文档库 最新最全的文档下载
当前位置:文档库 › 第九章 振动习题及解答

第九章 振动习题及解答

第九章 振动习题及解答
第九章 振动习题及解答

第九章振动习题及解答

9.2.1 一刚体可绕水平轴摆动.已知刚体质量为m,其重心C和轴O间的距离为h,刚体对转动轴线的转动惯量为I.问刚体围绕平衡位置的微小摆动是否是简谐运动?如果是,求固有频率,不计一切阻力.

解:

刚体受力如图所示,规定逆时针为转动正方向,为与铅垂线(为平衡位置)的夹角,由对的

转动定理;

因很小故

9.2.2 轻弹簧与物体的连接如图所示,物体质量为m,轻弹簧的劲度系数为和,支承面是理想光滑面,

求系统振动的固有频率 .

解:以物体 m为隔离体,水平方向受的弹性力以平衡位置为原点建立坐标系,水平

向右为x轴正方向。设m处于点对两弹簧的伸长量为0,即两个弹簧都处于原长状态。m发生一小位移x

之后,弹簧的伸长量为x,弹簧被压缩长也为x。

故物体受力为:(线性恢复力)

m相当于受到刚度系数为的单一弹簧的作用

由牛顿第二定律:

9.2.3一垂直悬挂的弹簧振子,振子质量为m,弹簧的劲度系数为.若在振子和弹簧之间串联另一弹簧,

使系统的频率减少一半.串联上的弹簧的劲度系数应是的多少倍?

解:

未串时:平衡位置

串联另一刚度系数为的弹簧:

此时弹簧组的劲度系数为

已知:

解得:

9.2.4单摆周期的研究.(1)单摆悬挂于以加速度a沿水平方向直线行驶的车厢内.(2)单摆悬挂于以加速度

a上升的电梯内.(3)单摆悬挂于以加速度a(

( 1)以车为参照系,摆锤为隔离体,受重力,摆线张力,惯性力。

平衡位置处有:

由此可得平衡位置时摆线铅直夹角

(1)

由平衡位置发生小角位移

由牛顿第二定律 :在切线方向的分量式

角很小,故.于是得:

利用 (1)式,

因为

所以

(2)以电梯为参照系,惯性力与重力沿铅垂方向,同于的分析摆线为铅垂位置时为平衡态.

(3) 同(2)的分析得:

9.2.5在通常温度下,固体内原子振动的频率数量级为.设想各原子之间彼此以弹簧连结.一摩尔银的

质量为108g且包含个原子.

现仅考虑一列原子,且假设只有一个原子以上述频率振动,其它原子皆处于静止,计算一根弹簧的劲度系数. 解

由 9.2.2知

这里

9.2.6一弹簧振子,弹簧的劲度系数为,物体质量为20g现将弹簧自平衡位置拉长

并给物体一远离平衡位置的速度,其大小

为7.0m/s,求该振子的运动学方程(SI).

解:以平衡位置为原点建立坐标系 O-x,水平向右为正方向。弹簧振子的运动方程为:

时,

时,→

弹簧振子的运动方程:

9.2.7 质量为的物体悬挂在劲度系数为的弹簧下面.(1)求其振动的周期.

(2)在时,物体距平衡位置的

位移为,速度为,求其运动学方程.

解:以平衡位置为原点,建立坐标系 O-x,竖直向下为正方向。

( 1)

( 2)设运动方程为:

所以运动学方程为:

9.2.8 ( 1)一简谐振动的运动规律为,若计时起点提前0.5s,其运动学方程如何表示?欲使其初相为零,计时起点应提前或推迟若干?

(2)一简谐振动的运动学方程为.若计时起点推迟1s,它的初相是多少?欲使其初相为零,应怎样调整计时起点?

(3)画出上面两种简谐振动在计时起点改变前后时旋转矢量的位置. 解:

( 1)

(1)

计时起点提前 0.5,则,代入(1)式,运动方程为:

设计时起点提前秒,可使初相为零,即,代入(1)式得:

即提前秒时计时可使其初相为零。

( 2)

(2)

计时起点提前秒时代入

若计时起点推迟一秒,则,此时初相为

若要,需

即推迟秒计时时,可使初相为零。

( 3)见图a,b

(a) (b)

9.2.9 画出某简谐振动的位移——时间曲线,其运动规律为(SI制)

解:

(制)

则有为周期引的余弦曲线。

画出曲线,再根据的关系。将轴右移周期。

9.2.10 半径为 R的薄圆环静止于刀口O上,令其在自身平面内作微小摆动.(1)求其振动的周期.(2)求与

其振动周期相等的单摆的长度.(3)将圆环去掉而刀口支于剩余圆弧的中央,求其周期与整圆环摆动周期之比.

解:

( 1)该装置为物理摆,利用9.2.1对一般刚体得到的公式

为薄圆球质量。

根据平行轴定理:

( 2)根据单摆公式

由可得

( 3)该装置为物理摆,仍利用公式

由对称性可知,质心位于上。为剩余圆弧的质量,。

根据平衡轴定理。

可知不管圆环去掉多少,只要刀口高于剩余圆弧中央,其振动周期均不变。

9.2.11 1m长的杆绕过其一端的水平轴作微小摆动而成为物理摆.另一线度极小的物体与杆的质量相等.固定于

杆上离转轴为h的地方.用表示未加小物体时杆子的周期,用表示加上小物体以后的周期.(1)求当

和时的比值.(2)是否存在某一h值,可令,若有可能,求出h值并解释为什么h取此值时周期不变.

( 1)利用9.2.1得到的物理摆公式

设为杆质量,为杆长,未加小物体时,

加小物体后,

( 2)由,即

可得:

讨论:

由,此物理摆的等效单摆长度为。在处加另一物体,相当于使等效单摆的摆锤质量增加而摆长不变,故周期不变。

,即小物体置于转动轴上,对运动无影响。故周期不变。

9.2.12 天花板下以 0.9m长的轻线悬挂一个质量为0.9kg的小球.最初小球静止,后另有一质量为0.1kg的小球沿水平方向以1.0m/s的速度与它发生完全非弹性碰撞。求两小球碰撞后的运动学方程.

解:

以小球为物体系。碰撞前后的过程始末,在过程中认为仍在原小球静止处。水平方向动量守恒:

碰撞后成为一个单摆作简谐运动,设其运动方程为

以碰后小球获得速度0.1(m/s),而时为计时起点,即

由,

故运动方程在很小的条件下,,所以用线量描述的运动方程为

9.2.13 求第四章习题4.6.5题中铅块落入框架后的运动学方程.

解:

以物体为隔离体,根据自由落体的运动规律可知:

落至盘上的速度为

在以框架,物体为物体系。完全非弹性碰撞前后为过程始末,因外力(弹簧弹性力,重力)内力,故可用动量守恒定律求近似解:

设弹簧自由伸展的位置为 a,挂框架后平衡位置为b,碰后平衡位置为O,O即为坐标系O-x之原点.

依题意

碰撞后系统为一数值悬挂的弹簧振子,舍弃运动方程为

以碰撞之后,的共同速度运动,而处于b处时为计时起点,即:

运动方程为:

可选择适当的计时起点使初项为零,则运动方程可表示为

9.2.14 第四章习题4.6.5题中的框架若与一个由框架下方沿铅垂方向飞来的小球发生完全弹性碰撞,碰后框架的运动学方程是怎样的?已知小球20g,碰框架前的速度为10m/s.

解:

以框架,小球为物体系。以框架平衡位置为原点建立坐标系O-x,竖直向下为正方向:

以完全弹性碰撞前后为过程始末,设小球的碰撞前速度为,小球框架碰后速度为,因外力内力,故可用动量守恒定律近似求解。又因碰撞为完全弹性碰撞,碰撞前后总动能相等。

可以求得:

在一框架为隔离体。碰撞之后平衡位置不变,仍未 O点。系统为一竖直悬挂的弹簧振子,设其运动方程为:

以碰撞后,框架获得速度,而处于O点时为计时起点,即:

根据题意,弹簧刚性系数

所以运动方程为

9.2.15 质量为m的物体自倾角为的光滑斜面顶点处由静止而滑下,滑行了远后与一质量为的物体

发生完全非弹性碰撞. 与劲度系数为k的弹簧相连.碰撞前静止于斜面上,如图所示.问两物体碰撞后

作何种运动,并解出其运动方程.已知.

:a为弹簧自由伸展位置,b为加后平衡位置,O为发生完全非弹性碰撞后的平衡位置,以O为原点建立坐标系O-x如图:

以物体 m为隔离体,物体m由斜面顶滑下,做匀加速运动滑行远后速度为

再以为物体系。以完全非弹性碰撞前后为过程始末,且近似认为碰撞过程中位置不变。

当发生完全非弹性碰撞之后,沿ox方向的动力学方程为

受线性恢复力,做简谐运动。

根据定义

的运动方程为

若以碰撞后弹簧压缩最甚时为计时起点,设此时坐标为则

现在求。以弹簧自由伸长位置a为重力势能、弹性势能零点。在由碰撞后到达压缩最甚的过程中机械能守恒,有

代数,运动方程

9.3.1 1851年佛科做证明地球自转的实验,摆长69m,下悬重球28kg.设其振幅为,求其周期和振动的总能量,重球最低处势能为零.

:根据单摆周期公式

以悬线铅直时为势能零点,则振动的总能量即等于摆锤在最高点时的势能

9.3.2 弹簧下面悬挂质量为50g的物体,物体沿竖直方向的运动学方程为,平衡位置为势能零点(单位时间:s,长度单位:cm).

(1)求弹簧的劲度系数,(2)求最大动能,(3)总能量.

解:

( 1)根据弹簧振子

( 2)由

速度最大值

故最大动能

( 3)总能即等于最大动能

9.3.3 若单摆的振幅为,试证明悬线所受最大拉力等于. 解

振动和波典型例题

【例1】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为() A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g 【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振 子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的 位置.初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平 衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x1=2 mg/k,在振动过程中的平衡位置时的伸长量为x2=mg/k,故振子振动过程中的振幅为 A=x2-x1= mg /k D物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,因为D振动过程中的平衡位置在弹簧自由长度以下mg/k处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg.出当振子速度为零时的位置,这两个位置间的距离就是振幅.本题侧重在弹簧振子运动的对称性.解答本题还能够通过求D物运动过程中的最大加速度,它在最高点具有向下的最大加速度,说明了这个系统有部分失重,从而确定木箱对地面的压力 【例2】在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为μ,O 点为弹簧原长位置,将细绳烧断后,m、M开始运动.求:①当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?并简要说明速度为最大的理由.②判断m与M的最 终运动状态是静止、匀速运动还是相对往复的运动? 【解析】①在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于f.m相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动.当F=f时车速达到最大值,此时m必在O点左侧。设此时物体在O点左侧x处, 则kx=μmg。所以,当x=μmg/k时,小车达最大速度. ②小车向左运动达最大速度的时刻,物体向右运动也达最大速度,这时物体还会继续向右运动,但它的运动速度将减小,即小车和物体都在做振动.因为摩擦力的存有,小车和物体的振动幅度必定持续减小,设两物体最终有一共同速度v,因两物体组成的系统动量守恒,且初始状态的总动量为零,故v=0,即m与M的最终运动状态是静止的

振动与波动习题与答案

第10章振动与波动 一.基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即 由它可导出物体的振动速度) =t A v - ω + ω sin(? 物体的振动加速度) =t A a2 cos(? - + ω ω 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件

确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν = 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π=2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。 7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相?,t=t 时刻它与x 轴的夹角为谐振动的相位?ω+t 。旋转矢量A ?的末端在x 轴上的投影点 的运动代表着质点的谐振动。 8. 简谐振动的能量 作谐振动的系统具有动能和势能,其 动能 )(sin ?+ωω==t A m m E k 22222 12 1v 势能 )(cos ?+ω==t kA kx E p 2222 12 1 机械能 22 1 kA E E E p k =+= 9. 两个具有同方向、同频率的简谐振动的合成 其结果仍为一同频率的简谐振动,合振动的振幅 初相 2 2112211?+??+?= ?cos cos sin sin tan A A A A (1)当两个简谐振动的相差),,,( Λ210212±±=π=?-?k k 时,合振动振幅最大,为 21A A +,合振动的初相为1?或2?。

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 afG — sin0) ;殳上运动的质点的微 afl - COS0) 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s为质点沿摆线运动时的路程,取0=0时,s=0 H ( x = a(0-sine) * ly = —a(l — COS0) ds - J (dx)2 + (dy)2 二 J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin| 2a sin舟dO = 4 a (L co马 写出约束在铅直平面内的光滑摆线

ee A s=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9 x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向 与 dy cos 0 -1 tan

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

汽车振动练习题

判断题 1、系统作与激振力同频率的简谐振动,振幅决定于激振力的幅值、频率以及系统本身的物理特性。 A.对 2、当初始条件为零,即==0时,系统不会有自由振动项。 A.错 3、隔振系统的阻尼愈大,则隔振效果愈好。 A.对 4、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。B.错 5、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。对 6、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。错 7、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。对 8、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。对 9、无阻尼振动的固有频率只与质量和刚度有关,是系统的固有特性,与外界初始激励(初始条件)无关。对 10、对数衰减系数可以用来求阻尼比。() A.对 11、单自由度系统在简谐激励力作用下,系统将产生一个与激励力相同频率的简谐振动,但滞后一个相角。 A.对 12、线性系统内各个激励产生的响应是互不影响的。 A.对 13、两个同频率的简谐振动在同方向的合成运动是该频率的简谐振动。 A.对 14、简谐振动的加速度,其大小与位移呈正比,而方向与位移相反,始终指向平衡位置。 A.对 15、所有表示周期振动的周期函数都可以展开成Fourier级数的形式。 B.错 16、广义坐标必须能完整地描述系统的运动。 A.对 17、在欠阻尼和过阻尼的情况下,运动都将衰减为零。()对 18、对于无阻尼系统,速度超前位移90度。() A.对 19、瑞利法的基础是能量守恒定律。() A.对 20、有阻尼系统自由振动的频率有可能是零。() A.对 21、有阻尼系统自由振动的频率有时大于无阻尼系统的固定频率。() A.对 22、能量守恒定律可用于推导有阻尼系统和无阻尼系统的运动微分方程。() A.对 23、当质量块在垂直方向振动时,推导运动微分微分方程时都可以不计重力。() A.对 24、对于单自由度系统而言,无论质量是在水平面还是在斜面上运动,运动微分方程都是相同的。 A.对 25、在空气中振动的系统可以看作是一个阻尼系统。() A.对 26无阻尼系统的振幅不随时间变化。() A.对 27、离散系统和集中参数系统是相同的。() A.对 28、广义坐标不一定是笛卡尔坐标。() A.对 29、几个不同位置质量的等效质量可以用动能等效得到。() A.对 30、简谐运动是周期运动。() A.对

振动与波动习题与答案

振动与波动习题与答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第10章 振动与波动 一. 基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即 由它可导出物体的振动速度 )sin(?+ωω-=t A v 物体的振动加速度 )cos(?+ωω-=t A a 2 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν= 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π = 2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即:

得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan) 虚部:sin(5t+ arctan) 1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x (t)可表示为 , 由式得

大学物理习题解答8第八章振动与波动(1)

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d ()d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 222d ()d cos x a A t t ωω?==-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 212 k E mv = · 弹簧的势能为 212 p E kx = · 振子总能量为 P 22222211 ()+()221=2sin cos k E E E m A t kA t kA ωω?ω?=+= ++ 3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 22 2d d 20d d x x x t t βω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 22 P 2d d 2d d cos x x F x t t t m βωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 221112212()cos A A A A A ??=++-

振动习题

例1: 提升机系统重物重量N W 51047.1?=钢丝绳的弹簧刚度 cm N k /1078.54 ?=重物以v=15m/s 的速度匀速下降时求:绳的上端突然被卡住时,(1)重物的振动频率,(2)钢丝绳中的最大张力。 解:振动频率s rad W gk /6.190== ω 重物匀速下降时处于静平衡位置,若将坐标原点取在绳被卡住瞬时重物所在位置 则 t=0 时,有: 00=x v x =0 振动解: )()6.19sin(28.1)sin()(00 cm t t v t x == ωω )s i n ()c o s ()(00 000t x t x t x ωωω + = 振动解: )( )6.19sin(28.1)sin()(00 cm t t v t x == ωω 绳中的最大张力等于静张力与因振动引起的动张力之和 : )(1021.21074.01047.1555max N kA W kA T T s ?=?+?=+=+= 由于km v v k kA ==0 ω 为了减少振动引起的动张力,应当降低升降系统的刚度 例2: 重物落下,与简支梁做完全非弹性碰撞 梁长 L ,抗弯刚度 EJ 求:梁的自由振动频率和最大挠度 解:取平衡位置以梁承受重物时的静平衡位置为坐标原点建立坐标系 静变形λ 由材料力学 :

EJ m gl 483 = λ 自由振动频率为 : λωg =0348ml EJ = 撞击时刻为零时刻,则 t=0 时,有: λ-=0x gh x 20= 则自由振动振幅为 : 2 002 0? ??? ??+=ωx x A λλh 22+= 梁的最大扰度: λλ+=A max ) sin()cos()(00 000t x t x t x ωωω + = 例:圆盘转动 圆盘转动惯量 I θk 为轴的扭转刚度, 定义为使得圆盘产生单位转角所需的力矩 在圆盘的静平衡位置上任意 选一根半径作为角位移的起点位置 由牛顿第二定律:0=+θθθk I 扭振固有频率 020=+θωθ I k /0θω= 由上例可看出,除了选择了坐标不同之外,角振动与直线振动的数学描述是完全相同的。 如果在弹簧质量系统中将 m 、k 称为广义质量及广义刚度,则弹簧质量系统的有关结论完全适用于角振动。以后不加特别声明时,弹簧质量系统是广义的 。

振动理论课后答案

精心整理 1-1???一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt????; ???????? 既有 , ,得到,mm 有一作简谐振动的物体,它通过距离平衡位置为cm 解: 设该简谐振动的方程为; ; A=10.69cm;1/s;T=s 当时,取最大,即: 得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3?一个机器内某零件的振动规律为,x的单位是cm,1/s?。 这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: ????????振幅A=0.583 ??????最大速度??? 已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式, 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:?实部:cos(5t+?arctan) ????????????????????????????????????虚部:sin(5t+?arctan)

1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x?(t)可表示为 ?, 由式得??????????????????????????????????????????????????????????n=1,2,3…… 1-7 , ,???? ?????; ?????P(t)平均值为0

大学物理第九章振动学基础习题答案

第九章 振动学习题 9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0??? ? ?+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。 解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,?0=π/3,m A ω=v ,2m a A ω= (2)π=8π3 t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。 解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。 (2 )ω== 2π2T ω==9-3 设地球是一个密度为ρ在隧道内做无摩擦运动。(1)证明此质点的运动是谐振动;(2)计算其振动周期。 解:以球心为原点建立坐标轴Ox 。质点距球心x 时所受力为 324433 x m F G G mx x πρπρ=-=- 令43 k G m πρ=,则有F kx =-,即质点做谐振动。 (2 )ω== 2πT ω== 9-4 A =2.0 ×10-2 m ,周期T =0.50s 。当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。求以上各种情况的振动方程。 解:ω=2π/T=4πs -1 (1)?0=0,0.02cos4(m)x t π= (2)?0=π/2,0.02cos 4(m)2x t ππ??=+ ?? ? (3)?0=π/3,0.02cos 4(m)3x t ππ??=+ ?? ? (4)?0=4π/3,40.02cos 4(m)3x t ππ??=+ ??? 9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。若使物

振动习题答案分解

《振动力学》——习题 第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

振动理论及应用期末复习题题

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2112 1 y m T = m 2动能:2222222 22222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 32333)2 1(21))(21(2121y m R y R m J T ===ω 系统势能: 221)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++= +2212321)2 1 (2121)2131(21 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T =

振动和波动计算题及答案

振动和波动计算题 1..一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置 6 cm 处速度是24 cm/s ,求 (1)周期T; (2)当速度是12 cm/s 时的位移. 解:设振动方程为x A c os t ,则v A sin t (1) 在x = 6 cm,v = 24 cm/s 状态下有 6 12 cos t 24 12 sin t 解得4/ 3,∴T 2 / 3 / 2s 2.72 s 2 分 (2) 设对应于v =12 cm/s 的时刻为t2,则由 v A sin t 得12 12 (4/ 3) sin t , 2 解上式得sin t 0.1875 2 2 相应的位移为x cos 1 sin 10.8 cm 3 分 A t2 A t 2 2. 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为 4 kg 的物体悬挂在该弹簧的下端并 使之静止,再把物体向下拉10 cm ,然后由静止释放并开始计时.求 (1) 物体的振动方程; (2) 物体在平衡位置上方 5 cm 时弹簧对物体的拉力; (3) 物体从第一次越过平衡位置时刻起到它运动到上方 5 cm 处所需要的最短时间. 解:k = f/x =200 N/m , k / m 7.07 rad/s 2 分 (1) 选平衡位置为原点,x 轴指向下方(如图所示),t = 0 时,x0 = 10A c os ,v0 = 0 = - A sin . 解以上二式得 A = 10 cm,= 0. 2 分 ∴振动方程x = 0.1 cos(7.07t) (SI) 1 分 (2) 物体在平衡位置上方 5 cm 时,弹簧对物体的拉力 f = m( g- a ),而 a = - 2x = 2.5 m/s2 ∴ f =4 (9.8-2.5) N= 29.2 N 3 分 5 c m O (3) 设t1 时刻物体在平衡位置,此时x = 0,即 0 = Acos t1 或cos t1 = 0.

振动理论练习题

振动理论练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第1章练习题 题已知一弹簧质量系统的振动规律为x(t)=?t+?t (cm), 式中,?=10? (1/s)。 (1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题如题图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题图题图 题一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题如题图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题图题图 题如题图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角?,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题利用等效质量与刚度的概念求解题图示系统的固有频率。AB杆为刚性,本身质量不计。 题图题图 题两缸发动机的曲轴臂及飞轮如题图所示,曲轴相当于在半径r处有偏心质量m e,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r,求平衡配重所需质量。

题 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由减少到。求此系统的相对阻尼系数?。 题 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%(3)衰减振动的周期是多少与不安装缓冲器时的振动周期作比较。 题 如题图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题图 题图 题 求题图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题 弹簧质量系统30o 光滑斜面降落,如题图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少 题图 题图 题 无阻尼单自由度质量弹簧m-k 系统,受题图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1)(000 t t t t t t x t x n n n n s -+--=ωωωω。 题 如题图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l a y s π -=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。 题图 题图

机械振动习题及答案

第一章概述 1?一简谐振动,振幅为,周期为,求最大速度和加速度。 解: g 1 X max W* X max 2* * f * X max 2* * * A 8.37cm/S X max w 2 * x max (2* * f )2* x max (2* *^)2* A 350.56cm/ s 2 2. —加速度计指示结构谐振在 80HZ 时具有最大加速度 50g ,求振 动的振幅。(g=10m/s2) 解: X max W 2 *X max (2* *f)2*X max x max X max /(2* * f)2 (50*10) /(2*3.14*80) 2 1.98mm 3. 一简谐振动,频率为 10Hz ,最大速度为s ,求谐振动的振幅、周期、最大加速度。 解: x max X max /(2* * f) 4.57/(2*3.14*10) 72.77mm g g X max W * X max 2* * f * X max 2*3.14*10*4.57 4. 机械振动按激励输入类型分为哪几类?按自由度分为哪几类? 答:按激励输入类型分为自由振动、强迫振动、自激振动 按自由度分为单自由度系统、多自由度系统、连续系统振动 1 丄 f 10 0.1s 287.00m/s

5.什么是线性振动?什么是非线性振动?其中哪种振动满足叠加原理? 答:描述系统的方程为线性微分方程的为线性振动系统,如I0&& mga 0 描述系统的方程为非线性微分方程的为非线性振动系统mgas in 线性系统满足线性叠加原理 6.请画出同一方向的两个运动: 捲⑴2sin(4 t),X2(t) 4sin(4 t)合成的的振动波形 7.请画出互相垂直的两个运动: X i(t) 2sin(4 t),X2(t) 2sin(4 t)合成的结果。 如果是x1(t) 2sin(4 t /2),x2(t) 2sin(4 t) 第二章单自由度系统 1. 物体作简谐振动当它通过距平衡位置为0.05m, 0.1处时的速度分别为0.2m/和0.08m/s 求其振动周期、振幅和最大速度 物体放在水平台面上,当台面沿铅垂方向作频率为5Hz的简谐振动时,要使物体不跳离平台, 对台面的振幅有何限制?

第10章 振动与波动(习题与答案)

第10章 振动与波动 一. 基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即 kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 x t x 222d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即 )cos(?+ω=t A x 由它可导出物体的振动速度 )sin(?+ωω-=t A v 物体的振动加速度 )cos(?+ωω-=t A a 2 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即 2v ω+=2020x A 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν=1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π=2T 或 πν=ω2

波动图像习题

波动图像练习题 一、选择题 1.(2013·濮阳高二检测)下列关于简谐波的说法正确的是( ) ①波中各质点的振动频率是相同的 ②质点开始振动时的速度方向与波源的起振方向相同 ③介质中质点随波由近及远地迁移 ④波源的能量随振动形式由近及远地传播 A.①②③ B.②③④ C.①③④ D.①②④ 【解析】选D。波中各质点都做受迫振动,振动频率与振源频率相同,①正确;各质点的起振方向都相同,②正确;机械波传播过程中,传递的是振动形式、能量和信息,介质中的质点不随波迁移,③错误,④正确,所以D正确。 2.一列沿x轴正方向传播的简谐横波,某时刻的波形如图所示。P为介质中的一个质点,从该时刻开始的一段极短时间内, P的速度v和加速度a的大小变化情况是( ) A.v变小,a变大 B.v变小,a变小 C.v变大,a变大 D.v变大,a变小 【解析】选D。由波的传播方向及P点位置,可知P点此时正向平衡

位置振动,速度增大,加速度减小。 3.(多选)如图所示是一列波t时刻的图像,图像上有a、b、c三个质点,下列说法中正确的是( ) A.a、b两质点此时刻速度方向相同 B.a、c两质点此时刻加速度方向相同 C.c质点此时速度方向沿y轴负方向 D.a质点此时速度方向沿y轴正方向 【解析】选A、B。a、b两质点在相邻的波峰与波谷之间,振动方向相同,A选项正确;a、c两质点都位于x轴下方,加速度方向均指向y轴正方向,B选项正确;由于波的传播方向不定,故C、D选项不确定。 4.(2014·福建高考)在均匀介质中,一列沿x轴正向传播的横波,其波源O在第一个周期内的振动图像如图所示,则该波在第一个周期末的波形图是( )

大学物理振动习题含答案

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ ] 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π2 1cos(2- +=αωt A x (C) ) π23cos(2- +=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ] 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律 用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ] 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(10 42 π+ π?=-t x (SI)。 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 8 1 (B) s 6 1 (C) s 4 1 (D) s 3 1 (E) s 2 1 [ ] 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21 /cos(π-=t m k A x (C) )π21/(cos + =t k m A x (D) )21/cos(π- =t k m A x (E) t m /k A x cos = [ ] 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 v v 2 1

第5章 振动和波动课后答案

第5章振动和波动 5-1一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1)振动的角频率、最大速度和最大加速度; (2)振子对平衡位置的位移为x =0.02m 时的瞬时速度、加速度和回复力; (3)以速度具有正的最大值的时刻为计时起点,写出振动方程。 解:(1))s rad (105 .050 === m k ω (2) 设 当(3) 5-2 解: ν= 5-3式中1,k 10x ,弹簧2所受的合外力为 由牛顿第二定律得2122d ()d x m k k x t =-+ 即有2122() d 0d k k x x t m ++ = 上式表明此振动系统的振动为简谐振动,且振动的圆频率为

振动的频率为2π ω ν= = 5-4如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。 振动周期5-5 5-6如图所示,轻弹簧的劲度系数为k ,定滑轮的半径为R 、转动惯量为J ,物体质量为m ,将物体托起后突然放手,整个系统将进入振动状态,用能量法求其固有周期。 习题

解:设任意时刻t ,物体m 离平衡位置的位移为x ,速率为v ,则振动系统的总机械能 式中 于是5-7已知5-8平衡位置距O '点为:000l x l k +=+ 以平衡位置为坐标原点,如图建立坐标轴Ox ,当物体运动到离开平衡位置的位移为x 处时,弹簧的伸长量就是x x +0,所以物体所受的合外力为 物体受力与位移成正比而反向,即可知物体做简谐振动国,此简谐振动的周期为 5-9两质点分别作简谐振动,其频率、振幅均相等,振动方向平行。在每次振动过程中,它们在经过振幅的一半的地方时相遇,而运动方向相反。求它们相差,并用旋转矢量图表示出来。 习题5-6图

相关文档
相关文档 最新文档