文档库 最新最全的文档下载
当前位置:文档库 › 污泥厌氧消化沼气安全系统的设置及控制研究(新编版)

污泥厌氧消化沼气安全系统的设置及控制研究(新编版)

污泥厌氧消化沼气安全系统的设置及控制研究(新编版)
污泥厌氧消化沼气安全系统的设置及控制研究(新编版)

( 安全技术 )

单位:_________________________

姓名:_________________________

日期:_________________________

精品文档 / Word文档 / 文字可改

污泥厌氧消化沼气安全系统的设置及控制研究(新编版) Technical safety means that the pursuit of technology should also include ensuring that people

make mistakes

污泥厌氧消化沼气安全系统的设置及控制

研究(新编版)

污泥厌氧消化是一种使污泥达到稳定状态的非常有效的处理方法。污泥中的有机物厌氧消化后主要产物是消化气(沼气)。随着污泥中有机物成分以及消化工艺的不同,沼气的化学成分也各异,一般由60%~70%的甲烷、25%~40%的二氧化碳和少量的氮硫化物和硫化氢组成,燃烧热值约18800~25000kJ/m3[1]。大中型污水处理厂对消化产生的沼气进行回收利用,可以达到节约能耗、降低运行成本的目的。同时,空气中沼气含量达到一定浓度会具有毒性;沼气与空气以1∶(8.6~20.8)(体积比)混合时,如遇明火会引起爆炸[2]。因此,污水处理厂沼气利用系统如果设计操作不当将会有很大的危险。北京市市政工程设计研究总院在1992年~1996年先后完成了南部非洲博茨瓦纳污水处理厂工程、高碑店污水处理厂一期工程和二期工程

污泥中温厌氧消化处理系统和相应的沼气收集利用系统的设计。本文旨在综合以上三个沼气利用系统设计的基础上,着重从污泥厌氧消化沼气系统的安全设置及工艺控制方面进行论述。

污泥厌氧消化沼气利用工艺流程由图1可知污泥消化沼气系统一般分为4个子系统:沼气收集净化贮存系统、沼气搅拌系统、沼气利用系统和废气燃烧系统。下面对沼气安全系统的硬件(沼气系统工艺流程设计及安全装置)设置及软件(沼气系统压力的设计及构筑物、设备间的连锁控制)进行阐述。2沼气系统工艺流程设计及安全装置的设置2

1沼气净化污泥消化产生的沼气是处于汽水饱和态的混合气。

沼气自消化池进入管道时,温度逐渐降低,管道中会产生大量含杂质的冷凝水,如果不从系统中除去,容易堵塞、破坏管道设备。同时沼气中的h2s气体溶于水形成的氢硫酸会腐蚀管道和毁坏设备。沼气净化主要是脱硫和去除冷凝水及杂质[3]。沼气自消化池进入管道时,在最靠近消化池的国内应用较多的是同济大学及武汉东湖水厂的产品,因本工程目的之一是为第四水厂做试验,所以两格分别采

用了两家产品,都取得了良好的效果。

此外,前序网格反应池的设计也取得了成功,因气浮的原理与沉淀恰恰相反,所以对矾花的要求不是很高,只要形成能够与微气泡相粘附的中小矾花即可。于是我们适当缩短了反应时间,采用的时间仅为9min,同时也调整了絮凝剂的投加量,降低了药耗。

这次龙山水厂气浮工艺的成功应用,使我们对处理水库水、低浊水又有了新的认识,同时我们还在对是否可用出厂压力水取代回流水泵,降低能耗,水流由接触室流往分离区流速多大更合适等问题做进一步的探讨,愿经过试验分析,实践总结,使气浮工艺更加成熟地应用于自来水生产。

位置,温降值最大,产生的冷凝水量多,在此点必须设置冷凝水去除罐。在沼气管路系统中,在避免沼气流速过大而夹带水汽的前提下,管道坡度应设计为1%~2%或尽可能更大。在博茨瓦纳污水处理厂运行中发现,个别坡度为0.005左右的管道管壁容易积冷凝水。较长的管线应特别考虑设计成有一定的起伏,在所有低点都应该考虑设置冷凝水去除罐。另外,在重要设备如沼气压缩机、沼气锅炉、沼

气发电机、废气燃烧器、脱硫塔等设备沼气管线入口处,在干式气柜的进口处和湿式气柜的进出口处都设置冷凝水去除罐。有时在某些设备如有密封水系统的沼气压缩机出口处还需要设置装有高压排水阀的去除罐。正常运行期间操作人员每天检查时,都会发现一些去除器(特别是靠近消化池的)有大量的冷凝水排出。当构筑物和设备检修时,还可以向冷凝水去除器中注水,作为水封罐。

沼气中的杂质一部分随排除冷凝水去除,另一部分被阻留在消焰器填料间缝隙里的杂质也随定期清洗消焰器而被清除,如果沼气利用设备有特殊要求,还应在沼气进入设备前设置气体过滤器为防止氢硫酸腐蚀管道和毁坏设备,城市污水厂污泥产生的沼气进入贮气柜之前一般应该设置脱硫装置。城市污水处理厂沼气脱硫装置一般采用氧化铁的干法脱硫和naoh,na2co3的湿法脱硫。

2.2沼气安全利用

2.2.1防爆保护和火焰消除

沼气与空气在一定的混合比和遭遇明火情况下会引起沼气爆炸或燃烧。

城市污泥厌氧消化处理技术

城市污泥厌氧消化处理技术 彭光霞李彩斌王立宁张晓慧 (北京中持绿色能源环境技术有限公司北京100192) 摘要:随着我国城镇污水处理厂建设的推进,城市脱水污泥的处理处置问题越来越凸显出来。目前我国多数城市污水处理厂多采用浓缩、脱水后外运填埋或作农肥。城市污泥中的生物质能没得到充分利用,造成了资源、能源的浪费。污泥厌氧消化技术作为污泥处理处置的处理工艺,可以实现减量化、稳定化、无害化和资源化,可与多种工艺相结合,为现有污水厂污泥处理处置提供了很好的方向。 关键词:污泥处理处置、厌氧消化、分级分相、土地利用、资源化 1 概述 污泥厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。 污泥经厌氧消化后,体积大大减少,脱水性能大大提高,可实现污泥的减量化和稳定化;污泥在消化过程中,产生的甲烷菌具有很强的抗菌作用,可杀死大部分病原菌以及其它有害微生物,使污泥卫生化。同时,污泥厌氧消化产生大量的清洁能源--沼气,可用作锅炉燃料、直接驱动鼓风机、沼气发电提供污水处理厂的部分用电量、沼气提纯并网、沼气提纯用作汽车燃料等。 1.1 污泥厌氧处理技术原理 厌氧消化是利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥中有机物质的一种污泥处理工艺。消化过程中可回收能源,但消化后的污泥含水率较高,仍需进一步脱水。厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。 污泥厌氧消化是一个由多种细菌参与的多阶段生化反应过程,每一反应阶段都以某类细菌为主,其产物供下一阶段的细菌利用。厌氧降解过程的化学、生物化学和微生物学相发复杂,但是可以综合三阶段理论[2]:1)水解阶段;2)产酸阶段;3)产甲烷阶段。

污水处理厂污泥厌氧消化工艺选择与设计要点概要

污水处理厂污泥厌氧消化工艺选择与设计要点陈怡 (北京市市政工程设计研究总院 , 北京 100082 摘要以北京市小红门污水处理厂和西安市第五污水处理厂为例 , 对污水处理厂污泥厌氧消化工艺选择和设计要点进行了详细论述 , 包括污泥厌氧消化工艺选择、进泥预处理、厌氧消化池、沼气系统、上清液处理和污泥输送管路等 , 以保证污水处理厂污泥厌氧消化工艺的顺利实施。 关键词污水处理厂污泥厌氧消化工艺选择污泥投配污泥搅拌沼气系统 K e y p o i n t s o f t h e p r o c e s s s e l e c t i o n a n d d e s i g n o f t h e s l u d g e a n a e r o b i c d i g e s t i o n i n w a s t e w a t e r t r e a t m e n t p l a n t C h e n Y i (B e i j i n g G e n e r a l M u n i c i p a l E n g i n e e r i n g D e s i g n a n d R e s e a r c h I n s t i t u t e , B e i j i n g 100082, C h i n a A b s t r a c t :T a k i n g t h e B e i j i n g X i a o h o n g m e n W a s t e w a t e r T r e a t m e n t P l a n t a n d X i ’ a n F i f t h W a s t e w a t e r T r e a t m e n t P l a n t a s e x a m p l e , t h i s p a p e r d e s c r i b e d t h e k e y p o i n t s o f t h e p r o c e s s s e l e c -t i o n a n d d e s i g n o f t h e s l u d g e a n a e r o b i c d i g e s t i o n i n t h e w a s t e w a t e r t r e a t m e n t p l a n t , i n c l u d i n g s l u d g e a n a e r o b i c d i g e s t i o n p r o c e s s s e l e c t i o n , s l u d g e p r e -t r e a t m e n t , a n a e r o b i c d i g e s t i o n t a n k , m e t h -a n e s y s t e m , u p -l e v e l c l e a n l i q u i d t r e a t m e n t , a n d s l u d g e t r a n s m i s s i o n p i p

详细运行数据对比污泥热水解厌氧消化与常规厌氧消化

详细运行数据对比污泥热水解厌氧消化与常规厌氧消化 热水解厌氧消化是近年来污泥处理的一个新的发展方向。选取小红门污泥处理中心工程运行数据,比较了热水解厌氧消化与常规厌氧消化的操作操作、泥质土壤、消化效果、气体产生量、沼气组成等;以及辅助系统。分析了工程运行中的负荷和余热利用问题,总结了热水解厌氧消化的运行特点,并提出了建议和进一步的优化方向。 1 工程基本情况 热水水解厌氧消化是近年来国内外污泥处理技术的一个新的应用方向。美国华盛顿特区蓝原污水处理厂、英国泰晤士河Davyhulme项目、北京小红门、高碑店、淮坊、高安屯、清河二期污泥处理中心等项目均采用热水厌氧消化技术。其中,华盛顿特区的蓝原污水处理厂、北京的小红门、高碑店污泥处理中心等项目,都是对现有污泥区的改造。本文以国内最早的热水消化厌氧消化小红门污泥处理中心工程(以下简称小红门工程)为例,通过对改造前后消化系统运行情况的比较,分析总结了热水水解厌氧消化与常规厌氧消化的区别和特点。 小红门污泥水热厌氧消化工程位于小红门污水处理厂东北部。污水处理厂建设规模为60万m/d(Kz=1.3),峰值流量78万m/d,污泥处理系统由5个蛋形消化池、3个沼气池、2个干脱硫塔、1个湿脱硫装置、1个沼气室和2台废气燃烧器组成。其中,5个消化池均为蛋形主要消化池,每池容量为12000立方米。

小红门项目于2008年11月12日首次投入使用。生产的沼气用于驱动鼓风机和冬季加热,多余的沼气通过废气燃烧器燃烧。2015年9月,该系统关闭,热水解厌氧消化项目的升级开始。转化内容是增加热水解预处理装置,热水解采用Cambi技术,蒸煮器仍然使用原来的蒸煮器。2016年4月,转型完成后,消化系统(消化池操作次数减少到4个消化池)重新启动。2016年7月18日,随着热水解系统开始投入使用,将常规厌氧消化调整为热水解厌氧消化。2017年3月9日,该系统开始处理外部污泥。 表1为2012年(改造前常规厌氧消化的代表)和2017年(改造后热水水解厌氧消化的代表)污水处理厂进水水质、水量和消化系统。

不同预处理方法对剩余污泥厌氧消化产沼气过程的影响

第28卷第1期2009年1月 食品与生物技术学报Journal of Food Science and Biotechnology Vol.28 No.1Jan. 2009  文章编号:167321689(2009)0120107206 收稿日期:2007212229 基金项目:江苏省高技术研究项目(D G 2006044);江苏省自然科学基金项目(B K2006023)。 3通讯作者:阮文权(19662),男,上海人,教授,工学博士,主要研究环境厌氧生物技术。Email :wqruan @https://www.wendangku.net/doc/e63064753.html, 不同预处理方法对剩余污泥厌氧消化 产沼气过程的影响 高瑞丽1, 严群1,2, 邹华1,2, 阮文权31,2 (1.江南大学工业生物技术教育部重点实验室,江苏无锡214122;2.江南大学环境与土木工程 学院,江苏无锡214122) 摘 要:研究了不同预处理方法对剩余污泥固态法厌氧消化产沼气过程的影响。结果表明:不同的预处理方法均可不同程度地提高产气量和甲烷含量。其中,经酶法处理后,剩余污泥前4h 产气速率最快,平均每小时为3129mL/g ;经热处理后,剩余污泥累积产气量最多,为45180mL/g ,比对照提高了230%;而经微波处理后,剩余污泥所产沼气中甲烷质量分数最高,为62126%,比对照增加了130%。 关键词:剩余污泥;厌氧消化;预处理;甲烷中图分类号:X 703;X 705文献标识码:A E ffects of Different Pretreatment of W aste Activated Sludge on Methane Production via Anaerobic Digestion GAO Rui 2li 1 , YAN Qun 1,2 , ZOU Hua 1,2 , RUAN Wen 2quan 1,23 (1.Key Laboratory of Industrial Biotechnology ,Ministry of Education ,Jiangnan University ,Wuxi 214122,China ;21School of Environment and Civil Engineering ,Jiangnan University ,Wuxi 214122,China ) Abstract :In t his manuscript ,effect s of different p ret reat ment met hods on t he met hane p roduction by waste activated sludge were caref ully investigated.It was found t hat :(1)by t reated wit h alkali p rotease ,t he specific rate of gas achieved at t he highest value (3129mL/g vs/h );(2)by t hermally t reated in an autoclave ,t he gas production was 4518mL/g ,higher 230%t han t hat of t he cont rol ;(3)by t reated by microwave irradiation ,t he met hane content was increased to 62126%,higher 130%t han t hat of t he control. K ey w ords :waste activated sludge ,anaerobic digestio n ,p ret reat ment ,met hane 随着国民经济的不断发展,我国城镇工业废水以及生活污水排放量不断增加。为了防止水域污染,改善生态环境,截止到2004年底,我国已建成城市污水处理厂708座,日处理能力达71387×107 m 3。在污水处理过程中,一般会产生占污水体积0102%的污泥,因而数量巨大,目前已成为亟待处 理的城市固体废物之一[1]。目前国内外对污泥厌氧 消化的研究多集中于采用剩余污泥或初沉污泥和剩

我国城市污水厂污泥厌氧消化系统的运行现状

我国城市污水厂污泥厌氧消化系统的运行现状 吴 静, 姜 洁, 周红明, 毕 蕾 (清华大学环境模拟与污染控制国家重点联合实验室,北京100084) 摘 要: 对我国400余座城市污水厂污泥处理工艺的调查表明,目前采用污泥厌氧消化工艺的仅46家,主要采用浓缩/中温厌氧/脱水工艺,采用一级厌氧消化和二级厌氧消化的厂家数量接近,其中仅25家的污泥消化系统正在运行,沼气产量约为14×104m3/d,另有6家在调试。污泥厌氧消化工艺在实际应用中仍存在着较多亟待解决的问题,沼气产率低和利用率不高大大削弱了该工艺的优势。 关键词: 城市污水厂; 污泥处理; 厌氧消化; 沼气 中图分类号:X703.1 文献标识码:B 文章编号:1000-4602(2008)22-0021-04 C u r r e n t O p e r a t i o nS t a t u s o f S l u d g e A n a e r o b i c D i g e s t i o n S y s t e m i n Mu n i c i p a l Wa s t e w a t e r T r e a t m e n t P l a n t s i nC h i n a WUJ i n g, J I A N GJ i e, Z H O UH o n g-m i n g, B I L e i (S t a t e K e y J o i n t L a b o r a t o r y o f E n v i r o n m e n t S i m u l a t i o n a n d P o l l u t i o n C o n t r o l,T s i n g h u a U n i v e r s i t y,B e i j i n g100084,C h i n a) A b s t r a c t: T h er e s u l t so f t h ei n v e s t i g a t i o n o n s l u d g e t r e a t m e n t s y s t e m so v e r400m u n i c i p a l w a s t e w a t e r t r e a t m e n t p l a n t s i n C h i n a s h o wt h a t o n l y a b o u t46p l a n t s h a v e s l u d g e a n a e r o b i c d i g e s t i o n s y s-t e m s,m o s t o f w h i c h a d o p t t h i c k e n i n g/m e s o p h i l i c a n a e r o b i c d i g e s t i o n/d e w a t e r i n g p r o c e s s.A b o u t h a l f o f t h e p l a n t s h a v e o n e-s t a g e a n a e r o b i c d i g e s t i o n s y s t e m s a n d t h e o t h e r h a l f h a v e t w o-s t a g e a n a e r o b i c d i g e s-t i o n s y s t e m s.F o r t h e46p l a n t s,o n l y25p l a n t s o p e r a t e t h e i r a n a e r o b i c d i g e s t i o n s y s t e m s a n d p r o d u c e a- b o u t14×104m3b i o g a s/d,t h e o t h e r6p l a n t s c o m m i s s i o n t h e i r s y s t e m s.T h e r e a r e s o m e u r g e n t p r o b l e m s f o r t h e s l u d g e a n a e r o b i c d i g e s t i o n.T h e l o wb i o g a s y i e l d a n d u t i l i z a t i o n r a t e c o u n t e r a c t s o m e a d v a n t a g e s o f t h e s l u d g e a n a e r o b i c d i g e s t i o n. K e y w o r d s: m u n i c i p a l w a s t e w a t e r t r e a t m e n t p l a n t; s l u d g e t r e a t m e n t; a n a e r o b i c d i g e s t i o n;  b i o g a s 随着我国国民经济的高速发展以及城市化进程的不断加快,城镇生活污水量也大幅增加,并在1999年首次超过工业废水排放量,占全国污水排放总量的52.9%[1]。近年来,城镇生活污水量以年均5%的速度递增,已成为我国水环境的主要污染源。我国城市污水处理率长期偏低,直至20世纪90年代以后,城市污水处理的基础设施建设才被提到日程,全国城市污水处理厂数量迅速增加。2006年城市生活污水处理率达到43.8%[2]。根据国家环境保护“十五”计划,到2010年所有城市的污水处理率不得低于60%,直辖市、省会城市、计划单列市和风景旅游城市的污水处理率不得低于70%。故在今后一段时期,城市污水厂数量仍将持续增加。 伴随城市污水厂的兴建,大量城市污泥产生。2003年我国的城市污泥(干泥)产量估计达到160×104t。城市污泥主要由沉砂池和初沉池产生的初沉污泥(含水率为96%左右)以及好氧生物处理单元产生的剩余污泥(含水率为99.2%~99.6%)组 第24卷 第22期2008年11月 中国给水排水 C H I N AWA T E R&W A S T E WA T E R V o l.24N o.22 N o v.2008

污泥厌氧消化的方法和特点

污泥厌氧消化的方法是什么?污泥厌氧消化的阶段有哪些?污泥厌氧消化的特点是什么?污泥厌氧消化在无氧条件下,污泥中的有机物由厌氧微生物进行降解和稳定的过程称为厌氧消化。 污泥中的有机物含量很高,采用好氧法能耗太大,一般采用厌氧消化法:即在无氧的条件下,由兼性菌及专性厌氧细菌降解有机物,最终产物是二氧化碳和甲烷气(或称污泥气、消化气),使污泥得到稳定。所以污泥厌氧消化过程也称为污泥生物稳定过程。污泥厌氧消化是一个极其复杂的过程,多年来厌氧消化被概括为两阶段过程,第一阶段是酸性发酵阶段,有机物在产酸细菌的作用下,分解成脂肪酸及其他产物,并合成新细胞;第二阶段是甲烷发酵阶段,脂肪酸在专性厌氧菌——产甲烷菌的作用下转化成CH4和CO2。1979年,伯力特(Bryant)等人根据微生物的生理种群,提出了厌氧消化三阶段理论,是当前较为公认的理论模式。三阶段消化突出了产氢产乙酸细菌的作用,并把其独立地划分为一个阶段。三阶段消化的第一阶段,是在水解与发酵细菌作用下,使碳水化合物,蛋白质与脂肪水解与发酵转化成由糖、氨基酸、脂肪酸,甘油及二氧化碳、氢等;第二阶段,是在产氢产乙酸菌的作用下,把第一阶段的产物转化成氢、二氧化碳和乙酸。第三阶段,是通过两组生理上不同的产甲烷菌的作用,一组把氢和二氧化碳转化成甲烷,另一组是对乙酸脱羟产生甲烷。 影响污泥消化的主要有以下因素:l)温度:温度影响消化速度,也影响消化深度。温度为5-15℃称低温消化,30-35℃称中温消化,50-55℃称高温消化。高温消化几乎可以杀灭一切病原微生物,但操作管理复杂,加热费用高;中温消化只能杀灭部分病原微生物,低温消化效率很低,所以一般采取中温消化。2)投配率:即每天投入消化池内的生污泥量与池内熟污泥量的百分率。投配率的大小影响池内污泥的PH值和消化速率。投配率小污泥消化速度快而充分,产气量高,但要加大池体积;投配率大,消化速度慢,PH值降低,抑制甲烷细菌的生长,破坏正常的消化过程。一般对于生活污水或水质近似的工业废水, 投配率率以6-12%为宜。3)生熟污泥的混合程度:混合充分,可加速消化过程,提高产气量,因此需要搅拌。4)厌氧条件:甲烷菌是厌氧性微生物,因此要求消化池密封,隔绝空气。以上是绿环(煤质柱状活性炭生产厂家)为您介绍的关于水处理方面的知识,如有疑问,欢迎联系!

污泥亚临界热水解新技术

最新的污泥处理处置技术 RRS?亚临界热水解技术 RRS?亚临界热水解技术(又称RRS蒸汽热解技术)是针对污泥资源化处理而开发的新一代的热水解技术。该技术突破了传统热水解技术只能处理低含固污泥(即含固率不能高于10%或含水率必须高于90%)的限制,可直接处理(无需预先浆化调质)任何含固率(或含水率)的污泥。RRS?技术通过饱和蒸汽与污泥的热水解反应,破坏污泥的胶状絮体持水结构,将机械方式难以去除的“结合水”释放出来,转化为可通过机械方式脱除的“自由水”,从而实现污泥的无相变脱水,大幅度降低污泥脱水能耗和处理成本,在确保经济可行的前提下,实现污泥的减量化、无害化和稳定化。除此之外,RRS?技术还适用于厨余及餐厨垃圾、禽畜粪便及尸体、食品废弃物、园林废弃物等各种有机废弃物的资源化处理。 RRS?亚临界热水解技术主工艺流程 RRS?亚临界热水解技术应用方案(图) 技术优势与特点 Ω克服含固率局限,处理效率高 RRS?技术克服了传统热水解技术污泥含固率不能高于10%的局限,可直接处理(无需预先浆化调质)含固超过20%(即含水率低于80%)的污泥,效率较传统技术高出1倍以上。

Ω不添加化学药剂,环保、安全 RRS?工艺全过程不添加任何化学药剂,杜绝二次污染风险;同时,全流程封闭运行+高效多级生化除臭系统,确保全流程环保、安全。 Ω占地少,实现源头治污 RRS?系统处理每吨污泥占地只需8平方米,能直接安装于污水厂内,免除征地选址烦恼,实现源头治污,彻底消除污泥转运的二次污染隐患,大幅节省运输成本超过70%。 Ω无相变脱水,节能效果显著 RRS?技术通过原理的创新,实现无相变脱水,大幅降低脱水能耗,较热干化技术节能50%以上。 RRS?技术与热干化脱水能耗比较示意图 Ω真正实现污泥处理处置“四化”目标 ?无害化:高温蒸汽将污泥中的病原体、害虫卵等全部杀灭;通过水解蛋白 与重金属的络合反应和螯合反应消除重金属毒性; ?减量化:经RRS?技术处理,污泥减量化超过80%; ?稳定化和资源化:RRS?技术处理过程不添加任何化学药剂,全部产物均可 资源化利用,且安全、稳定。 Ω技术适用性广,建设周期短 RRS?技术适用于各种成分和含水率的污泥、厨余及餐厨垃圾、禽畜粪便及尸

厌氧微生物的培养驯化及成熟污泥的特征

厌氧微生物的培养驯化及成熟污泥的特征 The final edition was revised on December 14th, 2020.

厌氧消化系统试运行的一个主要任务是培养厌氧污泥,即消化污泥。厌氧活性污泥培养的主要目的是厌氧消化所需要的甲烷细菌和产酸菌,当两种菌种达到动态平衡时,有机质才会被不断地转换为甲烷气,即厌氧沼气。 (一)培菌前的准备工作 厌氧消化的启动,就是完成厌氧活性污泥的培养或甲烷菌的培养。当厌氧消化池经过满水试验和气密性试验后,便可开始甲烷菌的培养。 (二)培菌方法 污泥的厌氧消化中,甲烷细菌的培养与驯化方法主要有两种:和。 接种污泥一般取自正在运行的厌氧处理装置,尤其是城市污水处理厂的消化污泥,当液态消化污泥运输不便时,可用污水厂经机械脱水后的干污泥。在厌氧消化污泥来源缺乏的地方,可从废坑塘中取腐化的有机底泥,或以认粪、牛粪、猪粪、酒糟或初沉池底泥代替。大型污水处理厂,若同时启动所需接种量太大,可分组分别启动。 是向厌氧消化装置中投入容积为总容积的10%~30%的厌氧菌种污泥。接种污泥一般为含固率为3%~5%的湿污泥。再加入新鲜污泥至设计液面,然后通入蒸汽加热,升温速度保持1℃/h,直至达到消化温度。如污泥呈酸性,可人工加碱调整pH至~。维持消化温度,稳定一段时间(3-5d)后,污泥即可成熟。再投配新鲜污泥并转入正式运行。此法适用于小型消化池,因为对于大型消化池,要使升温速度为1℃ /h,需热量较大,锅炉供应不上。

指向厌氧消化池内逐步投入生泥,使生污泥自行逐渐转化为厌氧活性污泥的过程。该方法要使活性污泥经历一个由好氧向厌氧的转变过程,加之厌氧微生物的生长速率比好氧微生物低很多,因此培养过程很慢,一般需历时6~10个月左右,才能完成甲烷菌的培养。 或者通过加热的方法加速污泥的成熟:将每日产生的新鲜污泥投入消化池,待池内的污泥量为一定数量时,通入蒸汽。升温速度控制在1℃/h。当池内温度升到预定温度时,可减少蒸汽量,保持温度不变,并逐日投加一定数量的新鲜污泥,直至达到设计液面时停止加泥。整个成熟过程一直维持恒温,成熟时间约需30~40d。污泥成熟后,即可投配新鲜污泥并转入正式运行。 (三)培菌注意事项 厌氧消化系统的处理主要对象是活性污泥,不存在毒性问题。但是厌氧消化菌繁殖速度太慢,为加快培养启动过程,除投入接种污泥以外,还应做好厌氧污泥的加热。 厌氧消化污泥的培养,初期生污泥投加量与接种污泥的数量及培养时间有关,早期可按设计污泥量的30%~50%投加,到培养经历了60d 左右,可逐渐增加投加量。若从监测结果发现消化不正常时,应减少投泥量。 厌氧消化系统处理城市污水处理厂的活性污泥,由于活性污泥中碳、氮、磷等营养是均衡的,能够适应厌氧微生物生长繁殖的需要。因此,即使在厌氧消化污泥培养的初期也不需要和处理工业废水那样,加入营养物质。

污泥厌氧消化简介

简介: 污泥厌氧消化是指污泥在无氧条件下,由兼性菌和厌氧细菌将污泥中的可生物降解的有机物分解成二氧化碳、甲烷和水等,使污泥得到稳定的过程,是污泥减量化、稳定化的常用手段之一。 机理: 污泥厌氧消化是一个多阶段的复杂过程,完成整个消化过程,需要经过三个阶段(目前公认的),即水解、酸化阶段,乙酸化阶段,甲烷化阶段。各阶段之间既相互联系又相互影响,各个阶段都有各自特色微生物群体。 水解酸化阶段: 一般水解过程发生在污泥厌氧消化初始阶段,污泥中的非水溶性高分子有机物,如碳水化合物、蛋白质、脂肪、纤维素等在微生物水解酶的作用下水解成溶解性的物质。水解后的物质在兼性菌和厌氧菌的作用下,转化成短链脂肪酸,如乙酸、丙酸、丁酸等,还有乙醇、二氧化碳。 乙酸化阶段: 在该阶段主要是乙酸菌将水解酸化产物,有机物、乙醇等转变为乙酸。该过程中乙酸菌和甲烷菌是共生的。 甲烷化阶段: 甲烷化阶段发生在污泥厌氧消化后期,在这一过程中,甲烷菌将乙酸(CH3COOH)和H2、CO2分别转化为甲烷,如下: 2CH3COOH→2CH4↑+ 2CO2↑ 4H2+CO2→CH4+ 2H2O 在整个厌氧消化过程中,由乙酸产生的甲烷约占总量的2/3,由CO2和H2转化的甲烷约占总量的1/3。 影响因素: 温度: 在污泥厌氧消化过程中,温度对有机物负荷和产气量有明显影响。根据微生物对温度的适应性,可将污泥厌氧消化分为中温(一般30~36℃)厌氧消化和高温(一般50~55℃)厌氧消化。研究表明,在污泥厌氧消化过程中,温度发生±3℃变化时,就会抑制污泥消化速度;温度发生±5℃变化时,就会突然停止产气,使有机酸发生大量积累而破坏厌氧消化。 酸碱度: 研究表明,污泥厌氧消化系统中,各种细菌在适应的酸碱度范围内,只允许在中性附件波动。微生物对pH的变化非常敏感。水解与发酵菌及产氢、产乙酸菌适应的pH范围为5.0~6.5,甲烷菌适应的pH范围为6.6~7.5。如果水解酸化和乙酸化过程的反应速度超过甲烷化过程速度,pH就会降低,从而影响产甲烷菌的生活环境,进而影响污泥厌氧消化效果,然而,由于消化液的缓冲作用,在一定范围内避免这种情况的发生。 消化液是污泥厌氧消化过程血红有机物分解而产生的,其中含有除了CO2和NH3外,还有以NH4NCO3形态的NH4+,HCO3-和H2CO3形成缓冲体系,平衡小范围的酸碱波动。如下:H+ + HCO3- ═H2CO3 有毒物质浓度: 在污泥厌氧消化中,每一种所谓有毒物质是具有促进还是抑制甲烷菌生长的作用,关键在于它们的毒阈浓度。低于毒阈浓度,对甲烷菌生长有促进作用;在毒阈浓度范围内,有中等抑制作用,随浓度逐渐增加,甲烷菌可被驯化;超过毒阈上限。则对微生物生长具有强烈的抑制作用。 污泥厌氧消化分类:

污泥厌氧消化系统

污泥厌氧消化系统 1 引言 随着城市规模的扩大和污水处理厂处理效率的提高,剩余污泥产量逐年增加.据统计,我国城市污泥年产量已达3000万吨(以80%含水率计),其中80%未得到妥善处理.在众多的污泥处理方法中,厌氧消化技术能够同时实现污泥减量和回收能源,在国内外得到了广泛应用.然而,目前污泥厌氧消化的效率不高,尤其是我国污水处理厂厌氧消化池的运行效果不够理想,设计和运行缺乏理论指导.对于一个厌氧消化系统,物料的流变特性是工艺设计和运行中的重要参数,对传质、传热、搅拌和物料输送等厌氧消化单元有重要意义.在厌氧消化过程单元设计中,必须清楚原料的流体类型,计算出原料的流变参数,才能对厌氧消化、特别是高浓度物料厌氧消化进行合理的工艺设计以及设备选用与开发.此外,原料的流变特性也是厌氧消化工艺控制的重要依据. 由于流变特性在厌氧消化工艺设计和运行中的重要作用,一些学者对污泥的流变特性做了初步研究.Pollice和Laera研究了在不同水力停留时间下污泥以黏度表征的流变特性.Chen和Hashimoto对新鲜污泥的流变特性进行了研究,试验的浓度变化范围是2.71%~6.53%,温度变化范围为 9.5~26 ℃,这个较低的浓度和温度变化范围不能适应如今广泛使用的中高温(>35 ℃)、高浓度(>8%)厌氧消化.Sozanski 等用旋转流变仪对污泥进行流变试验研究,对流变曲线进行分析,设计了流变模型,并针对模型给出了经验公式和一些预测参数值来探讨污泥在不同浓度和温度下的流变特性.Bos使用毛细管流变仪和旋转流变仪对污泥流变特性进行试验研究,建立了温度和含水率对污泥流变特性影响的流变方程. 目前,关于污泥厌氧消化原料流变特性的研究主要集中在污泥本身,而对于餐厨垃圾与污泥混合物料的流变特性研究,国内外却鲜有报道.近年来,国内外采用餐厨垃圾与污泥联合厌氧发酵的研究及沼气工程日益增多,大部分研究都集中在餐厨垃圾对泥质的改善方面,而对于添加餐厨垃圾对污泥流变特性的影响研究却很少,导致混合发酵原料流变特性参数仍然缺乏,制约了厌氧消化单元过程的优化设计. 本文对4种主要的厌氧消化原料——脱水污泥、脱水污泥与餐厨垃圾混合物、剩余污泥以及剩余污泥与餐厨垃圾混合物的流变特性进行了研究,考察了物料浓度和温度对流变特性参数的影响,并拟合了相应模型,以期为厌氧消化设备选用及工艺设计提供基础参数. 2 材料和方法 2.1 试验材料 脱水污泥(dewatered sludge,以下简称DS)和剩余污泥(waste activated sludge,以下简称WAS)取自天津市张贵庄污水处理厂,餐厨垃圾取自天津大学学生食堂,原料取回后保存于4 ℃冰箱冷藏待用,餐厨垃圾首先经人工分选出其中的杂物,包括塑料、纸类及骨头等,然后用破碎机破碎后搅匀冷藏.DS的总固体浓度(TS)和挥发性固体浓度(VS)分别为16.4%和9.4%,WAS的TS 和VS浓度分别为2.6%和1.4%,破碎后餐厨垃圾的TS和VS浓度分别为19.3%和18.9%. 2.2 试验方法

污泥厌氧消化池设计说明书

课程设计 课程名称_固体废物利用与处置B课程设计_ 题目名称_ 260m3/d污泥厌氧消化池设计 学生学院_ _ 环境科学与工程__ _ 专业班级_ _ 环境科09级(2)班__ _ 学号 28 学生姓名_________余笃凝 ___ _____ 指导教师_________戴文灿 ___ ____ 2012 年 6 月 25 日

摘要 厌氧消化或称厌氧发酵是一种普遍存在于自然界的微生物过程。厌氧消化处理是指在厌氧状态下利用厌氧微生物使固体废物中的有机物转化为CH4和CO2的过程。厌氧消化池多用于大型污水处理场的脱水剩余污泥的厌氧处理,也可用以处理高浓度有机工业废水、悬浮固体含量较高和颗粒较大的有机废水、含难降解有机物的工业废水,也以被成功地应用于肉类食品工业废水的处理。厌氧发酵反应与固液分离在同一个池内进行,结构较为简单。此次课程设计要求我们在给定参数下设计日处理量为260m3 的中温定容式污泥厌氧消化池。 关键词:固体废物厌氧消化微生物有机物

Abstract Anaerobic digestion(some says anaerobic fermentation)is a kind of microbial process which commonly finds in nature area. Anaerobic digestion treatment means that use anaerobic microbe in order to make organic matter from solid waste into CH4 and CO2 process in anaerobic digestion pools usually used in large sewage farm to treats dewatering surplus sludge anaerobicly,it also can be used to deal with high concentration of organic industrial waste water, higher content of suspended solid and the larger particle organic wastewater, including refractory organics industrial wastewater, what’s more,it can applied successfully in the meat food industrial wastewater treatment. Anaerobic fermentation reaction and solid-liquid separation are react in the same pool so the structure is simple. The course design require us to design the steady increases type of sludge anaerobic digestion pool which capacity of 260 m3 under the given parameters. Keywords: solid waste anaerobic digestion microbial organic

热水解-高温厌氧消化工艺处理污泥的方法

热水解-高温厌氧消化工艺处理污泥的方法 2011年我国污泥产量约2188万t,预估到2015年我国污泥产量将超过3000万t,已成为我国最紧迫的环境问题之一[1]. 其中接近70%的直接填埋,15%去向不明,存在突出的二次污染. 厌氧消化是一项广泛应用的污泥稳定化、减量化、无害化、资源化技术,并且能够回收沼气. 欧盟地区50%以上污水厂均采用污泥厌氧消化[2]. 各国厌氧消化比例:比利时67%,丹麦50%,法国49%,德国64%,希腊97%,意大利56%,卢森堡81%,西班牙65%[3]. 厌氧消化也是我国鼓励的主要污泥处理技术. 国家近年发布的《城镇污水处理厂污泥处理处置技术指南(试行)》、《“十二五”期间污泥处置建议》和《城镇污水处理厂污泥处理处置及污染防治技术政策(试行)》等均明确提出“大中型厂宜优先选用厌氧消化污泥处理工艺”、“鼓励城镇污水处理厂采用污泥厌氧消化工艺”等. 但目前为止,全国仅50余家污水厂建有污泥厌氧消化设备,且40%左右停运[4]. 全国经过厌氧处理的污泥不足2%. 高含固率的污泥厌氧消化(简称高固消化,进泥含固率8%以上)是近年受到关注的污泥消化新技术[5, 6, 7, 8]. 与传统污泥厌氧消化(进泥含固率3%~5%)相比,单位投资可减少40%~50%[9],又明显节省加热量,故经济优势明显. 另一方面,我国的污泥有机物含量明显低于欧美,也是厌氧技术推广难的原因之一. 考虑到污泥消化的速控步骤是污泥水解,而我国污泥有机物含量低的情况,提出了“热水解-高温厌氧消化”的高固污泥处理工艺. 该工艺的主要特点包括:①采用70℃热水解作为预处理来促进细胞溶解; ②采用高温厌氧消化来加快消化. 目前高固消化的研究还不够充分,尤其缺乏设计和实际运行经验. 本研究具有较好的参考价值. 1 材料与方法 1.1 工艺流程 本中试在广州市某水质净化厂进行,共持续9个多月. 中试的工艺流程见图 1. 进泥在水解罐中水解,之后用泵打入高温厌氧罐. 热水解罐和高温罐的有效容积分别为0.6 m3和2.0 m3,前者的反应温度为70℃±1℃,后者为55℃±1℃. 热水解的固体停留时间(solid retention time,SRT)为3 d. 图 1 工艺流程示意 1.2 接种污泥和处理的污泥 接种污泥为中温厌氧消化污泥,接种挥发性悬浮固体(volatile suspended solid,VSS)浓度为17.01 g ·L-1,有机物含量为57%. 试验所用进泥为污水厂的脱水剩余污泥配制,含固率为8%~9%,有机物含量为59.76%~69.94%,VSS为52.95~58.45 g ·L-1,SCOD为1268~3443 mg ·L-1,氨氮60~336 mg ·L-1. 该污水厂进水中工业废水约占70%左右. 1.3 有机物去除率 有机物去除率以VSS去除率表示,其计算是基于相同SRT下的稳定运行阶段的物料平衡得出:

(完整版)第三节污泥的厌氧消化

8.3 污泥的厌氧消化 厌氧消化法:在无氧的条件下,由兼性菌及专性厌氧细菌降解有机物,最终产物是二氧化碳和甲烷气(biogas),是污泥得到稳定。 8.3.1 厌氧消化的机理(间歇实验) 二阶段理论:产酸阶段----产甲烷阶段 四阶段理论:水解、酸化、酸退、甲烷化 根据参与甲烷发酵的不同营养类群微生物对基质的代谢厌氧降解过程分为三个阶段: 三阶段理论:Toerien et al (1970)Substrate flow in anaerobic digestion, 5th International Conference on water pollution research, San Francisco,CA. 书上:Bryant 1979 CH4+2H2O methane →2CH4+2CO2 ) (纤维素分解菌产氢产乙酸菌甲烷杆菌球菌 碳水化合物分解菌CH3CH2COOH+2H2O---CH3COOH+3H2+CO2蛋白质分解菌,脂肪分解菌) 产酸菌是兼性厌氧菌和专性厌氧菌,对PH,VFA,温度变化适应性强,增殖速度快;甲烷菌是专性厌氧菌,PH=6.4-7.4,对PH,VFA,温度变

化敏感,增殖速度慢。 产甲烷阶段的能量分析: (以乙酸钠为例) 在好氧消化时: C2H3O2Na+2O2NaHCO3+H2O+CO2+848.8 KJ /mol 在厌氧消化时: C2H3O2Na +H2 O NaHCO3+CH4+29.3 KJ /mol 在底物相同的条件下,厌氧消化产生的能量仅是好氧消化的1/20 –1/30.这些能量大部分都用于维持细菌的生活,而只有很少能量由于细胞合成.(这就是厌氧法产生剩余污泥量少的缘故) 虽然厌氧消化过程是要经历多个阶段,但是在连续操作的厌氧消化反应器中这几个阶段同时存在,并保持某种平衡状态. 8.3.2厌氧消化动力学(与好氧相似) 甲烷发酵阶段是厌氧消化速率的控制因素。动力学方程式: 有机物降解 细菌增殖 S K kSX dt dS S + = - bX dt dS Y dt dX - ? ? ? ? ?- =

热水解污泥的厌氧消化试验研究

论述与研究 热水解污泥的厌氧消化试验研究 王治军, 王 伟, 夏 州, 吴舒旭 (清华大学环境科学与工程系,北京100084) 摘 要: 先用热水解对污泥进行预处理,然后进行厌氧消化试验。结果表明,最适宜的热水解温度为170e 、反应时间为30min;经热水解污泥的厌氧消化性能和系统的处理效率都得到显著提高,COD 去除率最大时提高了20.18%,日均产气量则增加了79.20%~99.55%。 关键词: 剩余污泥; 热水解; 厌氧消化 中图分类号:X703.1 文献标识码:A 文章编号:1000-4602(2003)09-0001-04 Experimental Study on Thermal Hydrolysis and Anaerobic Digestion of Sewage Sludge WANG Zhi 2jun, WANG Wei, XIA Zhou, WU Shu 2xu (Dept o f Envir onmental Science a nd Engineering ,Tsinghua Univer sity ,Beijing 100084, China ) Abstract : Sewage sludge was pretreated by using thermal hydrolysis process before anaerobic di 2gestion.T he result showed that the optimal temperature for thermal hydrolysis is 170e and reaction time is 30min.Both the anaerobic digestion performance of thermally hydrolyzed sludge and treatment efficiency of the system are improved significantly with COD removal increased by 20.18%at maxi 2mum and average daily gas production increased by 79.20%~99.55%. Keywor ds : excess sludge; thermal hydrolysis; anaerobic digestion 基金项目:国家高技术研究发展计划(863)项目(2002AA644010) 为了克服传统污泥厌氧消化工艺存在的消化速率慢、停留时间长、处理效率低的缺点,相继出现了机械破碎、超声波、碱处理、热水解、臭氧处理、酶法等预处理方法 [1~4] 。笔者对在不同条件下热水解的 剩余污泥进行了厌氧消化试验以研究热水解对污泥厌氧消化的影响规律。1 试验方法 111 试验装置和流程 热水解试验装置:G SH-10型高压釜,有效容积为10L,最大压力为12.5MPa,最高温度为325e 。 厌氧消化试验流程如图1所示。热水解后的污泥置于污泥储槽,再通过蠕动泵进入消化反应器。 消化反应器的容积为3L,污泥容积为2L,反应器内设水封套管,顶部设水封槽。反应器外壁用电热膜包裹,通过温控仪来控制反应器内的温度为(35?1)e 。由于日处理污泥量较小,因而采用半连续方式(2次P d)进料,进料时间为5min P 次,搅拌器运行时间为10min P h 。所产生的沼气通过泡沫分离瓶分离泡沫后,再利用含有饱和食盐水的集气柜收集。共有5套反应器。 中国给水排水 2003Vol.19 CH INA WAT ER &WASTEWATER No.9

相关文档
相关文档 最新文档