文档库 最新最全的文档下载
当前位置:文档库 › 中药赤芍化学成分及药理作用的研究综述

中药赤芍化学成分及药理作用的研究综述

中药赤芍化学成分及药理作用的研究综述
中药赤芍化学成分及药理作用的研究综述

中药赤芍化学成分及真伪鉴定的研究综述

张金怡天津生物工程职业技术学院

摘要:以下这篇文章是对赤芍的化学成分及其真伪鉴定进行研究综述。

关键词:赤芍,化学成分,真伪鉴定,药理作用,临床应用

前言:赤芍,来自于毛茛科植物赤芍Paennia lactiflora pall、草芍药、或川芍药的干燥根。为

常用中药,《神农本草经》中被列为上品。[9]先主产于内蒙古、河北省,辽宁。性味苦寒,入

肝经,有活血散瘀、止痛消肝的作用,赤芍的混伪品情况比较简单,主要是美丽芍药的根(俗

称狗头赤芍)等数种同属植物的根。最近,我们在工作中发现赤芍的饮片样品中常可见掺有

不同比例的蔷薇科植物地榆Sanguisorba officinalis L.根的饮片。现市场上地榆的价格远较赤

芍便宜,有不法商人在赤芍饮片中有意掺入地榆饮片。由于地榆饮片的外观特征与赤芍的饮

片有点相似,一般不易辨别发现。但地榆功能为凉血止血和解毒敛疮,二者的功效有区别,

不可混用。因此为了正确把握赤芍与掺伪品地榆的鉴别要点,笔者对赤芍和地榆的性状、显

微特征、薄层色谱等方面进行了比较鉴别,其中性状和显微特征以比较表形式列出,主要显

示二者的区别点,介绍如下。[1]

正文

1赤芍

1.1性状鉴别

1.1.1芍药根呈圆柱形,稍弯曲,长10-40cm,直径0.6-3cm;表面暗棕色至黑棕色,粗糙,有横向凸起的皮孔,具粗而略扭曲的纵沟纹,外皮易脱落;质硬而脆,易折断,断面平坦,粉白色或黄白色,皮部窄,类粉红色,木质部占根的大部分,射线明显,有时具裂隙;气微香,味稍苦、涩。[10]

1.1.2川赤芍根呈圆柱形或长圆锥形,长10-25cm,直径1-4cm;表面棕色或棕褐色,有纵皱纹及横向皮孔;质松,断面显粉性,皮部黑褐色,木部黄白色。

1.1.3赤芍片为椭圆形薄片,表面粉白色或粉红色,中心有放射状纹理,皮部窄,周边灰褐色。

1.1.4炒赤芍片色泽较赤芍片加深。

1.2显微鉴别

粉末特征:芍药根草酸钙簇晶众多,常数个至数10个纵向排列成行。偶见方晶。木纤维几无色,主为纤维管胞,长梭形,末端斜尖、长尖或钝圆,具缘纹孔较大,纹孔口斜裂缝状,也有纹孔口较宽并相交成十字形。有少数韧型纤维,木栓细胞多见,浅红色、棕色或微显紫色。导管主为具缘纹孔导管,淀粉粒较多[2]。

1.3理化鉴别

1.3.1化学定性

取粉末1g ,加水10ml ,煮沸,滤过,滤液加三氯化铁试液1滴,生成蓝黑色沉淀。或取本品横切面滴加三氯化铁试液显蓝色(鞣质)。

取粉末0.5g 置试管中,微加热使升华,则有白色至类黄色微细结晶附着管壁。取此升华物加水10ml 及1mol/L 氢氧化钾溶液0.5ml 使溶解,滤过。滤液加三氯化铁试液1滴,则呈淡红褐色。

1.3.2光谱鉴别

取粉末0.2g ,加乙醇20ml ,放置12小时,滤过,滤液用乙醇稀释,制成1mg/ml 溶液,供测试用。样品在277±2nm 波长处有最大吸收。

取药材50%乙醇浸出物(5.0mg/1.0ml ),采用溴化钾压片法测其红外光谱,样品在1520cm -1处有1个特征吸收峰。或取药材丙酮浸出物(10.0mg/2ml ),以同样的方法测其红外光谱,样品在1515cm -1处有1个尖锐的吸收峰。也可取药材粉末2.0mg ,以同样方法测其红外光谱,样品在1530cm -1处有3个明显的吸收峰。

1.3.3薄层色谱

取粉末0.5g ,加乙醇10ml ,密塞,振摇5分钟,滤过,滤液蒸干,残渣加乙醇2ml 溶解,作为供试品溶液。另取芍药苷对照品,加乙醇制成1ml 含1mg 的溶液,作为对照品溶液。吸取上述2种溶液各10μl ,分别点于同一硅胶G 薄层板上,以氯仿-甲醇-醋酸乙酯(8:4:1)为展开剂,在氨蒸气饱和下展开,取出,晾干,喷以硫酸溶液(1→10),于100℃烘约5分钟,供试

品溶液在与对照品溶液相应的位置上,显相同颜色的斑点。

图1

赤芍根图2赤芍片

取粉末0.5g,加乙醇10ml,振摇5分钟,滤过,滤液蒸干,残渣加乙醇2ml使溶解,作为供试品溶液。另取芍药苷对照品,加乙醇制成每1ml含2mg的溶液,作为对照品溶液。吸取上述2种溶液各4μl,分别点于同一硅胶G薄层板上,以氯仿-醋酸乙酯-甲醇-甲酸(40:5:10:0.2)为展开剂,展开,取出,晾干。喷以5%香草醛硫酸溶液,热风吹至显色清晰,在与对照品色谱相应的位置上,显相同的蓝紫色斑点。[3]

1.4伪品及易混品

1.4.1美丽芍药根为毛莨科植物美丽芍药Paeonia mairei Levl.的根。产于云南、贵州、四川、甘肃、陕西等地。呈极不规则形状,有瘤状突起和茎痕,略似狗头,亦称“狗头芍药”。

1.4.2窄叶芍药根为毛莨科植物窄叶芍药Paeonia anomala L.的根。产于甘肃、新疆等地。呈纺锤形或近球形,直径1.2-3cm。

1.4.3块根芍药为毛莨科植物块根芍药Paeonia anomala L.var.intermedia(C.A.Mey)O.et

B.Fedtsh.的块根。产于新疆等地。主根不发达,侧根纺锤形、块状,长2-3cm,中部直径1-1.5cm。表面棕褐色,粗糙,有皱纹及纵沟,外皮易脱落,质硬而脆,切面浅黄色、浅棕黄色或浅紫色,菊花纹明显,有时具裂隙。味苦微酸。

1.4.4紫牡丹根亦称“野牡丹根”,为毛莨科植物紫牡丹Paeonia pelavayi Franch.的根。产于云南等地。呈圆柱形,长10-18cm,直径1-2cm,稍弯曲,二端常平截。外表棕褐色至暗红色,常有纵皱纹及须根痕。质坚实,不易折断;断面不平坦,内皮部红色,木部红黄色,有菊花心。气香,味酸、涩微苦。

1.4.5草芍药为毛莨科植物草芍药Paeonia obovata Maxim或其变种毛叶芍药Paeonia obovata-var.willmottiae(Stapf)Stem的根。主产于山西,四川,贵州,湖南,江西和东北等地。其根着生在横走的根茎上,根不直,较短。[4]

2化学成分:

芍药根含芍药甙(paeoniflorin),氧化芍药甙(oxy-paeoniflorin),苯甲酰芍药甙(benzoylpaooniflorin),白芍甙(albi-florin),芍药甙无酮(paeoniflorigenone),没食子酰

芍药甙(galloylpaeoniflorin),β-蒎-10-烯基-β-巢菜甙(z-1s,5R-β-pinen-10-yl-β-vicianoside),

芍药新甙(lacioflorin),芍药内酯(paeoniactone)A、B、C,β-谷甾醇(β-siiosierol),胡

萝卜甙(daucosterol)。还从根的鞣质中分得1,2,3,6-四没食子酰基葡萄糖(1,2,3,

6-tetra-O-galloyl-β-D-glucose),1,2,3,4,6-五没食子酰基葡萄糖(1,2,3,4,

6-penta-O-galloyl-β-D-glucose)及相应的六没食子酰基葡萄糖和七没食子酰基葡萄糖等。又含

右旋儿茶精(catechin)及挥发油。挥发油主要含苯甲酸(benzoic acid),牡丹酚(paeonol)

及其他醇类和酚类成分共33个。

2.1赤芍根含芍药甙(paooniflorin),四川产品还含微量的苯甲酰芍药甙(benzoyl paeoniflorin)。

2.2芍药根含芍药甙,北京地区产品还含氧化芍药甙(oxrpaeoniflorin)和牡丹酚原甙(paeonolide)。还含苯甲酸(benzoic acid),挥发油,脂肪油,树脂,鞣质,糖,淀粉,粘液质,蛋白质等。

2.3芍药根含芍药甙,氧化芍药甙,苯甲酰芍药甙,牡丹酚原甙。

2.4芍药根含芍药甙,苯甲酰芍药甙,氧化芍药甙,牡丹酚原甙,苯甲酸,水杨酸(salicylic acid),没食子酸(gallicacid),β-香树脂醇(β-amyrin),β-谷甾醇(β-sitosterol)。还含挥发油及环烯醚萜类(iridoid)物质。

2.5芍药根含芍药甙、氧化芍药甙[5]

3药理作用

3.1.抗血栓形成作用

赤芍煎剂15-20g(生药)/kg给大鼠灌胃,使血栓形成时间明显延长,长度缩短,重量减轻;凝血酶原时间和白陶土部分凝血活酶时间延长,优球蛋白溶解时间缩短,表明对血凝有显著抑制作用。赤芍提取液125-250mg(生药)/ml,除使凝血酶原时间、部分凝血活酶时间明显延长外,250mg(生药)/ml也明显抑制凝血酶凝集牛纤维蛋白原,在500~1000mg/ml时均完全不凝。此外能激活纤溶酶原,使凝固的纤维蛋白溶解,因此赤芍通过抑制凝血酶和激活纤溶酶原而发挥抗血栓作用。赤芍精(d-儿茶精,d-catechin)200mg/只灌服,每日1次,连续46日,使高脂饲料饲养的大鼠血小板聚集时间,血小板血栓形成时间和血栓形成时间显著延长,血栓长度和湿重显著低于对照组。赤芍精对高粘滞血冠心病患者也有改善血液流变性作用,使中、低切速下全血粘度降低,红细胞电泳时间延长,血小板聚集性降低,草芍药浸膏片能使肺原性心脏病患者的全血粘度、血浆粘度和血细胞比容明显降低。

3.2抗血小板聚集作用

赤芍提取物在体外对肾上腺素、二磷酸腺苷(ADP)、烙铁头蛇毒(TMVA)和花生四烯酸(AA)诱导的血小板聚集均有显著抑制作用,并使血小板粘附与血小板第三因子活性降低,血小板内CAMP含量升高。赤芍成分及其衍生物801、802在5×l0-4~5×l0-3ml/L时对ADP 和胶原诱导的兔血小板聚集均有明显抑制作用,其中802作用最强,对ADP诱导的血小板聚集尚有解聚作用。3药的抗血小板聚集作用与降低大鼠肝线粒体氧耗量、呼吸控制率和减少磷/氧(P/O)比值等作用颇为一致,表明3药的抗血小板作用与干扰血小板的能量代谢有关。

赤芍精抑制兔富血小板血浆(PRP)与AA孵育时血栓烷A2(TXA2)样物质的生物合成,使其生成物对兔主动脉条的收缩幅度显著降低,表明赤芍精抑制血小板聚集与对抗TXA2的促聚集作用有关。给冠心病心绞痛患者静滴赤芍精可使扩大聚集型血小板的百分数与聚集数显著减少,表明能使增高的血小板表面活性和聚集性明显降低。上述实验表明,赤芍抑制血小板聚集的机制可能与干扰血小板的能量代谢,抑制TXA2的生物合成及提高血小板内cAMP含量等有关。

3.3降血脂和抗动脉硬化作用

赤芍浸膏片5g(生药)/kg,每日服1次,连用10-15星期,使高脂血兔的血浆总胆固醇(Tch),三酰甘油(TG),低密度脂蛋白胆固醇(LDL-Ch)、极低密度脂蛋白胆固醇(VLDL-Ch)显著降低;同时使高脂血症所致血栓烷A2/前列环素(TXA2/PGI2)比值趋于正常。此外并可降低血浆过氧化脂质(LPO),动脉壁脂质、钙和磷脂及主动脉斑块面积。赤芍抗动脉硬化的机制可能与改善脂蛋白组分比值、降低血浆过氧化脂质、减少钙沉积于动脉壁,抑制血小板聚集,调节TXA2/PGI2平衡和激活腺苷酸环化酶而增加动脉壁内CAMP浓度等有关。3.4对心血管系统的影响

赤芍(草芍药)煎剂对离体蟾蜍心脏和家兔在位心脏,小剂量(l:0.5,0.05ml)轻度抑制,使心率减慢,搏出量减少;大剂量(1:0.5,0.15ml)明显抑制,并有传导阻滞。血管灌流使蟾蜍内脏、后肢和离体兔耳血管轻度扩张。以0.2%赤芍注射液灌流大鼠离体心脏,使冠脉流量增加28.4%。给麻醉犬动脉注射也使冠脉流量增加,静脉注射除增加冠脉流量外,也使外周阻力降低,血压下降;这些作用不受利血平预处理影响,可能为直接作用。给小鼠腹腔注射赤芍注射液,使心肌86Rb摄取量增加,表明使心肌营养血流量增加,此作用可被普萘洛尔抑制,表明与β-受体有关。对大鼠烫伤后早期出现的心脏功能降低,赤芍注射液10g (生药)/kg灌胃,有一定缓解和改善作用。赤芍注射液1g/kg肌内注射,对实验性肺动脉高压兔有治疗和预防作用,使肺血管扩张、肺血流改善、肺动脉压降低,心输出量增加,心功能改善。赤芍注射液对肺源性心脏病患者也有扩张肺血管,降低肺动脉压和肺血管阻力,增加心输出量,改善右心功能和血液流变性等作用。草芍药浸膏片对肺源性心脏病患者也有相似作用。赤芍注射液40g(生药)/kg和80g(生药)/kg腹腔注射,明显延长小鼠常压缺氧的存活时间。8g/kg静脉注射对脑垂体后叶素所致大鼠急性心肌缺血有明显保护作用。40g/kg 灌胃,也能延长小鼠减压缺氧的存活时间。

3.5抗肿瘤作用

赤芍正丁醇提取物(赤芍D)1~2g/kg腹腔注射,对小鼠S180实体瘤的抑制率为31

%-49%。赤芍水提取物(赤芍A)或70%乙醇提取物(赤芍C)单用对S180实体瘤无明显作用,当与阈下剂量的环磷酰胺合用时则有明显抑制作用;赤芍A、C对615小鼠白血病无明显作用,而与小剂量甲氨蝶呤合用时,可显著延长615白血病小鼠的生存时间。肿瘤组织中的CAMP含量明显低于正常组织,赤芍A、C、D可分别增加S180实体瘤、S180腹水癌或Lewis肺癌组织中的CAMP水平,此作用可能与抗癌或抗癌增效作用有关。S180实体瘤小鼠的血浆纤维蛋白含量比正常高2-3倍,赤芍A2g/kg腹腔注射,可使其明显降低,此作用也可能与抗癌增效有关。赤芍A或C单用促进Lewis肺癌自发性转移,小剂量环磷酰胺也无明显影响,但与赤芍A合用可显著减少此肺转移。

3.6保肝作用

赤芍注射液3.3mg/ml,1.67mg/ml和0.7mg/ml,对体外培养肝细胞的DNA合成有明显促进作用,对肝细胞再生和肝功能恢复有良好影响。赤芍注射液3.75g/kg静脉注射,对D-半乳糖胺所致大鼠肝损伤有明显保护作用,使动物存活率增加,肝脏萎缩与丙氨酸转氨酶明显低于对照组,FN(单核-巨噬细胞系统的主要调理素)高于对照组。保肝机制可能是提高大鼠血浆纤维联结蛋白(PFN)的水平,从而增强网状内皮系统的吞噬功能和加强调理素活性,以保护肝细胞,防止肝脏免疫损伤和促进肝细胞再生。赤芍801,24mg/kg腹腔注射,每日1次,连续2星期,对大鼠肝脏和心脏羧基酯酶(CEASE)活性均有明显诱导作用,此作用有促进体内水解过程,促进体内毒物排泄的作用。d-儿茶精100mg/kg或50mg/kg腹腔注射,对乙醇诱导的小鼠肝线粒体急性损伤有保护作用,能降低模型动物肝线粒体膜脂质流动性,增加肝线粒体还原型谷脸甘肽(GSH)含量,降低Ca叶+摄取和脂质过氧化物生成,通过对抗乙醇的毒素作用,缓解肝线粒体膜结构的急性损伤。

3.7其他作用

赤芍成分没食子酸的衍生物没食子酸丙酯具有清除氧自由基的能力,能明显抑制硫酸亚铁和维生素C等诱导的线粒体肿胀和脂质过氧化反应,可保护线粒体结构和功能的正常。赤芍对正常离体豚鼠回肠无明显作用,但能解除乙酰胆碱所致肠痉挛。赤芍正丁醇提取物3g/kg 皮下注射可促进网状内皮系统的吞噬功能,增加肝脏重量,对溶血素生成与迟发型超敏反应无明显影响。川赤芍提取物对β-羟基-β-甲基戊二酸辅酶A和钙离子通道阻滞剂受体有显著抑制作用。赤芍在体外对痢疾杆菌、伤寒杆菌和溶血性链球菌有较强抑制作用。草芍药煎剂灌胃,可使家兔血糖暂时升高,窄叶芍药水-醇提取物有显著镇静和一定的镇痛作用,还能提高胃液的酸度,增进食欲和消化功能。[6]

4临床应用

4.1治疗肝炎宋克诚采用赤芍茵蓟汤[由赤芍30~50g,茵陈30g,小蓟10g,大黄(后下)5~10g,山楂15g组成,治疗淤胆型肝炎48例,1剂/d,煎服,3次/d。结果表明,20天后黄疸指数恢复正常者33例,好转者12例,无效者3例,总有效率为93.8%,跟对照组比较有显著意义。邓欣等研究赤芍承气汤对慢性重型肝炎的临床疗效,结果赤芍承气汤与对照组在改善慢性重型肝炎患者肝功能、降低PT、升高PTA,降低血清内毒素和TNF-α水平方面的显效率相比,差异有显著性。赤芍在治疗淤胆型肝炎、慢性肝炎等方面的报道甚多,在此仅举2例。

4.2活血化瘀通脉高铁祥等应用赤芍注射液穴位注射治疗脑血管意外进行实验研究,将10%赤芍注射液注入Wistar大鼠双侧风池、丰隆穴位,每穴各0.1ml,结果显示血栓形成抑制率明显高于生理盐水组,表明赤芍具有散瘀血祛滞留之功效。另有李家康等[22]用10%赤芍注射液对100例脑梗塞、脑出血患者的部分穴位进行注射,每穴注射0.5~1ml,每穴总量为5~8ml,1次/d,1个月为1个疗程,每疗程间休息7天,连续治疗2个疗程,其选穴为风池、曲池、足三里、肩、丰隆、太冲,除风池取双侧外,其余诸穴取患侧,结果表明,胆固醇及甘油三酯均下降,而载脂蛋白(ApoA1;ApoB)及高密度脂蛋白(HDL)等升高,差异有显著性,表明赤芍穴位注射有调节血脂、软化血管、抗动脉硬化作用。赤芍注射液与经络穴位的双重作用治疗脑血管意外有较好疗效。[3]

综上所述,赤芍主要有活血祛瘀通脉作用,临床多用于保护肝细胞和脑细胞,同时对心血管等其他方面的影响也有报道。相信对赤芍的进一步研究将会给人们带来更多的福祉。[7] 5各家论述

5.1.论赤芍止痛①陶弘景:"芍药赤者小利,俗方以止痛,乃不减当归。"(《本草经集注》)

②李东垣:"赤芍药破瘀血而疗腹痛,烦热亦解。仲景方中多用之者,以其能定寒热,利小便也。"(《用药法象》)

5.2.论赤芍为肝家血分要药①缪希雍:"木芍药色赤,赤者主破散,主通利,专入肝家血分,故主邪气腹痛。其主除血痹、破坚积者,血瘀则发寒热,行血则寒热自止,血痹疝瘕皆血凝滞而成,肢凝滞之血,则痹和而疝瘕自消。凉肝故通顺血脉,肝主血,入肝行血,故散恶血,逐贼血。营气不和则逆于肉里,结为痈肿,行血凉血,则痈肿自消。妇人经行属足厥阴肝经,入肝行血,故主经闭。肝开窍于目,目赤者肝热也,酸寒能凉肝,故治目赤。肠风下血者,湿热肠血也,血凉则肠风自止矣。"(《本草经疏》)②贾所学:"赤芍,味苦能泻,带酸入肝,专泻肝火。盖肝藏血,用此清热凉血。入洞然汤,治暴赤眼;入犀角汤,清吐衄血。入神仙活命饮,攻诸毒热壅,以消散毒气;入六一顺气汤,泻大肠闭结,使血脉顺下。以其能主降,

善行血滞,调女人之经,消瘀通乳;以其性禀寒,能解热烦,祛内停之湿,利水通便。较白芍味苦重,但能泻而无补。"(《药品化义》)

5.3.论赤芍、白芍功效之异同黄宫绣:"赤芍与白芍主治略同,但白则有敛阴益营之力,赤则止有散邪行血之意;白则能于土中泻木,赤则能于血中活滞。故凡腹痛坚积,血瘕疝痹,经闭目赤,因于积热而成者,用此则能凉血逐瘀,与白芍主补无泻,大相远耳。"(《本草求真》)[8]

结论:以上为我对赤芍化学成分及药理作用的研究,希望能对大家有帮助。

参考文献

[1]吴少华,陈有为等赤芍化学成分的研究,中草药,2008,39(1):13

[2]林巧,杨大国,赤芍药理作用与临床应用的研究进展,中华医学研究杂志,2006,6(6):642-643

[3]杨媛媛,周刚等,赤芍的研究进展,医学导报,2008,27(1)67

[4]彭华胜,王德群,赤芍白芍划分的本草学源流,中华医史杂志,2007,37(3):133-136.

[5]盛振华,余陈欢等,不同生长年限赤芍中芍药苷合苯甲酸的含量测定,中华中医药学刊,2008,26(5):

1106

[6]陈海生,徐一新,川赤芍化学成分的研究,第二军医大学学报,199415(1)72-73

[7]徐敏等.赤芍总苷抗血栓作用研究.安徽中医学院学报,2000,19(1):46-47.

[8]徐先想皂苷与赤芍总苷协同抗血栓作用.中国实验方剂学杂志,2002,8(3):35-38.

[9]国家药典委员会中华人民共和国药典2010版第一部

[10]中药商品鉴定技术,刘来正,2006,5(1)

致谢:感谢中药专业的各位老师三年来对我的帮助。特别感谢我的论文指导教师付红老师,是付老师耐心的指导使我在最短的时间内理清思路、确定题目、找到资料、完成论文。谢谢!

人参化学成分及研究进展

天然产物化学 论文(设计)题目:人参化学成分及生物活性的研究进展 学院:化学与化工学院 专业:化学 班级: 学号: 学生姓名: 2013年11 月22 日

目录 摘要 ..................................................................................................................................... I 第一章前言 (2) 第二章人参的化学成分及药理作用 (2) 2.1人参皂苷 (2) 2.1.1人参皂苷的分类 (3) 2.1.2人参皂苷的药理作用 (6) 2.2脂溶性性成分 (8) 2.2.1脂溶性成分的抗菌作用 (8) 2.2.2脂溶性成分的抗肿瘤作用 (9) 2.3多糖类物质 (9) 2.3.1人参多糖类物质的调节免疫作用 (9) 2.3.2人参多糖类物质的降血糖作用 (10) 2.3.2人参多糖类物质的抗肿瘤作用 (10) 第三章结语 (11) 参考文献 (12)

人参化学成分及生物活性的研究进展 摘要 现代研究证明,人参可增进食欲、强心、抗疲劳、抗衰老、抗肿瘤,治贫血、神经衰弱等症。本文对人参化学成分及人参的药理研究的新进展给予综述并对人参的研究作简要展望 关键词:人参,化学成分,药理作用

第一章前言 中药人参是五加科人参,属植物人参的干燥根,是一种名贵药材,同样为一种比较常见的药物。经中医临床验证表明人参的主要功效包括有补脾益肺、大补元气、生津安神益智等。临床上人参能够对诸多疾病均能够产生良好的防治效果,特别是对人体滋补强壮作用更加的明显。并且它的化学成分相对较为复杂,具有广泛的生物活性,药理作用相对独特,由于现代分离以及分析技术得到了突飞猛进的发展,人参的化学成分的研究也获得了进一步的进展。目前人们对其药理活性广泛关注,本文针对其化学成分和药理活性展开论述,从而为今后的临床研究提供参考。 第二章人参的化学成分及药理作用 人参的现代研究已有一百多年的历史,这期间对人参的研究大多采用粗制剂或总皂贰成分,固然是由于人参有效成分的含量低和纯化困难,还由于对人参有效成分及其药理作用的多样性认识不足。至今,已阐明的人参化学成分包括皂苷、糖类、蛋白质、多肤、氨基酸、有机酸、维生素、脂溶性成分和其它成分【1】。其中,皂苷被公认为是人参的主要的有效成分之一。 2.1人参皂苷 皂苷是广泛存在于植物中的一类复杂的有机化合物,这类化合物因具有较大的表面活性,在水中震荡或加热时可以产生胶状溶液和泡沫,因而得名皂苷。人参皂苷为人参属植物中主要活性成分,是由皂苷元和糖相连构成的糖苷类化合物,人参中人参皂苷的含量约占人参干重的4%左右。人参皂苷为白色无定形粉末或无色针状结晶,味微甘苦,具有较强的吸湿性。极性大的人参皂苷易溶于水、甲醇、乙醇,可溶于正丁醇、醋酸和

赤芍化学成分和药理作用的研究概况doc资料

赤芍化学成分和药理作用的研究概况

赤芍化学成分和药理作用的研究概况 摘要通过查阅与赤芍研究相关的国内文献资料, 对赤芍的化学成分、药理作用等方面的研究概况进行综述, 为赤芍的进一步研究提供参考。 关键词赤芍;化学成分;药理作用 1. 赤芍的来源 赤芍为毛茛科植物芍药Paeonia lactiflora Pall.或川赤芍Paeonia veitchii Lynch 的干燥根, 春、秋两季采挖, 除去根头及须根, 晒干。性味苦、微寒, 归肝经, 具有清热凉血、散瘀止痛之功能, 主要用于治疗温毒发斑、目赤肿痛、肝郁胁痛、经闭痛经、症瘕腹痛、跌扑损伤、痈肿疮疡等症[1]。 2. 赤芍的化学成分[2,3] 赤芍中已鉴定的化合物大都是单萜成分,这些成分有芍药苷、芍药内酯苷、氧化芍药苷、苯甲酸芍药苷、芍药吉酮、芍药新苷、(2)-(IS,5R)-β-蒎稀-10-基-β-巢莱糖苷。川赤药中含有β-谷甾醇,β-谷甾醇-α-葡萄糖苷、蔗糖等。赤芍中还分离出苯甲醛,并含有没食酸鞣质,邻苯三酚,二氢芹菜素、4-乙基-芍药苷等。 2.1单萜类芍药苷( 3.1%-7.98%)、芍药醇、氧化芍药苷、苯甲酰芍药苷(0.01%)、芍药内酯苷(0.1%)、羟基芍药苷(0.12%-0.21%)、4-乙基-芍药苷、没食子酰芍药苷、芍药苷元酮、芍药新苷、9-乙基芍药新苷A、苯甲酰羟基芍药苷和(1S,2S,4R)-反式-2-羟基-1,8-桉叶素等。

2.2三萜类24,30位降常春藤皂苷三萜衍生物(Peaonenolide F、Peaonenolide H)、齐墩果酸(Oleanolic acid)、常春藤皂苷元(hederagenin)、30-降常春藤皂甙元(30-norhederagenin)、牡丹皮酸A等。 2.3 儿茶素类儿茶素、没食子酰芍药苷(8-O-galloyldesbenzoylpaeoniflorin、6′-O-galloyl desbenzoylpaeoniflorin、3′, 6′-di-O-galloylpaeoniflorin和6′-O-galloyldesbenzoylalbiflorin )等。 2.4 酚酸类没食子酸等。 2.5其他化合物山柰酚、没食子酸甲酯、没食子酸乙酯、熊果苷、胡萝卜苷,以及一些鞣质、糖、淀粉、蛋白质、脂肪油以及树脂等化合物。 3. 赤芍的药理作用 赤芍的药效成分主要是以芍药苷为主的单萜及其苷类成分,没食子酸及其衍生物等。下面对其主要成分及其衍生物的药理作用分系统进行综述。3.1赤芍对血液系统的作用 3.1.1抗凝和抗血栓作用实验表明, 赤芍注射液在体外能使兔血浆KPTT 、PT 和TT延长, 作用随赤芍浓度的增加而增强, 其抗凝血酶的活性相当于 2.0×10-3U肝素活性·mg-1, 在体内实验中家兔静注赤芍3g·kg-1后, KPTT、PT 和TT也显著延长, 赤芍的抗凝作用不依赖于ATⅢ, 可能是对凝血酶发挥即时的直接抑制作用[4]。王琳琳等采用冰水刺激和注射肾上腺素的方法,造成大鼠血

中药炮制对中药化学成分的影响

中药炮制对中药化学成分的影响 中药炮制是以中医药基本理论为指导,根据辩证施治用药的需要和药物自身的理化性质以及制剂的不同要求,对原药材进行的一整套加工处理。中药经炮制后,由于加热、加辅料等处理,可以使某些中药中的化学成分发生变化,有的成分被溶解出来,有的成分被分解或转化成新的成分,有的成分有量的增减,当炮制成饮片后其化学成分、理化性质都可能发生很大的改变,从而影响药物的疗效,所以只有在搞清楚中药在炮制过程中的化学成分变化及其机理的基础上,才能更好地了解中药炮制的目的,进而探讨中药炮制的真正意义,同时为制定合理的炮制工艺和质量标准提供科学依据。 中药炮制是研究中药炮制理论,工艺,规格,质量标准,历史沿革及其发展方向的一门学科,中药炮制是根据中医药理论,依照辩证施治用药的需要和药物自身性质,以及调剂、制剂的不同要求,所采取的一项制药技术。 中药的化学成分是其发挥临床作用的物质基础。中药的化学成分是相当复杂的,可以认为中药的作用是综合性的。中药在炮制过程中,由于温度、时间、溶剂及各种不同辅料的处理,使中药的化学成分发生一系列变化。 1.炮制对中药中挥发油类成分的影响 挥发油是一些具有芳香气味的油状物,在常温下能挥发,并易随水蒸气蒸馏,所以叫挥发油或称精油。含挥发油的中药,经过加热炮制后,可使所含挥发油显著减少。炮制目地主要是减少或除去某些挥

发油的副作用,如麻黄的发汗作用,主要是挥发油,蜜制后,挥发油损耗,故发汗作用减低,而蜜能润肺止咳,更增加了止咳平喘的作用。还有的含挥发油成分药物的炮制是根据改变药性或减低毒性的需要而进行的。如白术炮制后挥发油中的苍术酮可转化为白术内酯Ⅰ,白术内酯Ⅲ,双白术内酯。由于挥发油中成分复杂,且多不稳定,所以在炮制时应注意药物中成分的变化而改变疗效。 2.炮制对中药中无机成分及微量元素的影响 在矿物和贝壳类药物中大量存在着无机成分,在植物药物中也有一些无机盐类,如钾、钙、镁、碘等,它们或与有机物质结合存在,或成为特殊形状的结晶。炮制对含无机成分的药物也有影响。如夏枯草中含有大量钾盐,若经长时间的水处理,会大大降低其利尿作用,故在处理夏枯草时不宜长时间浸洗。如矿石类药物经过煅烧后失去部分结晶水,成为无水化合物,不仅使药物易于粉碎,而且使药物进一步纯净,起到一定的医疗作用,如明矾为含水硫酸铝钾的复盐,在200℃失去结晶水,煅后凝固蛋白,增强吸水,干燥收敛防腐及抑制作用。同时炮制可以减少有害元素含量。通过对马钱子炮制前后水煎液中33种元素的测定分析,炮制后元素含量增加的有24种,含量减少的有9种,且大多为有害元素,如汞元素炮制前是炮制后200倍,而炮制后锌、锰、铁、钙、磷均高于炮制前1倍以上。这些有益元素的增加和有害元素的减少及元素内部构成比的改变,为马钱子炮制后毒性的降低及增加通络止痛、消肿散结的作用提供了一定依据。

中药化学成分中的英文对照

中药化学成分中英文对照 ENGLISH CHINESE Abrine 相思豆碱 Abruquinone A Abruquinone B Acetate of Albopilosin A Acetone condensation of Albopilosin A 3β-acetyloleanolicacid 3β-乙酰氧基齐墩果酸 O-Acetyl-3,6-di-O-β-D-xylopy-rano-astragaloside O-乙烯3,6-双氧-β-D-吡喃木糖基绵毛黄芪甙 6’’-acetylhyperoside 6’’-乙酰氧基金丝桃甙 N-Acetyl-D-Glucosamine N-乙酰氨基葡萄糖糖 8-o-acetyl Shanzhiside Methylester Acetylursolic acid 乙酰乌索酸 Acetylshikonin 乙酰紫草素 14-Acetyltalatisamine Achyranthan 牛膝多糖 Aconitine 乌头碱

Aconosine 爱康诺辛 Actein 黄肉楠碱 Actinodephnine Acuminatin Acuminatoside Adenanthin 腺华素 Adenosine 腺苷,腺嘌呤核苷 Aescin 七叶皂甙 Aesculetin 马栗树皮素 Aesculin 七叶甙,马栗树皮甙 Agaricic acid 落叶松覃酸 Agrimophol 鹤草酚 Ajmalicine(δ-Yohimbine) 阿吗碱,δ-育亨宾碱,阿吗里新,阿马林,,萝芙碱 Ajmaline 阿马林 Akebia saponin D 木通皂甙 D Alantolactone (Helenin) 土木香内酯,阿兰内酯Albopilosin A Aleuritic acid 苏式-紫胶桐酸

博落回化学成分研究进展

博落回化学成分的研究进展 【摘要】博洛回(Macleaya cordata(Willd.) R. B)为罂粟科多年生草本植物根茎、叶、果均含多种生物碱,对治疗多种炎症有效,所含生物碱也可抑制肿瘤细胞。我国博落回野生资源丰富,利用博落回开发新的产品将有广阔的市场前景。本文综述了博洛回属植物的化学成分研究现状。 【关键词】博落回;化学成分;研究进展 Research Progress on al constituents of Macleaya cordata [Abstract] Macleayacordata(Willd as the Papaveraceae perennial herbrhizome,leaf,fruitcontains many kinds of alkaloids, effective for the treatment of various inflammatory, alkaloid can inhibit tumor cell. Our Macleaya rich wildlife resources, utilization of Macleaya develop new products will have broad market prospects. Reviews the research status of bolo belongs to the chemical constituents of the plants [Key words] Macleayordata;Research Progress;chemical composition 博落回属植物概述植物型抗菌产品因其无污染和无残留等独特的药物功能,逐渐成为潜力较大的抗生素替代品之一。博落回为罂粟科博落回属植物博落回(Macleaya cordata(W illd.)R.B)的果实,具有清热解毒和杀虫止痒之功效,临床上可用于治疗阴道炎、肺炎、皮肤病和肝炎等,并具抗肿作用。 1 主要化学成分 1.1 化学成分分布 通过对博落回的研究发现其主要要用成分存在于根及及全草中,其中:根含有血根碱(arine),白屈菜红碱(chelerythrine),原阿片碱(protopine),α-

各类中药化学成分的生物合成途径

各类中药化学成分的主要生物合成途径 乙酸-丙二酸途径:脂肪酸类,酚类,醌类;甲戊二羟酸途径:萜类,甾类;莽草酸途径:即桂皮酸途径,苯丙素类,木脂素类,香豆素类;氨基酸途径 :生物碱类 溶剂提取法(常用溶剂及极性) (1)溶剂按极性分类:三类,即亲脂性有机溶剂、亲水性有机溶剂和水。溶剂按极性由弱到强的顺序如下:石油醚<四氯化碳<苯<二氯甲烷<氯仿<乙醚<乙酸乙酯<正丁醇<丙酮<甲醇(乙醇)<水。 甲醇(乙醇)是最常用的溶剂,能用水任意比例混合. 分子大,C多,极性小,反之,大..按相似相溶原理,极性大的溶剂提取极性大的化合物 提取方法 ①煎煮法:挥发性及加热易破坏,多糖类不宜用。 ②浸渍法:不用加热,适用于遇热易破坏或挥发性成分,含淀粉或黏液质多的成分,但效率不高。 ③渗漉法:效率较高。④回流提取法:受热易破坏的成分不宜用。⑤连续回流提取法:有机溶剂,索氏提取器或连续回流装置。⑥水蒸气蒸馏法: 适于具挥发性,能随水蒸气蒸馏而不被破坏的。挥发油、小分子生物碱、酚类、游离醌类等:⑥超临界萃取法:以CO2为溶剂.用于极性低的化合物,室温下工作,几乎不用有机溶剂,环保 分离方法 ①吸附色谱:利用吸附剂对被分离化合物分子的吸附能力的差异,而实现分离的一类色谱。硅胶用于大多数中药成分;氧化铝用于碱性或中性亲脂性成分如生物碱、萜、甾;活性炭用于水溶性物质如氨基酸、糖类和某些苷类;聚酰胺用于酚醌如黄酮、蒽醌及鞣质。②凝胶色谱:主要是分子筛作用,根据凝胶的孔径和被分离化合物分子的大小而达到分离目的。③离子交换色谱:基于各成分解离度的不同而分离。主要用于生物碱、有机酸及氨基酸、蛋白质、多糖等水溶性成分的分离纯化。④大孔树脂色谱:一类没有可解离基团,具有多孔结构,不溶于水的固体高分子物质。它可以通过物理吸附有选择地吸附有机物质而达到分离的目的。是反相的性质,一般被分离物质极性越大,越先被洗脱下来,极性越小,越后洗脱下来。应用于中药有效部位或有效成分的分离富集。⑤分配色谱:利用物质在固定相和流动相之间分配系数不同而达到分离。正相色谱:固定相极性>流动相极性,用于分离极性和中等极性的成分。常用固定相:氰基或氨基键合相;常用流动相为有机溶剂。反相色谱:固定相极性<流动相极性,用于离非极性和中等极性的成分,常用C18或C8键合相。常用流动相为甲醇-水或乙腈-水。 糖和苷类化合物 糖:多羟基醛或多羟基酮及其衍生物、聚合物的总称 苷:糖或糖额衍生物与另一非糖物质通过糖的端基碳原子连接而成,又称配糖体 构型D,L,α,β : 向上D,向下L; 同侧:β异侧:α 苷键酸水解:苷键原子首先发生质子化,然后苷键断裂生成苷元和糖的阳碳离子中间体,在水中阳碳离子经溶剂化,再脱去氢离子形成糖分子。难易顺序:N-苷>O-苷>S-苷>C-苷。强酸水解:得到糖,苷元易破坏;弱酸水解:得到次级苷,确定糖的连接顺序;两相酸水解:保护苷元 酶水解:对难以水解或不稳定的苷,在酶水解条件温和,不会破坏苷元,可得到真正的苷元 显色反应 Molish反应:加入5%α-萘酚乙醇液,沿管壁缓慢滴入浓硫酸,在两层液面间会出现一个紫色环。又称α-萘酚反应.说明含有糖类或苷类. (但碳苷和糖醛酸例外,呈阴性.) 菲林和多伦反应:阳性,有还原糖.可以利用这两个反应来区别还原糖和非还原糖。 单糖:都是还原糖。双糖:麦芽糖、乳糖为还原糖。蔗糖为非还原糖 苷键构型的判断 糖苷的1H-NMR:成苷的端基质子H的耦合常在较低场。如:β构型J H1-H2=6~9Hz(8左右);α构型J H1-H2=2~3.5Hz (4左右) 醌类 酸性(规律) -COOH > 二个β-OH > 一个β-OH >二个α- OH > 一个α–OH 可用PH 梯度萃取分离。 其结果为①和②被5%碳酸氢钠溶液提出;③被5%碳酸钠提出;④被1%氢氧化钠提出;⑤只能被5%氢氧化钠提出 可用PH梯度萃取分离。 颜色反应 1、Feigl反应:全部醌类均阳性。碱性条件加热,紫色 2、Borntrager’s反应:也叫碱液试验,羟基蒽醌阳性。——颜色变化与OH数目及位置有关,红-紫色. 3、醋酸镁反应:含α-酚羟基或邻二酚羟基的蒽醌类阳性。 4、与活性亚甲基试剂反应kesting-Craven和无色亚甲蓝显色反应: 苯醌和萘醌类的专属反应.在碱性条件下 5、对亚硝基-二甲苯胺反应: 蒽酮类的特异性反 应.(唯一).蒽酮就是9或10位没有被取代的羟基 蒽酮类. 醌类化合物的提取与分离 (大题,看书) pH梯度萃取法P82 例:大黄蒽醌苷类的分离 苯丙素类(一个或几个C6-C3) 香豆素:一般具有苯骈α-吡喃酮母核的天然产物 母核(画) 内酯性质和碱水解反应 碱性开环,酸性闭环。但长时间加热,异构化,不可 恢复闭环. 显色反应有荧光性质 1、Gibb’s反应: 试剂:2,6-二氯(溴)苯醌氯 亚胺 C6位没取代,阳性,蓝色 2、Emerson反应试剂:4-氨基安替比林,铁氰化 钾反应 C6位没取代,阳性,红色 木脂素鉴识 Labat反应:具有亚甲二氧基的木脂素加浓硫酸 后,再加没食子酸,可产生蓝绿色 黄酮(C6-C3-C6) 结构与基本骨架(芦丁,槲皮素,鼠李糖,葡萄糖的 结构都要求会写)138页 经典结构是2-苯基色原酮,现在泛指两个苯环通 过三个碳原子相互连接而成的一类化合物 黄酮类:以2-苯基色原酮为母核,且3位上无含 氧基团取代的一类化合物 黄酮醇:在黄酮基本母核的3位上连有羟基或含 氧基团 二氢黄酮:黄酮基本母核的2、3位双键被氢化而 成 二氢黄酮醇:黄酮醇类的2、3位被氢化的基本母 核 交叉共轭体系:黄酮结构中色原酮部分本身无 色,但在2位上引入苯环后,即形成交叉共轭体 系,通过电子转移、重排,使共轭链延长而显出 颜色。在7位或4’位上引入-OH及-OCH3等助色 团后,产生p-π共轭,使化合物颜色加深。 溶解度:游离黄酮一般难溶于水,易溶于甲醇、 乙醇、乙酸乙酯、氯仿、乙醚等有机溶剂及稀碱 水中。引入羟基增多,水溶性增大,脂溶性降 低;而羟基被甲基化后,脂溶性增加。黄酮苷一 般易溶于水、甲醇、乙醇等强极性溶剂中,但难 溶于苯、氯仿、乙醚等有机溶剂中 平面型如黄酮、黄酮醇、查尔酮等溶解度较小, 非平面型如二氢黄酮及二氢黄酮醇的溶解性较 大,异黄酮的也较大 酸性:7,4’-二OH黄酮>7-或4’-OH黄酮>一 般酚羟基>5-OH黄酮 显色反应:(1)HCl-Mg反应:样品溶于甲醇或乙 醇1ml中,加入少许Mg,再加几滴浓HCl,一两 分钟显红~紫红色。(2)AlCl3反应:样品的乙醇 溶液和1%乙醇溶液AlCl3反应,生成黄色络合 物。(3)锆盐-枸橼酸反应:可鉴别黄酮类化合 物是否纯在3-或5-OH。样品的甲醇溶液加2%二氯 氧锆甲醇溶液。黄色不褪,有3-OH或3,5-OH, 如果减褪,无3-OH而有5-OH pH梯度萃取法:5%NaHCO3可萃取7,4’-二羟基 黄酮,5%NaCO3可萃取7-或4‘-羟基黄酮, 2%NaOH可萃取一般酚羟基的黄酮,4%NaOH可以萃 取5-羟基黄酮。 柱色谱分离 硅胶柱:利用极性差异,几乎适用于任何类型黄 酮(主要分离异黄酮、二氢黄酮,二氢黄酮醇及 高度驾机皇或乙酰化的黄酮及黄酮醇) 聚酰胺柱:通过酰胺羰基与黄酮类化合物分子上 的酚羟基形成氢键缔合而产生。化合物结构与Rf 值:酚羟基少>多;易形成分子内氢键>难;芳 香化程度低>高;异黄酮>二氢黄酮醇>黄酮> 黄酮醇;游离黄铜>单糖苷>双糖苷>叁糖苷 (含水移动相做洗脱剂);有机溶剂做洗脱剂反 之。洗脱能力由弱至强;水<甲醇或乙醇(浓度 由低到高)<丙酮<稀氢氧化钠水溶液或氨水< 甲酰胺<二甲基甲酰胺<尿素水溶液 紫外 黄酮类型带II(弱峰) 带I(强峰) 取代) 黄酮醇(3-OH 游离) 250-280 358-385 异黄酮245-270 310-330肩峰 二氢黄酮/醇370-295 300-330 查耳酮220-270低强度340-390 氢谱: 黄酮或黄酮类H-3是一个尖锐的单峰出现在 6.3 处 邻位耦合:耦合常数为8Hz左右 间位耦合:2-3Hz 对位耦合:很弱,数值很小或没有 5,7-二OH黄酮δppm:H-6小于 H-8 . 7- OH 黄酮: δppm:H-6 > H-8 6’δ比较大,5’较小 同时还要看 单峰S,就没有邻,间位双锋d说明有邻位或间位 其中一个双双锋dd就说明有邻,和间两个 生物合成途径 经验异戊二烯法则:基本碳架均是由异戊二烯以 头-尾顺序或非头-尾顺序相连而成;生源异戊二 烯法则:甲戊二羟酸是各种萜类化合物生物合成 的关键前体 单萜:无环,单环,双环,三环,环烯醚。知道 卓酚酮,环烯醚萜,薄荷醇,青蒿素的二级结构 和性质 性质:萜类多具苦味,单萜及倍半萜可随水蒸气 蒸馏,其沸点随其结构中的C5单位数、双键数、 含氧基团数的升高而规律性升高 提取:挥发性萜可用水蒸气蒸馏法;一般萜可用 甲醇或乙醇提取;萜内酯可先用提取萜的方法提 取出总萜,然后利用内酯的特性,用碱水提取酸 化沉淀的方法纯化;萜苷多用甲醇、乙醇或水提 取 柱色谱:吸附剂多用硅胶。中性氧化铝。含双键 者可用硝酸银络合柱色谱分离(利用硝酸银可与 双键形成π络合物,而双键数目位置及立体构型 不同的萜在络合程度及络合稳定性方面有一定差 异)。洗脱剂多以石油醚、正己烷、环己烷分离 萜烯,或混以不同比例的乙酸乙酯分离含氧萜 鉴识:卓酚酮类的检识 (硫酸铜反应:绿色结 晶);环烯醚萜的检识(Weiggering法:蓝色/紫红 色;Shear反应:黄变棕变深绿);薁类的检识 (Ehrlich反应:蓝紫绿;对-二甲胺基苯甲醛) 挥发油 也称精油,是存在于植物体内的一类具有挥发 性、可随水蒸气蒸馏、与水不相容的油状液体。 分为:芳香族,萜类,脂肪族 检识:化学测定常数:酸值、酯值、皂化值 提取方法:①蒸馏法:提取挥发油最常用的方 法,对热不稳定的挥发油不能用。②溶剂萃取 法:脂溶性杂质较多。③吸收法:油脂吸收法, 用于提取贵重挥发油。④压榨法:该方法可保持 挥发油的原有新鲜香味,但可能溶出原料中的不 挥发性物质。⑤二氧化碳超临界流体萃取法:有 防止氧化热解及提高品质的突出优点,用于提取 芳香挥发油 三萜 醋酐-浓硫酸反应(Liebermann-Burchard) 红-紫-蓝-绿色-褪色(甾体皂苷) 黄-红-紫-蓝-褪色(三萜皂苷) 胆甾醇沉淀法:胆甾醇复合物——乙醚回流提 取,去除胆甾醇,得皂苷。因为甾体皂苷比三萜 皂苷形成的复合物稳定. 甾类 C21甾醇C2H5 昆虫变态激素8-10个碳的脂肪烃 强心苷不饱和内酯环 甾体母核的C-17位上均连一个不饱和内酯环。根 据内酯环的不同:五元不饱和内酯环叫甲型强心 苷元;六元不饱和内酯环叫乙型。 苷和糖连接的顺序分: I型强心苷:苷元-(2,6-二去氧糖)x-(D-葡萄

大蓟的功效与作用及食用方法

大蓟的功效与作用及食用方法 【功能主治】 凉血,止血,祛瘀,消痈肿。治吐血,衄血,尿血,血淋,血崩,带下,肠风,肠痈,痈疡肿毒,疔疮。 ①《别录》:根,主养精保血。主女子赤白沃,安胎,止吐血鼻衄。 ②《药性论》:根,止崩中血下。 ③《唐本草》:根,疗痈肿。 ④《日华子本草》:叶,治肠痈,腹藏瘀血,血运扑损,可生研,酒并小便任服;恶疮疥癣,盐研窨敷。 ⑤《滇南本草》:消瘀血,生新血,止吐血、鼻血。治小儿尿血,妇人红崩下血,生补诸经之血,消疮毒,散瘰疬结核,疮痈久不收口者,生肌排脓。 ⑥《玉楸药解》:治金疮。 ⑦《医林纂要》:坚肾水,去血热,泄逆气。治肠风,肠痈。 ⑧《福建民间草药》:凉血止血,消炎退肿。治肺热咳血,热结血淋,疔疖疮癌,漆疮,汤火烫伤。 【用法用量】内服:煎汤,1.5~3钱(鲜者1~2两);捣汁或研末。外用:捣敷或捣汁涂。 【注意】 脾胃虚寒而无瘀滞者忌服。 ①《品汇精要》:忌犯铁器。 ②《本草经疏》:不利于胃弱泄泻及血虚极,脾胃弱不思饮食之证。 【附方】 ①治心热吐血、口干:刺蓟叶及根,捣,绞取汁,每服一小盏,频服。(《圣惠方》) ②治吐血衄血,崩中下血:大蓟一握。捣,绞取汁,服半升。(《本草汇言》) ③治肺热咳血:大蓟鲜根一两。洗净后杵碎,酌加冰糖半两,和水煎成半碗,温服,日服两次。(《福建民间草药》) ④治热结血淋:大蓟鲜根一至三两。洗净捣碎,酌冲开水炖一小时,饭前服,日服三次。(《福建民间草药》) ⑤治妇人红崩下血,白带不止:大蓟五钱,土艾叶三钱,白鸡冠花子二钱,木耳二钱,炒黄柏五钱(如白带,不用黄柏)。引水酒煨服。(《滇南本草》) ⑥治肠痈、内疽诸证:大蓟根叶、地榆、牛膝、金银花。俱生捣汁,和热酒服。如无生鲜者,以干叶煎饮亦可。(《本草汇言》) ⑦治肺痈:鲜大蓟四两。煎汤,早晚饭后服。(《闽东本草》) ⑧治疔疖疮疡,灼热赤肿:大蓟鲜根和冬蜜捣匀贴患处,日换两次。(《福建民间草药》) ⑨治跌扑损伤,瘀血作痛:大蓟汁,和热酒饮。(《本草汇言》) ⑩治结核于项左右,或栗子疮红肿溃烂出脓久不收口者:独根大蓟,不拘多少,或煮水牛肉,或猪肉,或单用,煨点水酒服。外用新鲜大蓟捣烂,入发灰、儿茶、血竭同拌,敷疮口,生肌。(《滇南本草》) ⑾治汤火烫伤:大蓟新鲜根,以冷开水洗净后捣烂,包麻布炖热绞汁涂抹,日二、

中药化学成分单体化合物结构鉴定方法和程序

中药化学成分单体化合物结构鉴定方法和程序 黄峰中药学 2110948107 摘要:中药化学成分单体化合物的结构鉴定是深入探讨有效成分的生物活性、构效关系、体内代谢以及进行结构改造、人工合成等的前提条件,本文主要对中药化学成分单体化合物结构鉴定的程序做一个综述,并对所涉及的色谱法、光谱法等在结构鉴定中的运用做一个具体探讨。 关键词:化学成分;结构鉴定;色谱法;光谱法 前言 中医药现代化是当今我国政府大力倡导和中医药领域各位同仁共同努力的奋斗目标,同时也是中华民族文化,尤其是中医药走向世界的重要特征之一。中药中发挥各种药理作用的物质基础(如其中的生理活性成分和有效成分)的认知不仅是阐明中药作用机制的基础,也是中医药能够走向世界的关键。 从中药中经过提取、分离、精制得到的有效成分,运用各种物理或化学的科学技术鉴定或测定其化学结构,才能为深入探讨有效成分的生物活性、构效关系、体内代谢以及进行结构改造、人工合成等研制提供必要的依据。因此,研究清楚中药中的化学成分是现代科学技术发展和中药现代化的关键步骤。 因此,研究清楚中药的化学成分是现代科学技术发展和中药现代化的关建步骤。本文主要对中药化学成分单体化合物结构鉴定方法和程序做一个综述,以在这个基础上,运用我们所学的知识对中药未知化学成分单体化合物进行探索。 1 单体化合物结构鉴定的一般程序 1.1纯度检测 在进行有效成分的结构研究之前,必须对该成分的纯度进行检验,以确定其为单体化学成分,这是鉴定或测定化学结构的前提。一般常用各种色谱法进行纯度检测,此外,固体物质还可通过测定其熔点,考察其熔距的大小作为纯度的参考[1]。液体物质还可通过测定沸点、沸程、折光率及比重等判断其纯度[2]。对已知物质来说无论是固体还是液体物质,如其比旋度与文献数据相同,则表明其已是或接近纯品。 用于纯度检测的物理常数的测定包括熔点、沸点、比旋度、折光率和比重等的测定。固体纯物质的熔点,其熔距应在0.5度~1.0度的范围内,如熔距过大,

中药化学试题库完整

第一章绪论 一、概念: 1.中药化学:结合中医药基本理论和临床用药经验,主要运用化学的理论和方法及其它现代科学理论和技术等研究中药化学成分的学科 2.有效成分:具有生物活性、能起防病治病作用的化学成分。 3.无效成分:没有生物活性和防病治病作用的化学成分。 4.有效部位:在中药化学中,常将含有一种主要有效成分或一组结构相近的有效成分的提取分离部分,称为有效部位。如人参总皂苷、苦参总生物碱、银杏叶总黄酮等。 5. 一次代谢产物:也叫营养成分。指存在于生物体中的主要起营养作用的成分类型;如糖类、蛋白质、脂肪等。 6.二次代谢产物:也叫次生成分。指由一次代谢产物代谢所生成的物质,次生代谢是植物特有的代谢方式,次生成分是植物来源中药的主要有效成分。 7.生物活性成分:与机体作用后能起各种效应的物质 二、填空: 1.中药来自(植物)、(动物)和(矿物)。 2. 中药化学的研究内容包括有效成分的(化学结构)(理化性质)(提取)、(分离)(检识)和(鉴定)等知识。 三、单选题 1.不易溶于水的成分是( B ) A生物碱盐B苷元C鞣质D蛋白质E树胶 2.不易溶于醇的成分是( E ) A 生物碱 B生物碱盐 C 苷 D鞣质 E多糖 3.不溶于水又不溶于醇的成分是( A ) A 树胶 B 苷 C 鞣质 D生物碱盐 E多糖 4.与水不相混溶的极性有机溶剂是(C ) A 乙醇 B 乙醚 C 正丁醇 D 氯仿 E 乙酸乙酯 5.与水混溶的有机溶剂是( A ) A 乙醇 B 乙醚 C 正丁醇 D 氯仿 E 乙酸乙酯 6.能与水分层的溶剂是( B ) A 乙醇 B 乙醚 C 氯仿 D 丙酮/甲醇(1:1)E 甲醇 7.比水重的亲脂性有机溶剂是( C ) A 苯B 乙醚 C 氯仿D石油醚 E 正丁醇 8.不属于亲脂性有机溶剂的是(D ) A 苯B 乙醚 C 氯仿D丙酮 E 正丁醇 9.极性最弱的溶剂是( A ) A乙酸乙酯B 乙醇C 水D 甲醇E丙酮 10.亲脂性最弱的溶剂是(C ) A乙酸乙酯B 乙醇C 水D 甲醇E丙酮 四、多选 1.用水可提取出的成分有( ACDE ) A 苷B苷元C 生物碱盐D鞣质E皂甙 2.采用乙醇沉淀法除去的是中药水提取液中的( BCD ) A树脂B蛋白质C淀粉D 树胶E鞣质 3.属于水溶性成分又是醇溶性成分的是(ABC ) A 苷类B生物碱盐C鞣质D蛋白质 E挥发油 4.从中药水提取液中萃取亲脂性成分,常用的溶剂是( ABE ) A苯B氯仿C正丁醇D丙酮 E乙醚 5.毒性较大的溶剂是(ABE ) A氯仿B甲醇C水D乙醇E苯 五、简述 1.有效成分和无效成分的关系:二者的划分是相对的。 一方面,随着科学的发展和人们对客观世界认识的提高,一些过去被认为是无效成分的化合物,如某些多糖、多肽、蛋白质和油脂类成分等,现已发现它们具有新的生物活性或药效。 另一方面,某些过去被认为是有效成分的化合物,经研究证明是无效的。如麝香的抗炎有效成分,近年来的实验证实是其所含的多肽而不是过去认为的麝香酮等。 另外,根据临床用途,有效成分也会就成无效成分,如大黄中的蒽醌苷具致泻作用,鞣质具收敛作用。 2. 简述中药化学在中医药现代化中的作用 (1)阐明中药的药效物质基础,探索中药防治疾病的原理;(2)促进中药药效理论研究的深入; (3)阐明中药复方配伍的原理;(4)阐明中药炮制的原理。 3.简述中药化学在中医药产业化中的作用 (1)建立和完善中药的质量评价标准;(2)改进中药制剂剂型,提高药物质量和临床疗效; (3)研究开发新药、扩大药源; 六、论述 单糖及低聚糖生物碱盐游离生物碱油脂 粘液质苷苷元、树脂蜡 氨基酸水溶性色素脂溶性色素 蛋白质、淀粉水溶性有机酸挥发油 第二章提取分离鉴定的方法与技术 一、概念:

白芍与赤芍的异同

专业:中药资源与开发姓名:XXX 学号:11XXXXX 白芍与赤芍的异同 白芍、赤芍均为来源于芍药属的常用中药,所含化学成分类似,但含量比例不同;药理活性相似,但作用强度不同。中医学对其功效的描述各有偏重,在中医临床应用上他们有明显的区别。探索比较白芍和赤芍药材各方面的共性与差异,对有效控制白芍、赤芍药材质量和确保药物临床疗效具有非常重要的意义。 一.来源的区别 白芍、赤芍, 宋以前本草统称为芍药。《药典》记载“白芍, 为毛蓖科植物芍药的干燥根, 功能: 平肝止痛, 养血调经, 敛阴止汗。”又载: “赤芍, 为毛蕊科植物芍药或川赤芍的干燥根, 功能:清热凉血, 散痕止痛。” 从陶弘景《集注》注文: “余处亦有而多赤, 赤者小利”的文字可见, 芍药分为赤、白两种, 始于梁代。 从《开宝本草》、《本草纲目》、《本草崇原》、《本草备要》等记载的文字看, 清以前的白芍和赤芍, 是依花色来区分的, 白花者为白芍, 赤花者为赤芍。而今天则依据植物种类和产地加工方法来划分赤、白芍。 现今白芍与赤芍的分类,是依《中国药典》为标准,其白芍的原植物为https://www.wendangku.net/doc/e23342154.html,ctiflara Pail.(栽培品),赤芍的原植物为https://www.wendangku.net/doc/e23342154.html,ctiflara Pail.(野生品或栽培品)和P.veitchii Lynch.古今赤、白芍的划分和药用品种有较大的差异。 二.化学成分的区别 植物学家很早就对白芍、赤芍的化学成分进行了系统研究。迄今为止从两药中分离得到的化学成分包括单萜苷、多元酚、黄酮及其苷类、胡萝卜苷、蔗糖等,其中最主要的成分是单萜苷及多元酚类化合物。芍药单萜苷类主要包括芍药苷、芍药内酯苷、羟基芍药苷、苯甲酰芍药苷、苯甲酰羟基芍药苷等,这类化学成分统称为芍药总苷;而多元酚类化合物则主要由多种没食子酰葡萄糖、丹皮酚等化学成分组成。 事实上,从化学组成来看,白芍和赤芍非常一致,均以单萜苷及多元酚类化合物为代表性成分,这是相近的生物基源所决定的。但是由于生长环境的不同及药材采收后加工处理方式的差异,导致这些成分在两味药材中的含量比例各有不同。与无需炮制的野生品赤芍相比,白芍为人工栽培品,入药前需经浸泡,刮皮,沸水煮至透心等炮制工序。这一过程使得白芍所含化学成分在整体上呈现下降的趋势,尤以没食子酸、芍药苷、五没食子酰葡萄糖和丹皮酚流失显著,但芍药内酯苷是个例外,与赤芍相比,它的含量在白芍中呈现明显优势,是含量仅次于芍药苷的第二主成分。 赤芍含有丰富的苷类化合物, 主要含有芍药苷( paeon-iflor in) 315%~ 71 98%, 羟基芍药苷( oxypaeoniflorin) 01 12%~0121%、芍药内酯苷( albiflorin) , 苯甲酰羟基芍药苷benzoyloxypaeoniflorin) , 苯甲酰芍药苷( benzo ylpaeoniflorin) , 此外还含有没食子酸、棕榈酸、鞣质。 白芍主要含有芍药苷11 86%~ 51 76%、羟基芍药苷、芍药内酯苷、苯甲酰羟基芍药苷、苯甲酸、鞣质。 三.药理作用的区别 (一)赤芍的药理作用

中药制剂中各类化学成分分析

(一)A型题 1.分析中药制剂中生物碱成分常用于纯化样品的担体是() A.中性氧化铝 B.凝胶 C.硅胶 D.聚酰胺 E.硅藻土 2.用薄层色谱法鉴别生物碱成分常在碱性条件下使用的单体式() A.三氧化二铝 B.纤维素 C.硅藻土 D.硅胶 E.聚酰胺 3.薄层色谱法鉴别麻黄碱时常用的显色剂是() A.10%硫酸-乙醇溶液 B.茚三酮试剂 C.硫酸钠试剂 D.硫酸铜试剂 E.改良碘化铋钾试剂 4.可用于中药制剂中总生物碱的含量测定方法是() A.反相高效液相色潽法 B.薄层色谱法 C.气象色谱法 D.正相高效液相色谱法 E.分光光度法 5.不宜采用直接称重法进行含量测定的生物碱类型是() A.强碱性生物碱 B.若碱性生物碱 C.挥发性生物碱 D.亲脂性生物碱 E.亲水性生物碱 6.生物碱成分采用非水溶液酸碱滴定法进行含量测定主要依据是() A.生物碱在水中的溶解度 B.生物碱在醇中的溶解度 C.生物碱在低极性有机溶剂中的溶解度 D.生物碱在酸中的溶解度 E.生物碱PKa的大小 7.使生物碱雷氏盐溶液呈现吸收特征的是()

A.生物碱盐阳离子 B.雷氏盐部分 C.生物碱与雷氏盐生成的络合物 D.丙酮 E.甲醇 8.生物碱雷氏盐比色法溶解沉淀的溶液时() A.酸水液 B.碱水液 C.丙酮 D.氯仿 E.正丁醇 9.含有下列药材的中药制剂可用异羟肟酸铁比色法测定总生物碱含量的是() A.黄连 B.麻黄 C.防己 D.附子 E.黄柏 10.雷氏盐(以丙酮为溶剂)比色法的测定波长是() A.360nm B.525nm C.427nm D.412nm E.600nm 11.苦味酸盐比色法的测定波长是() A.360nm B.525nm C.427nm D.412nm E.600nm 12.酸性染料比色法影响生物碱及染料存在状态的是() A.溶剂的极性 B.反应的温度 C.溶剂的PH D.反应的时间 E.有机相中的含水量 13.酸性染料比色法溶剂介质PH的选择是根据() A.有色配合物(离子对)的稳定性 B.染料的性质

药一中药化学成分分类及举例

中药化学-中药化学成分分类及举例 一、生物碱分类及举例 1、吡啶类生物碱 (1)简单吡啶类:烟碱、槟榔碱、槟榔次碱 (2)双稠哌啶类(具喹诺里西啶母核):苦参碱、氧化苦参碱 2、莨菪烷类:莨菪碱(洋金花) 3、异喹啉类生物碱: (1)双苄基异喹啉类:汉防己甲素、汉防己乙素 (2)原小檗碱类:小檗碱(多为季铵碱)(黄连)、原小檗碱(多为叔铵碱)(延胡索)(3)吗啡烷类:吗啡碱、可待因 4、有机胺类生物碱(生物碱的氮原子不结合在环内):麻黄碱、秋水仙碱 5、其他类生物碱: (1)吡咯类生物碱:如党参中党参碱; (2)吲哚生物碱:如麦角新碱、毒扁豆碱; (3)喹啉衍生物:如喜树碱; (4)萜类生物碱:如乌头中乌头碱; (5)甾体类生物碱:贝母中的贝母碱。 苦参(苦参碱、氧化苦参碱)、山豆根(奎诺里西啶类、苦参碱、氧化苦参碱)、麻黄(麻黄碱、伪麻黄碱)、黄连(原小檗碱)、延胡索(延胡索乙素)、防己(汉防己甲素-粉防己碱、汉防己乙素-防己喹啉碱)、川乌(乌头碱、次乌头碱、新乌头碱-二萜类生物碱)、洋金花(莨菪烷类)、天仙子(莨菪碱、东莨菪碱)、马钱子(士的宁-番木虌碱、马钱子碱)、千里光(吡咯里西啶类) 二、糖类分类及举例

1、单糖 (1)五碳醛糖:D-木糖、L-阿拉伯糖 (2)甲基五碳糖:L-鼠李糖 (3)六碳醛糖:D-葡糖糖、D-甘露糖、D-半乳糖(4)六碳酮糖:D-果糖 (5)糖醛酸:D-葡糖糖醛酸 2、低聚糖 (1)非还原糖:蔗糖、海藻糖 (2)还原糖:槐糖、樱草糖 3、多糖 (1)水溶:淀粉 (2)水不溶:纤维素、甲壳素 三、苷类分类及举例 1、氧苷 (1)醇苷:红景天苷 (2)酚苷:天麻苷 (3)氰苷:苦杏仁苷 (4)酯苷:山慈菇苷 (5)吲哚苷:靛苷 2、硫苷:萝卜苷、芥子苷 3、氮苷:巴豆苷 4、碳苷:牡荆素、芦荟苷 四、醌类分类及举例 1、苯醌

赤芍化学成分和药理作用的研究概况

赤芍化学成分和药理作用的研究概况 摘要通过查阅与赤芍研究相关的国内文献资料, 对赤芍的化学成分、药理作用等方面的研究概况进行综述, 为赤芍的进一步研究提供参考。 关键词赤芍;化学成分;药理作用 1. 赤芍的来源 赤芍为毛茛科植物芍药Paeonia lactiflora Pall.或川赤芍Paeonia veitchii Lynch 的干燥根, 春、秋两季采挖, 除去根头及须根, 晒干。性味苦、微寒, 归肝经, 具有清热凉血、散瘀止痛之功能, 主要用于治疗温毒发斑、目赤肿痛、肝郁胁痛、经闭痛经、症瘕腹痛、跌扑损伤、痈肿疮疡等症[1]。 2. 赤芍的化学成分[2,3] 赤芍中已鉴定的化合物大都是单萜成分,这些成分有芍药苷、芍药内酯苷、氧化芍药苷、苯甲酸芍药苷、芍药吉酮、芍药新苷、(2)-(IS,5R)-β-蒎稀-10-基-β-巢莱糖苷。川赤药中含有β-谷甾醇,β-谷甾醇-α-葡萄糖苷、蔗糖等。赤芍中还分离出苯甲醛,并含有没食酸鞣质,邻苯三酚,二氢芹菜素、4-乙基-芍药苷等。 2.1单萜类芍药苷( 3.1%-7.98%)、芍药醇、氧化芍药苷、苯甲酰芍药苷(0.01%)、芍药内酯苷(0.1%)、羟基芍药苷(0.12%-0.21%)、4-乙基-芍药苷、没食子酰芍药苷、芍药苷元酮、芍药新苷、9-乙基芍药新苷A、苯甲酰羟基芍药苷和(1S,2S,4R)-反式-2-羟基-1,8-桉叶素等。 2.2三萜类24,30位降常春藤皂苷三萜衍生物(Peaonenolide F、Peaonenolide H)、齐墩果酸(Oleanolic acid)、常春藤皂苷元(hederagenin)、30-降常春藤皂甙元 (30-norhederagenin)、牡丹皮酸A等。 2.3 儿茶素类儿茶素、没食子酰芍药苷(8-O-galloyldesbenzoylpaeoniflorin、 6′-O-galloyl desbenzoylpaeoniflorin、3′, 6′-di-O-galloylpaeoniflorin和 6′-O-galloyldesbenzoylalbiflorin )等。 2.4 酚酸类没食子酸等。 2.5其他化合物山柰酚、没食子酸甲酯、没食子酸乙酯、熊果苷、胡萝卜苷,以及一些鞣质、糖、淀粉、蛋白质、脂肪油以及树脂等化合物。 3. 赤芍的药理作用

中药炮制与中药化学成分的影响分析毕业论文

毕业论文 论文题目中药炮制与中药化学成分的影响分 析 指导老师_________________ 作者__宋凯() 专业__中医_____________ 年级__2012级成人专科______ 教育中心_南充教育中心_________ 2014年11 月 15日 中药炮制与中药化学成分的影响分析 摘要:中药炮制是以中医药基本理论为指导,根据辩证施治用药的需要和药物自身的理化性质以及制剂的不同要求,对原药材进行的一整套加工处理。中药经炮制后,由于加热、加辅料等处理,可以使某些中药中的化学成分发生变化,有的成分被溶解出来,有的成分被分解或转化成新的成分,有的成分有量的增减,当炮制成饮片后其化学成分、理化性质都可能发生很大的改变,从而影响药物的疗效,所以只有在搞清楚中药在炮制过程中的化学成分变化及其机理的基础上,才能更好地了解中药炮制的目的,进而探讨中药炮制的真正意义,同时为制定合理的炮制工艺和质量标准提供科学依据。

关键词:中药炮制;炮制目的,方法,影响;化学成分 中药炮制是研究中药炮制理论,工艺,规格,质量标准,历史沿革及其发展方向的一门学科,中药炮制是根据中医药理论,依照辩证施治用药的需要和药物自身性质,以及调剂、制剂的不同要求,所采取的一项制药技术。 1.中药炮制的目的 中药炮制主要有以下目的及作用: 1.1降低或消除毒副作用,保证用药安全; 1.2改变药性和功能,增强临床疗效; 1.3便于调剂制剂,保证药物质量; 1.4.矫正不良气味,便于服用; 1.5.便于保管贮存及保存药效; 1.6改变药物或增强药物作用趋向。 2.中药炮制的方法 明代缪希雍在《炮炙大法》卷首把当时的炮制方法进行了归纳,载述:“按雷公炮炙法有十七:曰炮、曰爁、曰煿、曰炙、曰煨、曰炒、曰煅、曰炼,曰制、曰度、曰飞、曰伏、曰镑、曰摋,曰瞧、曰曝、曰露是也,用者宜如法,各尽其宜。”近代则依据中药炮制工艺的全过程,将其分为净制、切制和炮炙三大类,《中国药典》一部附录“药材炮制通则”即采用此种分类方法。其中净制包括挑选、筛选、淘洗等。切制包括浸泡、润、漂等软化处理与切片、切段等,炮炙包括炒、烫、煅、制炭、蒸、煮、炖、燀、酒制、醋制、盐制、姜汁制、蜜炙、油炙、制霜、水飞、煨等。 3.中药炮制对中药化学成分的影响 中药的化学成分是其发挥临床作用的物质基础。中药的化学成分是相当复杂的,可以认为中药的作用是综合性的。中药在炮制过程中,由于温度、时间、溶剂及各种不同辅料的处理,使中药的化学成分发生一系列变化。 3.1炮制对中药中生物碱类成分的影响 生物碱是一类含氮的有机化合物,通常有似碱的性质。大多数生物碱在高温条件下不稳定,受热遭破坏或分解,游离的生物碱大部分不溶于水而溶于有机溶剂,所以在其炮制过程中,多加醋使之成盐,而增加溶出度。用HPLC法测定不同醋制方法中延胡索含量,其中以醋煮为最高,从而增加其在水中的溶解度,加强其镇痛作

相关文档