同时,起到了节能的目的。同时,压缩机壳体中部的表面温度从调整前的52℃降低到29℃,表明压缩机冷却良好,从

而延长了压缩机的寿命。

6.膨胀阀检查的周期

经过对杭州市电信分公司近二百多台专用空调的运行情况统计,发现膨胀阀偏离工作点的情况通常发生在使用寿命的中后期,因此,决定对膨胀阀的检查调整重点放在空调寿命的中后期上,下面是根据实际统计确立的膨胀阀检查周期。

膨胀阀检查调整周期

使用前4年5~8年中第9年以后

1次/年2次/年3次/年另外,在实际中,发现直接采用仪表检查膨胀阀工作情况,往往要浪费大量的时间,于是,采用了目检与仪表检查相结合的方法,即先用眼睛观察压缩机回气管的结露情况,发现异常后,再用仪表检查。这样,可以节约大量的时间,而且完全可以达到检查目的。

7.结束语

经过上述认证,

定期检查膨胀阀并不麻烦,但对空调的制冷效果、空调寿命、节约能源以及保证机房安全具有重要的意义。

参考资料:

1.彦启森主编.《空气调节用制冷技术》.北京:中国建筑工业出版社,1985

2.郑贤德主编.《制冷原理与装置》.北京:机械工业出版社,2001

3.陈沛霖、岳孝方主编.《空调与制冷技术手册》.上海:同济大学出版社,1999第二版

电子膨胀阀的工作原理及控制

电子膨胀阀的工作原理及控制 电子膨胀阀——吸气过热度控制吸气过热度控制系统由电子膨 胀阀、压力传感器、温度传感器、控制器组成,工作时,压力传感器将蒸发器出口压力 P1、温度传感器将压缩机吸气过热度传给控制器,控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,将阀开到需要的位置。以保持蒸发器需要的供液量。电子膨胀阀的步进电机是根据蒸发器出口压力 P1变化、压缩机吸气过热度变化实时输出变化的动力,这个实时输出变化的动力能及时克服各种工况和各种负荷情况下主膨胀阀变化的弹簧力,使阀的开度满足蒸发器供液量的需求,进而蒸发器的供液量能实时与蒸发负荷相匹配,即电子膨胀阀可通过控制器人为设定,有效的控制过热度。另外,电子膨胀阀从全闭到全开状态其用时仅需几秒钟,反应和动作速度快,开闭特性和速度均可人为设定电子膨胀阀可在10--100的范围内进行精确调节,且调节范围可根据不同产品的特性进行设定。选用电子膨胀阀——吸气过热度控制,机组无论在标准工况下、变工况、满负荷、变负荷运行维持较高的 COP 值水平。电子膨胀阀——吸气过热度控制制冷系统原理图电子膨胀阀——液位控制液位控制系统由电子膨胀阀、液位传感器、液位控制器组成。当蒸发器内的液面上下变化时,蒸发器内的液位传感器将液位变动的比例关系用4-20mA 信号传给液位控制器液位控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,使其开度增大、减小,以保持制冷剂液位在限定的范围内。电子膨胀阀的步进电机是根据制冷剂液位变化

实时输出变化的动力,这个实时输出变化的动力能及时克服各种工况和各种负荷情况下主膨胀阀变化的弹簧力,使阀的开度满足蒸发器供液量的需求,进而蒸发器的供液量能实时与蒸发负荷相匹配,即电子膨胀阀可通过控制器人为设定,有效的控制蒸发液位。选用电子膨胀阀——液位控制,机组无论在标准工况下、变工况、满负荷、变负荷运行均维持较高的 COP 值水平。电子膨胀阀——液位控制一般应用在吸气过热度低于2℃的制冷装置,而电子膨胀阀——吸气过热度一般应用在吸气过热度5℃左右的制冷装置,因此前者比后者更能有效的利用蒸发面积,提高蒸发负荷,获取更高的 COP 值。

膨胀阀的工作原理.doc

膨胀阀的结构和工作原理 1 热力膨胀阀的作用: 热力膨胀阀安装在蒸发器入口 ,常称为膨胀阀 ,主要作用有两个: 1)节流做用:高温高压的液态制冷剂经过膨胀阀的节流孔节流后 ,成为低温低压的雾状的液压制冷剂 ,为制冷剂的蒸发创造条件; 2)控制制冷剂的流量:进入蒸发器的液态制冷剂 ,经过蒸发器后 ,制冷剂由液态蒸发为气态 ,吸收热量 ,降低车内的温度。膨胀阀控制制冷剂的流量 ,保证蒸发器的出口完全为气态制冷剂 ,若流量过大 ,出口含有液态制冷剂 ,可能进入压缩机产生液击;若制冷剂流量过小 ,提前蒸发完毕 ,造成制冷不足; 2 热力膨胀阀的种类: 热力膨胀阀按照平衡方式不同 ,分内平衡式和外平衡式;外平衡式热力膨胀阀分F型和H型两种结构型式。 1)内平衡式膨胀阀结构和工作原理: 内平衡式F型热力膨胀阀结构图。感温包内充注制冷剂 ,放置在蒸发器出口管道上 ,感温包和膜片上部通过毛细管相连 ,感受蒸发器出口制冷剂温度 ,膜片下面感受到的是蒸发器入口压力。如果空调负荷增加 ,液压制冷剂在蒸发器提前蒸发完毕 ,则蒸发器出口制冷剂温度将升高 ,膜片上压力增大 ,推动阀杆使膨胀阀开度增大 ,进入到蒸发器中的制冷剂流量增加 ,制冷量增大;如果空调负荷减小 ,则蒸发器出口制冷剂温度减小 ,以同样的作用原理使得阀开度减小 ,从而控制制冷剂的流量。 2)外平衡式膨胀阀结构和工作原理:

膜片下面感受到的是蒸发器出口压力。 外平衡式膨胀阀与平衡式膨胀阀原理基本相同 ,区别是: 内平衡式膨胀阀膜片下面感受到的是蒸发器入口压力;而外平衡式膨胀阀膜片下面感受到的是蒸发器出口压力。 3)H型膨胀阀 H型热力膨胀阀有四个接口与制冷系统连接,其中两个接口与普通热力膨胀阀相同,一个连接储液干燥器,一个连接蒸发器进口;另外两个接口,一个连接蒸发器出口,一个连接压缩机进口。感温包直接处在蒸发器出口的制冷剂气流中。该膨胀阀由于取消了F型热力膨胀阀中的感温包、毛细管和外平衡接管,提高了调节灵敏度,结构紧凑,抗振可靠。

液控单向阀的工作原理

液控单向阀是方向控制阀中的一类,它主要是依靠控制流体压力,使单向阀反向流体的阀。主要应用于煤矿机械设备中。具体的控液单向阀的工作原理是怎样的,接下来我们将详细介绍控液单向阀的工作原理。 液控单向阀的工作原理 液控单向阀原理结构图(亚洲流体网) 2、单向阀的工作原理: 液控单向阀工作原理是依靠控制流体压力,可以使单向阀反向流通的阀。这种阀在煤矿机械的液压支护设备中占有较重要的地位。液控单向阀与普通单向阀不同之处是多了一个控制油路K,当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。当控制油路油控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。 (1) 保持压力。 滑阀式换向阀都有间隙泄漏现象,只能短时间保压。当有保压要求时,可在油路上加一个液控单向阀,利用锥阀关闭的严密性,使油路长时间保压。 (2) 液压缸的“支承”。

在立式液压缸中,由于滑阀和管的泄漏,在活塞和活塞杆的重力下,可能引起活塞和活塞杆下滑。将液控单向阀接于液压缸下腔的油路,则可防止液压缸活塞和滑块等活动部分下滑。 (3) 实现液压缸锁紧。 当换向阀处于中位时,两个液控单向阀关闭,可严密封闭液压缸两腔的油液,这时活塞就不能因外力作用而产生移动。 (4) 大流量排油。 液压缸两腔的有效工作面积相差很大。在活塞退回时,液压缸右腔排油量骤然增大,此时若采用小流量的滑阀,会产生节流作用,限制活塞的后退速度;若加设液控单向阀,在液压缸活塞后退时,控制压力油将液控单向阀打开,便可以顺利地将右腔油液排出。 (5) 作充油阀。 立式液压缸的活塞在高速下降过程中,因高压油和自重的作用,致使下降迅速,产生吸空和负压,必须增设补油装置。液控单向阀作为充油阀使用,以完成补油功能。 以上控液单向阀的工作原理相对简单。随着科技社会的逐步发展,我们能够接触到的高新产品还会越来越多,我们在体验和使用的同时,若能掌握这些设备的基本原理,平常使用时进行维护保养也是有作用的。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

空调膨胀阀工作原理

空调膨胀阀工作原理 Document number:PBGCG-0857-BTDO-0089-PTT1998

膨胀阀工作原理及正确维护 内容提要:膨胀阀工作状况的好坏,直接决定专业空调运行状况的好坏。本文介绍了膨胀阀的工作原理,并对膨胀阀的运行进行了具体分析,从增大制冷量、节约能源的角度,提出要对膨胀阀进行定期检查和调整。 膨胀阀的合理维护 叶明哲摘要膨胀阀工作状况的好坏,直接决定专业空调运行状况的好坏。本文介绍了膨胀阀的工作原理,并对膨胀阀的运行进行了具体分析,从增大制冷量、节约能源的角 度,提出要对膨胀阀进行定期检查和调整。 关键词膨胀阀MSS线匹配过热度 1.概述 热力膨胀阀是组成制冷装置的重要部件,是制冷系统中四个基本设备之一。它实现冷凝压力至蒸发压力的节流,同时控制制冷剂的流量;它的体积虽小,但作用巨大,它的工作好坏,直接决定整个系统的工作质量。但是在实际中,膨胀阀的运行情况往往被忽视,使膨胀阀成为空调运行与维护中的一个死角。而定期检查和调整膨胀阀,对空调的运行寿命,节约能源,降低运行成本,却有着重要的意义。 2.膨胀阀的工作过程分析 2.1.膨胀阀工作原理:

热力膨胀阀是控制蒸发器出口气态制冷剂的过热度来控制进入蒸发器的制冷剂流量。按照平衡方式不同,膨胀阀分为外平衡式和内平衡式。在专用空调空调中,由于蒸发器有分路并采用莲蓬头分液器,压降比较大,造成蒸发器进出口温度各不相同。在这种情况下,使用内平衡式膨胀阀会因蒸发器出口温度过低而造成热力膨胀阀过度关闭,以至膨胀阀丧失对蒸发器的供液调节功能。所以专用空调均采用外平衡式膨胀阀,目前所使用的风冷式专用空调,如HIROSS、STULZ、ISOVEL、AIREDELE和法亚均采用这种结构。采用外平衡式可以避免膨胀阀过度关闭的情况,保证有压降的蒸发器也得到正常的供液。膨胀阀的结构如图一所示:热力膨胀阀由感应机构、执行机构、调整机构和阀体组成。感应机构中充注氟利昂工质,感温包设置在蒸发器出口处。由于过热度的影响, 其出口处温度与蒸发温度之间存在温差,通常称为过热度。感温包感受到蒸发器出口温度后,使整个感应系统处于对应的饱和压力P b。如图一,该压力将通过膜片传给顶杆直到阀芯。在压力腔上部的膜片仅有P b存在,膜片的下方有调整弹簧的弹簧力P t和蒸发压力P0,三者处于平衡时有P b=P t+ P o ,当P b >P t +P o 时,表示蒸发器热负荷偏大,出口过热度偏高,通过膜片到

单向阀工作原理

单向阀分为两种,一种是直通式的一种是直角式的。直通式单向阀用螺纹连接安装在管路上。直角式单向阀有螺纹连接、板式连接和法兰连接三种形式。液控单向阀也称闭锁阀或保压阀,它与单向阀相同,用以防止油液反向流动。但在液压回路中需要油流反向流动时又可利用控制油压,打开单向阀,使油流在两个方向都可流动。 启闭件靠介质流动和力量自行开启或关闭,以防止介质倒流的阀门叫单向阀。单向阀属于自动阀类,主要用于介质单向流动的管道上,只允许介质向一个方向流动,以防止发生事故。 单向阀的作用是只允许介质向一个方向流动,而且阻止反方向流动。通常这种阀门是自动工作的,在一个方向流动的流体压力作用下,阀瓣打开;流体反方向流动时,由流体压力和阀瓣的自重合阀瓣作用于阀座,从而切断流动。 单向阀按结构划分,可分为升降式单向阀、旋启式单向阀和蝶式单向阀三种。升降式单向阀可分为立式和卧式两种。旋启式单向阀分为单瓣式、双瓣式和多瓣式三种。蝶式单向阀为直通式、以上几种单向阀在连接形式上可分为螺纹连接、法兰连接和焊接三种。 PUW防水透气阀选用进口膨体聚四氟乙烯(E-PTFE)微孔膜精心制造,该进口E-PTFE膜的微孔直径在0.1-10μm之间,而气体的分子只有0.0004μm左右,EPTFE膜的孔径比气体直径大250-25000倍,因此气体可以顺利通过;而毛毛雨的直径有400μm,比薄膜的微孔直径大40-4000倍,另外,由于EPTFE薄膜材料表面能很低,接触角为135.6°,由于表面张力作用(水分子相互拉扯)水汽冷凝变成小

水滴在EPTFE膜表面形大较大水珠,可有效阻止液态水润湿和毛细渗透,因此具有良好的防水透气性能。

膨胀阀的结构和工作原理

膨胀阀的结构和工作原理 2009年10月25日 14:19 本站整理作者:佚名用户评论(1) 关键字: 膨胀阀的结构和工作原理 1 热力膨胀阀的作用: 热力膨胀阀安装在蒸发器入口,常称为膨胀阀,主要作用有两个: 1)节流做用:高温高压的液态制冷剂经过膨胀阀的节流孔节流后,成为低温低压的雾状的液压制冷剂,为制冷剂的蒸发创造条件; 2)控制制冷剂的流量:进入蒸发器的液态制冷剂,经过蒸发器后,制冷剂由液态蒸发为气态,吸收热量,降低车内的温度。膨胀阀控制制冷剂的流量,保证蒸发器的出口完全为气态制冷剂,若流量过大,出口含有液态制冷剂,可能进入压缩机产生液击;若制冷剂流量过小,提前蒸发完毕,造成制冷不足; 2 热力膨胀阀的种类: 热力膨胀阀按照平衡方式不同,分内平衡式和外平衡式;外平衡式热力膨胀阀分F型和H型两种结构型式。 1)内平衡式膨胀阀结构和工作原理: 内平衡式F型热力膨胀阀结构图 内平衡式F型热力膨胀阀结构图。感温包内充注制冷剂,放置在蒸发器出口管道上,感温包和膜片上部通过毛细管相连,感受蒸发器出口制冷剂温度,膜片下面感受到的是蒸发器入口压力。如果空调负荷增加,液压制冷剂在蒸发器提前蒸发完毕,则蒸发器出口制冷剂温度将升高,膜片上压力增大,推动阀杆使膨胀阀开度增大,进入到蒸发器中的制冷剂流量增加,制冷量增大;如果空调负荷减小,则蒸发器出口制冷剂温度减小,以同样的作用原理使得阀开度减小,从而控制制冷剂的流量。

2)外平衡式膨胀阀结构和工作原理: 膜片下面感受到的是蒸发器出口压力。 外平衡式膨胀阀与平衡式膨胀阀原理基本相同,区别是: 内平衡式膨胀阀膜片下面感受到的是蒸发器入口压力;而外平衡式膨胀阀膜片下面感受到的是蒸发器出口压力。 3)H型膨胀阀 H型热力膨胀阀有四个接口与制冷系统连接,其中两个接口与普通热力膨胀阀相同,一个连接储液干燥器,一个连接蒸发器进口;另外两个接口,一个连接蒸发器出口,一个连接压缩机进口。感温包直接处在蒸发器出口的制冷剂气流中。该膨胀阀由于取消了F型热力膨

电子膨胀阀与热力膨胀阀比较

热力膨胀阀与电子膨胀阀的控制原理 1. 概述 节能和环保是人类亟待解决的两大问题。2002年8月26日至9月4日在南非约翰内斯堡举行了可持续发展世界峰会。在该次会议上国际制冷学会发表了《制冷业对于可持续发展和减缓大气变化的承诺》,在此文件中阐明制冷业主要的挑战来自全球气候变暖。造成制冷业影响全球气候变暖的80%的原因是二氧化碳的排放。这些间接的排放是部分是由制冷装置运行所需能量的生产引起的。制冷、空调和热泵这些设备所消耗的电能约占全世界生产电能的15%,这表明间接排放的影响是非常的严重。此文件还提出在下一个20年制冷业必须树立雄心去达到目标之一:每个制冷设备耗能减少30~50%。制冷业者为保护环境,应把节能贯穿到制冷设备的使用周期中去。作为制冷循环的四大部件之一,节流装置在系统中起着非常关键的作用,通过选择应用合适的节流机构与制冷系统匹配是整个制冷设备降低能耗的重要一环。本文将对节流机构的工作原理和运行能量匹配进行分析,重点对电子膨胀阀的工作原理进行分析。 2. 传统节流机构的工作原理及匹配 节流的工作原理是制冷工质流过阀门时流动截面突然收缩,流体流速加快,压力下降,压力下降的大小取决于流动截面收缩的比例。节流机构的作用: 1、节流降压。当常温高压的制冷剂饱和液体流过节流阀,变成低温低压的制冷剂液体并产生少许闪发气体。进而实现向外界吸热的目的。 2、调节流量:节流阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。当蒸发器热负荷增加时阀开度也增大,制冷剂流量随之增加,反之,制冷剂流量减少。 3、控制过热度:节流机构具有控制蒸发器出口制冷剂过热度的功能,既保持蒸发器传热面积的充分利用,又防止吸气带液损坏压缩机的事故发生。 4、控制蒸发液位:带液位控制的节流机构具有控制蒸发器液位的功能,既保持蒸发器传热面积的充分利用,又防止吸气带液降低吸气过热度。 若节流机构向蒸发器的供液量与蒸发负荷相比过大,部分液态制冷剂一起进入压缩机,引起湿压缩或冲缸事故。相反若供液量与蒸发器负荷相比太少,则蒸发器部分传热面积未能充分发挥其效能,甚至会造成蒸发压力降低,而且使制冷系统的制冷量降低,制冷系数减小,制冷装置能耗增大。节流机构流量的调节对制冷装置节能降耗起着非常重要的作用。大型中央空调冷水机组常用的节流机构有手动节流阀、孔板、热力膨胀阀、浮球+主节流阀。

电子膨胀阀的控制原理及优势分析

电子膨胀阀的控制原理及优势分析 空调系统设计中,电子膨胀阀作为电子控制元件,因其精度高,动作快速、准确、节能效果明显,可以实现系统的优化控制,在制冷空调中有广泛的应用。 那么电子膨胀阀的动作原理究竟如何,怎样才能实现精确控制呢?下面为大家详细解读下电子膨胀阀的工作原理及设计。 1、结构与分类 对于电子膨胀阀的研究早在70年代末期日本就已经开始对其进行研究,当时它是靠施加不同的电压(0~12V)对双金属片加热量的不同,造成双金属片膨胀不同而带动阀针的升降。 这种膨胀阀有较大的缺陷,后来已不大使用。除日本外其它国家在80年代也进行了电子膨胀阀的研究和开发工作,其主要针对电磁式和电动式(步进电机驱动)电子膨胀阀。

电磁式膨胀阀在电磁线圈通电前,阀针处于开的位置,阀针的开度取决于线圈上施加的控制电压,从而调节膨胀阀的流量。该阀动作响应快,但在制冷系统中工作时一直需要供电。 电动膨胀阀是一种以步进电机驱动的电子膨胀阀,它通过给步进电机施加一定逻辑关系的数字信号,使步进电机通过螺纹驱动阀针的向前或向后运动,从而改变阀口的流量面积来达到控制流量的目的。 这种电子膨胀阀又可分为直动型和减速型两种。 直动型是步进电机直接带动阀针,减速型是步进电机将动力通过减速齿轮组来推动阀针的动作。通过减速齿轮组可以产生较大的推力,所以目前许多步进电机驱动的电子膨胀阀都是采用的这一种驱动方式。 2、电子膨胀阀控制 电子膨胀阀的形式有多种,但都需要有电信号来控制,为在制冷循环中实施现代微机控制提供了可能。同时因系统、控制方法不同,每种形式的电子膨胀阀都有自己的优势。但步进电机驱动的电子膨胀阀因其更适用微机控制、并有较好的稳定性,而为更多的制冷系统所采用。 由于电子膨胀阀采样速度快、精度高等特点,易于实现先进的控制以达到舒适、节能等控制目标,因而在中小型制冷设备中应用越来越广泛,特别是在家用空调系统中的应用。

中央空调电子膨胀阀的控制原理

空调电子膨胀阀的控制原理及优势分析 空调系统设计中,电子膨胀阀作为电子控制元件,因其精度高,动作快速、准确、节能效果明显等优点;电子膨胀阀在制冷系统中的运用,可以实现系统 的优化控制,在制冷空调中有广泛的应用。而电子膨胀阀的动作原理究竟如何,怎样才能实现精确控制呢?下面美景舒适家为大家详细解读下电子膨胀阀的工作原理及设计。 一、空调电子膨胀阀:结构与分类 对于电子膨胀阀的研究早在70年代末期日本就已经开始对其进行研究, 当时它是靠施加不同的电压(0~12V)对双金属片加热量的不同,造成双金属片 膨胀不同而带动阀针的升降。 这种膨胀阀有较大的缺陷,后来已不大使用。除日本外其它国家在80年 代也进行了电子膨胀阀的研究和开发工作,其主要针对电磁式和电动式(步进电机驱动)电子膨胀阀。

电磁式膨胀阀在电磁线圈通电前,阀针处于开的位置,阀针的开度取决于线圈上施加的控制电压,从而调节膨胀阀的流量。该阀动作响应快,但在制冷系统中工作时一直需要供电。 电动膨胀阀是一种以步进电机驱动的电子膨胀阀,它通过给步进电机施加一定逻辑关系的数字信号,使步进电机通过螺纹驱动阀针的向前或向后运动,从而改变阀口的流量面积来达到控制流量的目的。 这种电子膨胀阀又可分为直动型和减速型两种。 直动型是步进电机直接带动阀针,减速型是步进电机将动力通过减速齿轮组来推动阀针的动作。通过减速齿轮组可以产生较大的推力,所以目前许多步进电机驱动的电子膨胀阀都是采用的这一种驱动方式。 二、空调电子膨胀阀控制 电子膨胀阀的形式有多种,但都需要有电信号来控制,为在制冷循环中实施现代微机控制提供了可能。同时因系统、控制方法不同,每种形式的电子膨胀阀都有自己的优势。但步进电机驱动的电子膨胀阀因其更适用微机控制、并有较好的稳定性,而为更多的制冷系统所采用。 由于电子膨胀阀采样速度快、精度高等特点,易于实现先进的控制以达到舒适、节能等控制目标,因而在中小型制冷设备中应用越来越广泛,特别是在家用空调系统中的应用。

MOP热力膨胀阀工作原理

MOP热力膨胀阀工作原理 少数的人明了热力膨胀阀之最大作业压力(maximum operating pressure, MOP)的运作原 理─此种压力也系许多膨胀阀设计的共同点。 热力膨胀阀(thermostatic expansion valve, TEV) 在冷媒压缩循环系统中,系一项令人迷惑的组件。这种迷惑不仅来自于对膨胀阀构造本身的不了解,也来自于对其「最大作业压力(maximum operating pressure, MOP)」运用原理的误解。因此,甚么是"最大作业压力"?其功能何在?其系如何在膨胀阀内运作呢? 由于马达是压缩机运转时的承载部分,许多阀类制造商也将 MOP 视为 "马达超载的保护装置 (motor overload protection)"。MOP 通常也系被运用来防止「系统过量循环(system flooding)」或「压缩机超载(compressor overload)」,或者被使用来限制循环系统的起动流量 (当系统在微负载的情况下起动)。这一类功能与传统的曲轴箱所使用的压力限制阀或旧式机械式压力控制阀等的功能相似。 当冷媒的蒸发压力超过预设之控制压力时,调温控制装置内(具MOP特性)的气体则作出关阀的动作。关阀的目的系在将系统压力限制在预设之"最大作业压力"的范围内。一般冷气机与热泵装置通常皆需要这一类具有「最大作业压力, MOP」控制功能的装置,来限制冷媒压缩机的循环负载(亦即减低压缩机冷媒吸入端的压力)。在这一类的装置中,控制阀内的 "填充气体 (pressure limiting charge)"会使膨胀阀趋乎于关闭的状态,直到"冷媒的蒸发压力(system evaporator pressure)低于填充气体的"最大作业压力"。此般功能可以帮助压缩机稳定系统的压力(pull down capabilities of the system compresso r),详图一。 如何运作(How it works) 热力膨胀阀具有一个温度感应球,感应球内的"填充气体(gas charge)"会因为感应到*冷媒的蒸发高温而呈现"过热状态(superheated)"。过热状态的气体会经由管线传输至膨胀阀的隔膜部分,进而抑制膨胀阀"隔膜装置(diaphragm assembly)"所施之开阀力量。当感应球的温度趋向预设之控制温度时,膨胀阀也将趋向关闭的状态,但是其仍会允许适量的冷媒通过阀口。 (注:温度感应球的安置位置通常系位于压缩机冷媒吸入端。)

热力膨胀阀工作原理及调节

热力膨胀阀工作原理及调节 2010-10-18 09:15:57| 分类:空调制冷| 标签:|字号大中小订阅 水环热泵/空气源热泵热水器的中宇 □节流降压 □调节流过蒸发器的制冷剂流量 □控制蒸发器出口过热度 过热度=回气温度-蒸发温度 ◇避免过热度偏小时产生湿压缩 ◇避免过热度过大,蒸发器相变面积减小,蒸发器效率降低,回气过热造成压缩机排气温度过高 内平衡热力膨胀原理: 感温包压力=弹簧压力+蒸发器进口压力 外平衡热力膨胀原理: 感温包压力=弹簧压力+蒸发器出口压力 当蒸发器的阻力较大时,蒸发器进口压力远大于蒸发器出口压力,内平衡热力膨胀阀较外平衡热力膨胀阀需更大的开阀压力,即增加了过热度,影响蒸发器传热效果。因此外平衡热力膨胀用于蒸发器阻力 较大的系统。 感温包的位置 ◇一般建议感温包安装在水平方向的回气管上 管径小于等于22mm,感温包位于12点时钟位置 管径大于22mm,感温包位于4点或8点时钟位置

热力膨胀阀的调节 当过热度偏大或偏小,需要对过热度进行调整时,可通过热力膨胀阀静态过热度调整杆进行调整。 通过对调整杆的扭转可对弹簧压力进行调整,进而调整静态过热度调整过热度时,要先取下保护帽 顺时针扭转调整杆,制冷剂流量减小过热度增大 逆时针扭转调整杆,制冷剂流量增大热度减小过 调整杆旋转一周过热度变化大约1℃~2℃ 热力膨胀阀调整时应耐心,细致,当调整后可能需要30分钟系统才能稳定 调整完后,应将保护帽上好 9.2 热力膨胀阀 热力膨胀阀普遍用于氟利昂制冷系统中,这种阀的开启度通过感温机构的作用,可随蒸发器出口处制冷剂的温度变化而自动变化,达到调节制冷剂供液量的目的。热力式膨胀阀主要由阀体、感温包和毛细管组成。热力式膨胀阀按膜片平衡方式不同有内平衡式和外平衡式两种类型。 在密闭容器内液体蒸发或沸腾而汽化为气体分子,同时由于气体分子之间以及气体分子与容器壁之间发生碰撞,其中一部分又返回到液体中去,当在同一时间内两者数量相等,即汽化的分子数与返回液体中的分子数相平衡时,这一状态称为饱和状态,饱和状态的温度就称为饱和温度,饱和温度时的压力称为饱和压力。 在制冷工程中,制冷剂在蒸发器和冷凝器内的状态,我们在宏观上视为饱和状态。也就是说蒸发器内的蒸发温度及冷凝器的冷凝温度均视为饱和温度,因此蒸发压力和冷凝压力也就视为饱和压力。 在饱和压力的条件下,继续使饱和蒸气加热,使其温度高于饱和温度,这种状态称为过热。这种蒸气称为过热蒸气。此时的温度称为过热温度,过热温度与饱和温度的差为过热度。在制冷系统中,压缩机的吸气往往是过热蒸气,若忽略管道的微波压力损失,那么压缩机吸气温度与蒸发温度的差值就是在蒸发压力下制冷剂蒸气的过热度。例如R12,当蒸发压力为0.15MPa时,蒸发温度为-20℃,若吸气温度为-13℃,那么过热度为7℃。 制冷压缩机排气管内的蒸气均为在冷凝压力下的过热蒸气,排气温度与冷凝温度的差值也是蒸气的过热度。 饱和液体在饱和压力不变的条件下,继续冷却到饱和温度以下称为过冷。这种液体称为过冷液体。过冷液体的温度称为过冷温度,过冷温度与饱和温度的差值称之为过冷度。例如R717在1.19MPa压力下,其饱和温度为30℃,若此氨液仍在1.19MPa压力下继续放热被降温,就形成过冷氨液,如果降低了5℃,则过冷氨液温度为25℃,其过冷度为5℃。 大多数热力膨胀阀在出厂前把过热度调定在5~6℃,阀的结构保证过热度再提高2℃时,阀就处于全开位置,与过热度约为2℃时,膨胀阀将处于关闭状态。控制过热度的调节弹簧,其调节幅度为3~6℃。 一般说来,热力膨胀阀调定的过热度越高,蒸发器的吸热能力就降低,因为提高过热度要占去蒸发器尾部相当一部分传热面,以便使饱和蒸气在此得到过热,这就占据了一部分蒸发器传热面积,使制冷剂汽化吸热的面积相对减少,也就是说蒸发器的表面未能得到充分利用。但是,过热度太低,有可能使制冷剂液体带入压缩机,产生液击的不利现象。因此,过热度的调节要适当,既能确保有足够的制冷剂进入蒸发器,又要防止液体制冷剂进入压缩机。 当制冷剂流经蒸发器的阻力较小时,最好采用内平衡式热力膨胀阀;反之,当蒸发器阻力较大时,一般为超过0.03MPa时,应采用外平衡式热力膨胀阀。 9.2.1 内平衡式热力膨胀阀 内平衡式热力膨胀阀由阀体、推杆、阀座、阀针、弹簧、调节杆、感温包、联接管、感应膜片等部件组成,如图9-2a所示。热力膨胀阀对制冷剂流量的调节,是通过膜片上的三

单向阀原理总结

1、单向阀原理:止回阀是指依靠介质本身流动而自动开、闭阀瓣,用来防止介 质倒流的阀门,又称逆止阀、单向阀、逆流阀、和背压阀。止回阀属于一种自动阀门,其主要作用是防止介质倒流、防止泵及驱动电动机反转,以及容器介质的泄放。启闭件靠介质流动和力量自行开启或关闭,以防止介质倒流的阀门叫止回阀。止回阀属于自动阀类,主要用于介质单向流动的管道上,只允许介质向一个方向流动,以防止发生事故。止回阀又称单向阀或逆止阀,其作用是防止管路中的介质倒流。水泵吸水关的底阀也属于止回阀类。 2、旋启式止回阀有一介铰链机构,还有一个像门一样的阀瓣自由地靠在倾斜的 阀座表面上。为了确保阀瓣每次都能到达阀座面的合适位置,阀瓣设计在铰链机构,以便阀瓣具有足够有旋启空间,并使阀瓣真正的、全面的与阀座接触。阀瓣可以全部用金属制成,也可以在金属上镶嵌皮革、橡胶、或者采用合成覆盖面,这取决于使用性能的要求。旋启式止回阀在完全打开的状况下,流体压力几乎不受阻碍,因此通过阀门的压力降相对较小。升降式止回阀的阀瓣座落位于阀体上阀座密封面上。此阀门除了阀瓣可以自由地升降之外,其余部分如同截止阀一样,流体压力使阀瓣从阀座密封面上抬起,介质回流导致阀瓣回落到阀座上,并切断流动。根据使用条件,阀瓣可以是全金属结构,也可以是在阀瓣架上镶嵌橡胶垫或橡胶环的形式。像截止阀一样,流体通过升降式止回阀的通道也是狭窄的,因此通过升降式止回阀的压力降比旋启式止回阀大些,而且旋启式止回阀的流量受到的限制很少。 3、旋启式单向阀原理:液体在阀体内直通,依靠压力顶开一侧的旋转阀瓣,压

力失去后,阀瓣依靠自重回位,反向的液体压力封闭阀瓣。

膨胀阀的工作原理

膨胀阀的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

膨胀阀的结构和工作原理 1热力膨胀阀的作用: 热力膨胀阀安装在蒸发器入口,常称为膨胀阀,主要作用有两个: 1)节流做用:高温高压的液态制冷剂经过膨胀阀的节流孔节流后,成为低温低压的雾状的液压制冷剂,为制冷剂的蒸发创造条件; 2)控制制冷剂的流量:进入蒸发器的液态制冷剂,经过蒸发器后,制冷剂由液态蒸发为气态,吸收热量,降低车内的温度。膨胀阀控制制冷剂的流量,保证蒸发器的出口完全为气态制冷剂,若流量过大,出口含有液态制冷剂,可能进入压缩机产生液击;若制冷剂流量过小,提前蒸发完毕,造成制冷不足; 2热力膨胀阀的种类: 热力膨胀阀按照平衡方式不同,分内平衡式和外平衡式;外平衡式热力膨胀阀分F型和H型两种结构型式。 1)内平衡式膨胀阀结构和工作原理: 内平衡式F型热力膨胀阀结构图。感温包内充注制冷剂,放置在蒸发器出口管道上,感温包和膜片上部通过毛细管相连,感受蒸发器出口制冷剂温度,膜片下面感受到的是蒸发器入口压力。如果空调负荷增加,液压制冷剂在蒸发器提前蒸发完毕,则蒸发器出口制冷剂温度将升高,膜片上压力增大,推动阀杆使膨胀阀开度增大,进入到蒸发器中的制冷剂流量增加,制冷量增大;如果空调负荷减小,则蒸发器出口制冷剂温度减小,以同样的作用原理使得阀开度减小,从而控制制冷剂的流量。 2)外平衡式膨胀阀结构和工作原理:

膜片下面感受到的是蒸发器出口压力。 外平衡式膨胀阀与平衡式膨胀阀原理基本相同,区别是: 内平衡式膨胀阀膜片下面感受到的是蒸发器入口压力;而外平衡式膨胀阀膜片下面感受到的是蒸发器出口压力。 3)H型膨胀阀 H型热力膨胀阀有四个接口与制冷系统连接,其中两个接口与普通热力膨胀阀相同,一个连接储液干燥器,一个连接蒸发器进口;另外两个接口,一个连接蒸发器出口,一个连接压缩机进口。感温包直接处在蒸发器出口的制冷剂气流中。该膨胀阀由于取消了F型热力膨胀阀中的感温包、毛细管和外平衡接管,提高了调节灵敏度,结构紧凑,抗振可靠。

电子膨胀阀控制系统原理,安装调试——丹弗斯

电子膨胀阀控制系统原理,安装调试 1, 电子膨胀阀系统原理 1.1 系统组成 ?电子膨胀阀阀体ETS ?控制器EKC312 ?压力传感器AKS33 ?温度传感器AKS11 1.2 各个部件的作用 ?电子膨胀阀,负责根据接受到的 脉冲信号控制膨胀阀开度,保证 适量的供液量和合适过热度。 ?压力传感器:负责检测蒸发压 力,并将蒸发压力值转变成4-20mA的电流信号。 ?温度传感器:可以根据温度的不同电阻值也不同。(温度和电阻值对照表参见附件 1)。 ?控制器:控制器是该系统的核心器件,作用类似于人体大脑。控制器可以接受压力传感器送来的4-20mA电流信号,和温度传感器的电阻值信号。根据这些信号,通过内部的计算发出脉冲信号来控制电子膨胀阀的开度,保证系统供液量和过热度。正常运转时,控制器显示系统的实际过热度。 1.3 系统工作原理 ?控制器采样压力传感器送来的4-20mA电流信号,和温度传感器的电阻值信号,计算出当前实际过热度; ?参考设定参数,计算出应当达到的要求过热度; ?根据实际过热度和要求过热度,结合控制器的参数设定,以一定的反映方式,来调节电子膨胀阀开度,使其尽量靠近要求过热度。 ?反复检测两个过热度之间的差异,逐步时事调整膨胀阀开度。 说明,在系统稳定的情况下尽量减小要求过热度,以提高系统效率。 2,电子膨胀阀系统调试 2.1系统安装 ?电子膨胀阀:安装之前必须参考丹佛斯电子膨胀 阀的安装指南,每一个电子膨胀阀包装那都有一 份安装指南。注意4个电线的颜色和对应连接。 ? ?控制器:按右图连接对应电线,尤其注意电源符 合要求(24V交流)。 ?压力传感器:按下图接线。压力传感器接线必须 牢固,压力接口最好在水平铜管的上方,以免杂

气动膨胀阀的工作原理

气动膨胀阀 一、概述 气动膨胀阀是依靠压缩空气实现紧 密密封的特殊阀门,适用于处理含气尘 体、磨琢性散装物料和浆体;气动膨胀阀 利用充压密封能穿过静止料柱、或流动的 料流,关闭并密封。 1、运行原理: 气动膨胀阀阀芯在密封圈松弛(非膨胀)状态下闭合于密封圈下方,在密封圈与阀芯间形成一定间隙(如图1)。受阀芯关闭动作的作用,并取决于料性,某些物料将穿过或进入该间隙。阀芯处于闭合位置后,高压空气或其它气体将进入密封圈背面与内圈间的空间,促使密封圈表面膨胀并环贴于阀芯表面(如图2)。密封圈将紧贴阀芯内陷颗粒物料,无论其粒径或形状如何。密封圈将在阀开启前松弛,重新形成一定间隙,随后阀芯运动至开启位置。密封圈是件松弛的部件,由密封圈座圈和通过螺栓装配到主阀体的另一侧阀体夹持到位,密封圈的拆卸检查十分简易。 图1(密封前) 图2(密封后) 2、为什么气力输送时选择使用气动膨胀阀: 因为其它阀在用于压力容器进料时都需另配阀截断物料流,以便下位阀能够密闭。若只用一台阀则将卡塞物料,无法密封。容器内通常还需安装水平料位计,探测料位,以确定上流阀关闭时间。气动膨胀阀则能截断密实的物料流,无需上位

截料阀。气动膨胀阀的全通道无阻碍进料非常连贯。这实现了压力容器的按时进料,压力罐无需水平料位计。 某些气动输送设备采用双蝶阀、碟阀(仍为硬密封)、滑板阀等阀。为减少 磨损延长寿命,阀的开关频次通常被限制在10~15 次/小时。这要求相应的发送罐体积较大。输送管道不变大发送罐较大,则流化设备和/或助推器就必不可少;否则管道将过载,并发生管堵。而气动膨胀阀在启闭时阀芯与密封圈之间保持一定的间隙,有效地减少了磨损,使阀的开关频次得以提高。 二、结构特点 1、全启式:气动膨胀阀为全通道阀门,可完全开启,因而阀开启时物料的流动也将顺畅无阻。其内部实际通道面积大于阀门的公称尺寸。 2、该阀采用冲气式密封圈,阀门启闭时,阀芯与密封圈之间无接触; 3、当阀门切换完成后,密封圈充气实现弹性变形进行密封; 4、该阀设有到位开关,并可将开关信号送入PLC,进行远程控制; 5、该阀采用气动执行器驱动,切换方便迅速,结构简单,维护方便; 6、阀芯为半球形,回转阻力小,阀芯与管道平滑过度,无曲率变化,从而减轻了介质对阀芯和阀体的磨损,延长了使用寿命; 7、可膨胀密封圈的特点: 1)密封性好:可膨胀密封圈的密封效果比硬尼龙密封的阀门更有效。可膨胀密封圈受压膨胀后将紧贴闭合的阀芯球体,密封圈表面可以内陷任何颗粒,从而防止由于压差的作用造成颗粒在密封面上的移动,物料不运动也就不会造成密封面的磨损。可膨胀密封圈在关断料流和压差工作环境中长时间运行后仍能保证不产生泄漏。2)具备磨损补偿:可膨胀密封圈受到密封压缩空气的 作用贴紧阀芯密封面。当密封圈表面受磨损或厚度变 小时,密封圈的膨胀作用可以提供更多的补偿量,而 不影响密封。 3)零接触:可膨胀密封圈在阀芯闭合和开启过程中都 不与其接触,而只在其完全闭合后才贴附到其表面, 如此减少磨损的可能性。 4)防渗漏:连续运行后的可膨胀密封圈仍能保证良好的密封性能。

液控单向阀的结构和工作原理

液控单向阀的结构和工作原理 单向阀、液控单向阀、SV/SL型液控单向阀、叠加式液控单向阀的结构和工作原理 单向阀又称止回阀或逆止阀。用于液压系统中防止油流反向流动。单向阀有直通式和直角式两种。如图15、图16所示。 SV和SL型液控单向阀都是座式阀,由液压开启,能给出反向流。 这种阀用来隔离局部压力回路,即作为在管子破裂时防止负载降落的保护,也可防止负载下爬。这种液控单向阀主要包括阀体(1)、主阀(2)、先导阀(3)、压缩弹簧(4)和控制活塞(5)。SV型阀(无泄油口)——泄漏油内部回油 由A口至B口始终可以流动。反方向上则导阀(3)和主阀(2)被压缩弹簧(4)和系统压力保持在阀座上。若X口供给压力油则控制活塞(5)被推向右。这首先打开导阀(3),然后打开主阀(2)。于是油液先通过导阀,然后通过主导阀。为了保证用控制活塞(5)能可靠地操纵,需要一定的最低控制压力,如图18。SL型阀(带泄油口)——泄漏油外部回油 在原理上,此阀与SV型有相同的功能。不同之处在于增加了泄油口Y,这就可使控制活(5)的环形面积与A口隔离。A口来的油压只作用在控制活塞(5)的面积A4上,从而有效地降低此条件下所需的控制压力,如图19。 Z2S型叠加式液控单向阀如图20、21、22、23所示

Z2S型单向阀是叠加式液控单向阀。它可用于关闭一个或两个工作油口,无泄漏持续时间长,稳定性好。 油液从A到A1或B到B1自由流通,反向则被截止。如果油流通过阀,例如从A到A1,压力油作用在阀芯(1)上,阀芯则向右运动并推动钢球(2)离开阀座。单向阀(3)被控制油打开时,油可从B1到B流通。压力在B1腔卸荷,单向阀(3)全部开启。为保证两个主单向阀在换向阀中位时能可靠的关闭,阀的A、B口与回油路连接。

电子膨胀阀控制系统原理 调试和故障诊断

电子膨胀阀控制系统原理,安装调试和故障诊断 1, 电子膨胀阀系统原理 1.1 系统组成 ?电子膨胀阀阀体ETS ?控制器EKC312,驱动器EKD316 ?压力传感器AKS33 ?温度传感器AKS11 1.2 各个部件的作用 ?电子膨胀阀,负责根据接受到的 脉冲信号控制膨胀阀开度,保证 适量的供液量和合适过热度。 ?压力传感器:负责检测蒸发压 力,并将蒸发压力值转变成4-20mA的电流信号。 ?温度传感器:可以根据温度的不同电阻值也不同。(温度和电阻值对照表参见附件 1)。 ?控制器:控制器是该系统的核心器件,作用类似于人体大脑。控制器可以接受压力传感器送来的4-20mA电流信号,和温度传感器的电阻值信号。根据这些信号,通过内部的计算发出脉冲信号来控制电子膨胀阀的开度,保证系统供液量和过热度。正常运转时,控制器显示系统的实际过热度。 ?驱动器:接受外部电压或电流信号,驱动电子膨胀阀运行。 1.3 系统工作原理 1.3.1 过热度控制 ?控制器采样压力传感器送来的4-20mA电流信号,和温度传感器的电阻值信号,计算出当前实际过热度; ?参考设定参数,计算出应当达到的要求过热度; ?根据实际过热度和要求过热度,结合控制器的参数设定,以一定的反映方式,来调节电子膨胀阀开度,使其尽量靠近要求过热度。 ?反复检测两个过热度之间的差异,逐步时事调整膨胀阀开度。 说明,在系统稳定的情况下尽量减小要求过热度,以提高系统效率。 1.3.2 外部信号控制 ?控制器型号:EKC312, EKD316; ?可接受信号类型: EKC312: 4-20mA EKD316: 0-20mA,4-20mA, 0-10V,1-5V(设置见附 件5)。 2,电子膨胀阀系统调试 2.1系统安装

外平衡热力膨胀阀的工作原理及安装检修方法

外平衡热力膨胀阀的工作原理及安装检修方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

外平衡热力膨胀阀的工作原理及安装检修方法热力膨胀阀是组成制冷装置的重要部件,是制冷系统中四个基本设备之一。它实现冷凝压力至蒸发压力的节流,同时控制制冷剂的流量;它的体积虽小,但作用巨大,它的工作好坏,直接决定整个系统的工作质量,以最佳的方式给蒸发器供液,保证蒸发器出口制冷剂蒸汽的过热度稳定,感温包必须与的吸气管良好的接触从而准确的感应压缩机的吸气温度,通常充注着与内部相同的制冷剂,从而实现通过感温包反馈回来的压力即是压缩机吸气温度对应的该种类型制冷剂的饱和压力,通过膨胀阀确保了在运行环境发生变化时(比如热负荷变化),实现蒸发器最优及最佳的供液方式,感温包的充注量只根据在某一特定的温度下完全感温包内液态制冷剂完全蒸发来进行修正的,这就等于给作用在膨胀阀膜片上方感温包反馈回来的压力规定了一个上限,因为如果管壁表面温度如果继续增高,只会增加感温包内部气态制冷剂的温度(处于过热状态),而压力基本上不再改变。热力膨胀阀是控制蒸发器出口气态制冷剂的过热度来控制进入蒸发器的制冷剂流量。按照平衡方式不同,膨胀阀分为外平衡式和内平衡式。在专用空调中,由于蒸发器有分路并采用莲蓬头分液器,压降比较大,造成蒸发器进出口温度各不相同。在这种情况下,使用内平衡式膨胀阀会因蒸发器出口温度过低而造成热力膨胀阀过度关闭,以至膨胀阀丧失对蒸发器的供液调节功能。所以专用空调均采用外平衡式膨胀阀,采用外平衡式可以避免膨胀阀过度关闭的情况,保证有压降的蒸发器也得到正常的供液。膨胀阀的结构如图一所示:热力膨胀阀由感应机构、执行机构、调整机构和阀体组成。感应机构中充注工质,感温包设置在蒸发器出口处。由于过热度的影响,其出口处温度与蒸发温度之间存在温差,通常称为过热度。感温包感受到蒸发器出口温度后,使整个感应系统处于对应的饱和压力Pb。 热力膨胀阀原理图

电子节流阀(膨胀阀)的工作原理

膨胀阀工作原理及正确维护 2010-03-11 19:31:47 来源:热泵热水器技术网浏览:1663次 内容提要:膨胀阀工作状况的好坏,直接决定专业空调运行状况的好坏。本文介绍了膨胀阀的工作原理,并对膨胀阀的运行进行了具体分析,从增大制冷量、节约能源的角度,提出要对膨胀阀进行定期检查和调整。 膨胀阀的合理维护 叶明哲 摘要膨胀阀工作状况的好坏,直接决定专业空调运行状况的好坏。本文介绍了膨胀阀的工作原理,并对膨胀阀的运行进行了具体分析,从增大制冷量、节约 能源的角度,提出要对膨胀阀进行定期检查和调整。 关键词膨胀阀MSS线匹配过热度 1.概述 热力膨胀阀是组成制冷装置的重要部件,是制冷系统中四个基本设备之一。它实现冷凝压力至蒸发压力的节流,同时控制制冷剂的流量;它的体积虽小,但作用巨大,它的工作好坏,直接决定整个系统的工作质量。但是在实际中,膨胀阀的运行情况往往被忽视,使膨胀阀成为空调运行与维护中的一个死角。而定期检查和调整膨胀阀,对空调的运行寿命,节约能源,降低运行成本,却有着重要的意义。 2.膨胀阀的工作过程分析 2.1.膨胀阀工作原理: 热力膨胀阀是控制蒸发器出口气态制冷剂的过热度来控制进入蒸发器的制冷剂流量。按照平衡方式不同,膨胀阀分为外平衡式和内平衡式。在专用空调空调中,由于蒸发器有分路并采用莲蓬头分液器,压降比较大,造成蒸发器进

出口温度各不相同。在这种情况下,使用内平衡式膨胀阀会因蒸发器出口温度过低而造成热力膨胀阀过度关闭,以至膨胀阀丧失对蒸发器的供液调节功能。所以专用空调均采用外平衡式膨胀阀,目前所使用的风冷式专用空调,如HIRO SS、STULZ、ISOVEL、AIREDELE和法亚均采用这种结构。采用外平衡式可以避免膨胀阀过度关闭的情况,保证有压降的蒸发器也得到正常的供液。膨胀阀的结构如图一所示:热力膨胀阀由感应机构、执行机构、调整机构和阀体组成。感应机构中充注氟利昂工质,感温包设置在蒸发器出口处。由于过热度的影响, 其出口处温度与蒸发温度之间存在温差,通常称为过热度。感温包感受到蒸发器出口温度后,使整个感应系统处于对应的饱和压力P b。如图一,该压力将通过膜片传给顶杆直到阀芯。在压力腔上部的膜片仅有P b存在,膜片的下方有调整弹簧的弹簧力P t和蒸发压力P0,三者处于平衡时有P b=P t+P o,当P b>P t+P o时,表示蒸发器热负荷偏大,出口过热度偏高,通过膜片到顶杆传递这一压力信号,使阀芯下移,膨胀阀开启变大,制冷剂流量按比例增加。反之,膨胀阀开启变小,制冷剂流量按比例减小。 2.2.膨胀阀的最佳“匹配” 专业空调的膨胀在出厂后,已经与蒸发器进行最佳“匹配”。“匹配”就是要求膨胀阀和蒸发器一起工作能够稳定运行的同时,产生最大的能量。每台蒸发

相关文档