文档库 最新最全的文档下载
当前位置:文档库 › 因式分解(一)

因式分解(一)

因式分解(一)
因式分解(一)

第一讲因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]

=-2x n-1y n(x2n-y2)2

=-2x n-1y n(x n-y)2(x n+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.

解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

第二讲因式分解(二)

1.双十字相乘法

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.

例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),

可以看作是关于x的二次三项式.

对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).

再利用十字相乘法对关于x的二次三项式分解

所以

原式=[x+(2y-3)][2x+(-11y+1)]

=(x+2y-3)(2x-11y+1).

上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:

它表示的是下面三个关系式:

(x+2y)(2x-11y)=2x2-7xy-22y2;

(x-3)(2x+1)=2x2-5x-3;

(2y-3)(-11y+1)=-22y2+35y-3.

这就是所谓的双十字相乘法.

用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:

(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.

例1 分解因式:

(1)x2-3xy-10y2+x+9y-2;

(2)x2-y2+5x+3y+4;

(3)xy+y2+x-y-2;

(4)6x2-7xy-3y2-xz+7yz-2z2.

解 (1)

原式=(x-5y+2)(x+2y-1).

(2)

原式=(x+y+1)(x-y+4).

(3)原式中缺x2项,可把这一项的系数看成0来分解.

原式=(y+1)(x+y-2).

(4)

原式=(2x-3y+z)(3x+y-2z).

说明 (4)中有三个字母,解法仍与前面的类似.

2.求根法

我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如

f(x)=x2-3x+2,g(x)=x5+x2+6,…,

当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)

f(1)=12-3×1+2=0;

f(-2)=(-2)2-3×(-2)+2=12.

若f(a)=0,则称a为多项式f(x)的一个根.

定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.

根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.

定理2

的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.

我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.

例2 分解因式:x3-4x2+6x-4.

分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有

f(2)=23-4×22+6×2-4=0,

即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.

解法1 用分组分解法,使每组都有因式(x-2).

原式=(x3-2x2)-(2x2-4x)+(2x-4)

=x2(x-2)-2x(x-2)+2(x-2)

=(x-2)(x2-2x+2).

解法2 用多项式除法,将原式除以(x-2),

所以

原式=(x-2)(x2-2x+2).

说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.

例3 分解因式:9x4-3x3+7x2-3x-2.

分析因为9的约数有±1,±3,±9;-2的约数有±1,±

为:

所以,原式有因式9x2-3x-2.

解 9x4-3x3+7x2-3x-2

=9x4-3x3-2x2+9x2-3x-2

=x2(9x3-3x-2)+9x2-3x-2

=(9x2-3x-2)(x2+1)

=(3x+1)(3x-2)(x2+1)

说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式

可以化为9x2-3x-2,这样可以简化分解过程.

总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.

3.待定系数法

待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.

在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.

例4 分解因式:x2+3xy+2y2+4x+5y+3.

分析由于

(x2+3xy+2y2)=(x+2y)(x+y),

若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.

解设

x2+3xy+2y2+4x+5y+3

=(x+2y+m)(x+y+n)

=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,

比较两边对应项的系数,则有

解之得m=3,n=1.所以

原式=(x+2y+3)(x+y+1).

说明本题也可用双十字相乘法,请同学们自己解一下.

例5 分解因式:x4-2x3-27x2-44x+7.

分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.

解设

原式=(x2+ax+b)(x2+cx+d)

=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,

所以有

由bd=7,先考虑b=1,d=7有

所以

原式=(x2-7x+1)(x2+5x+7).

说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.

本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.

练习二

1.用双十字相乘法分解因式:

(1)x2-8xy+15y2+2x-4y-3;

(2)x2-xy+2x+y-3;

(3)3x2-11xy+6y2-xz-4yz-2z2.

2.用求根法分解因式:

(1)x3+x2-10x-6;

(2)x4+3x3-3x2-12x-4;

(3)4x4+4x3-9x2-x+2.

3.用待定系数法分解因式:

(1)2x2+3xy-9y2+14x-3y+20;

(2)x4+5x3+15x-9.

版中考数学因式分解含答案

§因式分解 A组 一、选择题 1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的 是 ( ) A.3x(x2-4x+4) B.3x(x-4)2 C.3x(x+2)(x-2) D.3x(x-2)2 解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2,故D正确. 答案D 2.(2015·山东临沂,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是( ) A.x-1 B.x+1 C.x2-1 D.(x-1)2 解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案A 3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是( ) A.等腰三角形B.等腰直角三角形 C.直角三角形D.等腰三角形或直角三角形 解析∵2a4+2b4+c4=2a2c2+2b2c2, ∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形. 答案B

二、填空题 4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解. 答案(a-1)2 5.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2). 答案mn(m+2)(m-2) 6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y). 答案3(2x+y)(2x-y) 7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________. 解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b). 答案(a+b)(a-3b) 8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1). 答案2(m+1)(m-1) 三、解答题 9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81; (2)6a(1-b)2-2(b-1)2. 解(1)x4-81=(x2+9)(x2-9) =(x2+9)(x+3)(x-3); (2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1). B组 一、选择题 1.(2014·湖南岳阳,7,3分)下列因式分解正确的是( ) A.x2-y2=(x-y)2B.a2+a+1=(a+1)2 C.xy-x=x(y-1) D.2x+y=2(x+y) 解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,

因式分解知识点总结及典型试题

因式分解知识点总结及典型试题 知识点一:因式分解的总体思路 第一步:定项(以加减号为准,区分三项以下的和三项以上的两种因式分解)第二步:三项以下的要观察是否有公因式,有公因式先公因式提再分解。 第三步:三项以上的要分组,分组后再用公式法分解。 第四步:用公式法分解(如果是两项用平方差;三项用完全平方或十字相乘法)知识点二:公因式确定方法:各项中系数取最大公因数,相同字母取最低次幂,乘起来作为公因式 1.(2016?平南县二模)分解因式m﹣ma2的结果是() A.m(1+a)(1﹣a)B.m(1+a)2C.m(1﹣a)2D.(1﹣a)(1+a) 2.(2016春?东湖区校级月考)计算:22014﹣(﹣2)2015的结果是() A.22015 B.22014 C.﹣22014D.3×22014 3.(2015?菏泽)把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是() A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2) 4.(2015?宜宾)把代数式3x3﹣12x2+12x分解因式,结果正确的是() A.3x(x2﹣4x+4)B.3x(x﹣4)2C.3x(x+2)(x﹣2) D.3x(x﹣2)2 5.(2015?长沙校级自主招生)多项式a n﹣a3n+a n+2分解因式的结果是() A.a n(1﹣a3+a2)B.a n(﹣a2n+a2)C.a n(1﹣a2n+a2)D.a n(﹣a3+a n)6.(2015?杭州模拟)下列代数式3(x+y)3﹣27(x+y)因式分解的结果正确的是()A.3(x+y)(x+y+3)(x+y﹣3)B.3(x+y)[(x+y)2﹣9] C.3(x+y)(x+y+3)2D.3(x+y)(x+y﹣3)2 7.(2016?温州校级一模)多项式x2﹣1与多项式x2﹣2x+1的公因式是() A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2 8.(2016?赵县模拟)若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是() A.﹣15 B.15 C.2 D.﹣8 9.-6xyz+3xy2-9x2y的公因式是()A.-3xB.3xzC.3yzD.-3xy 10.(1)m(a-2)+n(2-a)(2)(y-x)2+2x-2y. 11.(2014春?玉环县期中)分解因式:x3﹣2x2﹣8x=. 12.(2014春?诸城市校级月考)分解因式:x3﹣4x2﹣21x=. 13.(2013秋?瑞安市校级期末)分解因式a3﹣a2﹣2a=. 14.(2013?南充模拟)分解因式:2x2﹣2x﹣12=. 15.(2015春?文昌校级期中)分解因式:x4﹣3x3﹣28x2= 知识点三:平方差公式使用的条件:前提是两项;必须是平方的形式;平方的两项符号必须相反;只有具备上述三个条件才能平方差公式。 1.(2016?富顺县校级模拟)下列各式能用平方差公式分解因式的有() ①x2+y2;②x2﹣y2;③﹣x2﹣y2;④﹣x2+y2;⑤﹣x2+2xy﹣y2. A.1个B.2个C.3个D.4个 2.(2016春?梅州校级月考)下面哪个式子的计算结果是9﹣x2() A.(3﹣x)(3+x)B.(x﹣3)(x+3)C.(3﹣x)2D.(3+x)2 3.(2016?天门模拟)分解因式(2x+3)2﹣x2的结果是() A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)

因式分解知识点归纳总结word版本

因式分解知识点归纳总结概述 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。 分解因式与整式乘法互为逆变形。 因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1)) 分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: ①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式 提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 例如:-am+bm+cm= a(x-y)+b(y-x)= ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a2-b2=(a+b)(a-b); 完全平方公式:a2±2ab+b2=(a±b) 2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 例如:a2 +4ab+4b2 = ⑶分组分解法 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y) 同样,这道题也可以这样做。 ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)

因式分解专项练习题(含答案)

因式分解专题过关 1.将下列各式分解因式 (1)3p2﹣6pq (2)2x2+8x+8 2.将下列各式分解因式 (1)x3y﹣xy (2)3a3﹣6a2b+3ab2. 3.分解因式 (1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2 4.分解因式: (1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2 5.因式分解: (1)2am2﹣8a (2)4x3+4x2y+xy2 6.将下列各式分解因式: (1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y2 8.对下列代数式分解因式: (1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+1 9.分解因式:a2﹣4a+4﹣b2 10.分解因式:a2﹣b2﹣2a+1 11.把下列各式分解因式: (1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2 (3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1 12.把下列各式分解因式: (1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.

因式分解专题过关 1.将下列各式分解因式 (1)3p2﹣6pq;(2)2x2+8x+8 分析:(1)提取公因式3p整理即可; (2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解. 解答:解:(1)3p2﹣6pq=3p(p﹣2q), (2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2. 2.将下列各式分解因式 (1)x3y﹣xy (2)3a3﹣6a2b+3ab2. 分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可; (2)首先提取公因式3a,再利用完全平方公式进行二次分解即可. 解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1); (2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2. 3.分解因式 (1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2. 分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解; (2)先利用平方差公式,再利用完全平方公式继续分解. 解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4); (2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2. 4.分解因式: (1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2. 分析:(1)直接提取公因式x即可; (2)利用平方差公式进行因式分解; (3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解; (4)把(x﹣y)看作整体,利用完全平方公式分解因式即可. 解答:解:(1)2x2﹣x=x(2x﹣1);

因式分解知识点总结

因式分解知识点总结 一、 知识梳理 1.因式分解 定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。 即:多项式→几个整式的积 例:111 ()333 ax bx x a b += + 因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。 2.因式分解的方法: (1)提公因式法: ①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。 公因式:多项式的各项都含有的相同的因式。公因式可以是一个数字或 字母,也可以是一个单项式或多项式。 ?? ??? 系数——取各项系数的最大公约数字母——取各项都含有的字母 指数——取相同字母的最低次幂 例:33 323 422 1286a b c a b c a b c -+的公因式是 . 解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们 的最大公约数为2;字母部分33323422 ,,a b c a b c a b c 都含有因式32 a b c ,故 多项式的公因式是232 a b c . ②提公因式的步骤 第一步:找出公因式; 第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式, 所得商即是提公因式后剩下的另一个因式。 注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。多项 式中第一项有负号的,要先提取符号。

例1:把 2233121824a b ab a b --分解因式. 解析:本题的各项系数的最大公约数是6,相同字母的最低次幂是ab ,故公因式为6ab 。 解: 2233 121824a b ab a b -- 226(234)ab a b a b =-- 例2:把多项式3(4)(4)x x x -+-分解因式 解析:由于4(4)x x -=--,多项式3(4)(4)x x x -+-可以 变形为3(4)(4)x x x ---,我们可以发现多项式各项都含有公因 式( 4x -),所以我们可以提取公因式(4x -)后,再将多项式写成 积的形式. 解:3(4)(4)x x x -+- = 3(4)(4)x x x --- = (3)(4)x x -- 例3:把多项式2 2x x -+分解因式 解: 22x x -+=2(2)(2)x x x x --=-- (2)运用公式法 定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。 22222 33223322.()().2().()() .()() a a b a b a b b ab b a b c a b a b a ab b d a b a b a ab b -=+-±+=±+=+-+-=-++逆用平方差公式:逆用完全平方公式:a 逆用立方和公式:(拓展)逆用立方差公式:(拓展) 注意:①公式中的字母可代表一个数、一个单项式或一个多项式。 ②选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方 差公式;若多项式是三项式,可考虑完全平方公式。

因式分解技巧(单墫著)1

目录 0 什么是因式分解001 1 提公因式00 2 1.1 一次提净002 1.2 视“多”为一00 3 1.3 切勿漏1 003 1. 4 注意符号004 1.5仔细观察004 1.6化“分”为整00 5 习题100 6 2应用公式00 7 2.1平方差007 2.2立方和与立方差00 8 2.3完全平方008 2.4完全立方00 9 2.5问一知三010 2.61 21984 不是质数011 习题 2 012 3分组分解013 3.1三步曲013 3.2殊途同归013 3.3平均分配014 3.4瞄准公式015 3.5从零开始015 习题3017 4拆项与添项018 4.1拆开中项018 4.2皆大欢喜018 4.3旧事重提019 4.4无中生有019 4.5配成平方020 习题 4 021 5十字相乘022 5.1知己知彼022 5.2孰能生巧024 5.3再进一步025 5.4二次齐次式026 5.5系数和为零027 第1页共87 页

第 2 页 共 87 页 习题 5 028 6 二次二次式的分解 029 6.1 欲擒故纵 029 6.2 三元齐次 031 6.3 项数不全 032 6.4 能否分解 032 习题 6 034 7 综合运用 035 7.1 善于换元 035 7.2 主次分清 037 7.3 一题两解 038 7.4 展开处理 039 7.5 巧运匠心 040 习题7 042 8 多项式的一次因式 044 8.1 余数定理 044 8.2 有理根的求法 045 8.3 首1多项式 047 8.4 字母系数 049 习题8 050 9 待定系数法 051 9.1 二次因式 051 9.2 既约的情况 054 习题9 055 10 轮换式与对称式 056 10.1 典型方法 056 10.2 齐次与非齐次 059 10.3 ab c b a 3322-++ 061 10.4 焉用牛刀 062 10.5 整除问题 063 10.6 原来是零 065 10.7 四元多项式 067 习题10 068 11 实数集与复数集内的分解 071 11.1 求根公式 071 11.2 代数基本定理 073 11.3 单位根 074 11.4 攻玉之石 076 习题11 079 12 既约多项式 080 12.1 艾氏判别法 080

因式分解知识点归纳

因式分解知识点回顾

1 1 如: 2 3 ( ')3' 2 8 10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式

注意: ①积的系数等于各因式系数的积,先确定符号,再计算绝对值。 ②相同字母相乘,运用同底数幕的乘法法则。 ③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 ④单项式乘法法则对于三个以上的单项式相乘同样适用。 ⑤单项式乘以单项式,结果仍是一个单项式。 如:2x2y3z?3xy 11、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即 m(a b c) ma mb mc( m,a,b,c都是单项式) ①积是一个多项式,其项数与多项式的项数相同。 ②运算时要注意积的符号,多项式的每一项都包括它前面的符号。 ③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。] 如:2x(2x 3y) 3y(x y) 12、多项式与多项式相乘的法则; 多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相

(3a 2b)(a 3b) (x 5)(x 6) 三、知识点分析: 1.同底数幕、幕的运算: a m - a n=a m+n(m, n 都是正整数). (aO n=a mn(m, n都是正整数). 例题 1.若 2a 2 64,则a= ;若 27 3n( 3)8,则n= 例题2.若52x1125,求(x 2)2009 x的值。 例题3.计算x 2y 32y 练习 1.若 a2n 3,则 a6n= 2.设4x=8y-1,且9y=2产,则x-y等于 2.积的乘方(ab)n=a n b n(n为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘 p 4 例题1.计算:n m m n n m p 3.乘法公式 平方差公式: a b a b a2 b2

中考数学专题复习卷因式分解(含解析)

因式分解 一、选择题 1.下列各式中,不含因式a+1的是() A. 2a2+2a B. a2+2a+1 C. a2﹣ 1 D. 2.下列因式分解错误的是() A. 2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1) B. x2+2x+1=(x+1)2 C. x2y﹣xy2=xy(x﹣ y) D. x2﹣y2=(x+y)(x﹣y) 3.下列因式分解中,正确的个数为() ①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y) A. 3个 B. 2个 C. 1 个 D. 0个 4.若x=1,,则x2+4xy+4y2的值是() A. 2 B. 4 C. D. 5.化简:(a+1)2-(a-1)2=( ) A. 2 B. 4 C. 4a D. 2a2+2 6.下列因式分解正确的是( ) A. (x-3)2-y2=x2-6x+9-y2 B. a2-9b2=(a+9b)(a-9b)

C. 4x6-1=(2x3+1)(2x3-1) D. -x2-y2=(x-y)(x+y) 7.若代数式x2+ax可以分解因式,则常数a不可以取() A. ﹣ 1 B. 0 C. 1 D. 2 8.下列各多项式中,不能用平方差公式分解的是( ). A. a2b2-1 B. 4- 0.25a2 C. -a2- b2 D. -x2+1 9.分解因式x2y﹣y3结果正确的是(). A. y(x+y)2 B. y(x-y)2 C. y(x2-y2) D. y(x+y)(x-y) 10.边长为a、b的长方形周长为12,面积为10,则的值为( ) A. 120 B. 60 C. 80 D. 40 11.如果2x2+mx﹣2可因式分解为(2x+1)(x﹣2),那么m的值是() A. ﹣ 1 B. 1 C. ﹣ 3 D. 3 12.下列各式从左边到右边的变形是因式分解的是() A. B. C. D. 二、填空题 13.分解因式:x2﹣16=________.

《-整式乘除与因式分解》知识点归纳总结

《整式乘除与因式分解》知识点归纳总结 一、幂的运算: 1、同底数幂的乘法法则:n m n m a a a +=?(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。 如:532)()()(b a b a b a +=+?+ 2、幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4== 3、积的乘方法则:n n n b a ab =)((n 是正整数)。积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=???- 4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m φ 同底数幂相除,底数不变,指数相减。 如:3334)()()(b a ab ab ab ==÷ 5、零指数; 10=a ,即任何不等于零的数的零次方等于1。 二、单项式、多项式的乘法运算: 6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含 有的字母,则连同它的指数作为积的一个因式。如:=?-xy z y x 3232 。 7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即 mc mb ma c b a m ++=++)(( c b a m ,,,都是单项式)。如: )(3)32(2y x y y x x +--= 。 8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积

初中因式分解习题及详解

初中因式分解习题及详解 Prepared on 24 November 2020

因式分解练习题及详解 一、填空题: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式. 二、选择题: 1.下列各式的因式分解结果中,正确的是( ) A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1) C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c) 2.多项式m(n-2)-m2(2-n)分解因式等于( ) A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( ) A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是( ) A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是( ) A.-12 B.±24C.12 D.±12 6.把多项式a n+4-a n+1分解得( ) A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( ) A.8 B.7 C.10 D.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( ) A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得( )

因式分解一

因式分解(一) 模块一 因式分解的概念 知识导航 一、定义 把一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,又叫做把这个多项式分解因式. 二、实质 因式分解是一种恒等变形,是一种化和为积的变形,因式分解与整式乘法是相反方向的变形 三、结果形式 ①每个因式都必须是整式; ②分解到不能再分为止; ③单项式要写在多项式的前面; ④相同因式要写成幂的形式; ⑤没有大括号和中括号; ⑥每个因式第一项系数一般不为负数. 四、因式分解的常用方法 提公因式法、运用公式法、分组分解法、十字相乘法 五、因式分解的一般步骤 如果多项式的各项式有公因式,应先提公因式;如果各项没有公因式,再考虑能否应用公式法,十字相乘法;如还不能则考虑分组分解法或其他方法. 例1 (1)下列各式从左边到右边的变形中,是因式分解的是( ) A .3ab (a +b )=3a 2b +3ab 2 B .2x 2+4x =222(1)x x + C .a 2-4b 2=(a +2b )(a -2b ) D .3x 2-6xy +3x =3x (x -2y ) (2)一个多项式分解因式的结果是(b 3+2)(2-b 3),那么这个多项式是( ) A .b 4-4 B .4-b 4 C .b 6+4 D .-b 6-4 练习 (1)下列从左到右的变形,属因式分解的是( ) A .(x +a )(x -a )=x 2-a 2 B .x 2-4x +3=x (x -4)+3 C .x 3-8x 2=x 2(x -8) D .x +y =x (1y x +) (2)下列分解因式错误的是( ) 整式乘积 多项式

2017-2018年中考数学专题复习题 因式分解(含解析)

2017-2018年中考数学专题复 习题:因式分解 一、选择题 1.将下列多项式因式分解,结果中不含有因式的是 A. B. C. D. 2.把多项式分解因式,得,则a,b的值分别是 A. , B. , C. , D. , 3.已知a、b、c为的三边,且满足,则是 A. 直角三角形 B. 等腰三角形 C. 等腰三角形或直角三角形 D. 等腰直角三角形 4.下列各式中,能用完全平方公式分解因式的有 ;;;;. A. 2个 B. 3个 C. 4个 D. 5个 5.因式分解与整数乘法一样,都是一种恒等变形,即在变形的过程中,形变值不变, 于是将多项式分解因式的结果为

A. B. C. D. 6.把多项式提取公因式后,余下的部分是 A. B. C. x D. 7.计算所得的正确结果是 A. B. C. 1 D. 2 8.当a,b互为相反数时,代数式的值为 A. 4 B. 0 C. D. 9.设,,且,则 A. B. 23 C. D. 32 10.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记 忆方便原理是:如对于多项式,因式分解的结果是,若取,时,则各个因式的值是:,,,于是就可以把“018162”作为一个六位数的密码对于多项式,取, ,用上述方法产生的密码不可能是 A. 201010 B. 203010 C. 301020 D. 201030 二、填空题 11.若关于x的二次三项式因式分解为,则的值为______ . 12.若二次三项式在整数范围内能进行因式分解,那么整数p的取值是 ______ . 13.已知,求的值______ . 14.因式分解: ______ . 15.多项式的公因式是______. 16.若长方形的长为a,宽为b,周长为16,面积为15,则的值为______ .

初一数学下册因式分解

因式分解的常用方法 第一部分:方法介绍 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多 数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍: 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法: 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)平方差公式:))((2 2 b a b a b a -+=- (2)完全平方公式:2 2 2 2 2 2 )(2,)(2b a b ab a b a b ab a -=+-+=++ (3)立方和公式: (4)立方差公式: 例.已知a b c ,,是ABC ?的三边,且2 2 2 a b c ab bc ca ++=++, 则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:2 2 2 2 2 2 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?== 三、分组分解法: (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++ 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。 解:原式=)()(bn bm an am +++ =)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++ 例2、分解因式:bx by ay ax -+-5102 解法一:第一、二项为一组; 解法二:第一、四项为一组; 第三、四项为一组。 第二、三项为一组。 解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a -- 练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy

因式分解易错题汇编含答案解析

因式分解易错题汇编含答案解析 一、选择题 1.下列各式分解因式正确的是( ) A .2112(12)(12)22a a a -=+- B .2224(2)x y x y +=+ C .2239(3)x x x -+=- D .222()x y x y -=- 【答案】A 【解析】 【分析】 根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解. 【详解】 A. 2112(12)(12)22 a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误; C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误; D. ()22 ()x y x y x y -=-+,故本选项错误. 故选A. 【点睛】 此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式. 2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y 【答案】D 【解析】 【分析】 判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系. 【详解】 解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>, 0x y ∴->, x y ∴>, 故选:D . 【点睛】 本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.

第一讲因式分解(一)

第一讲因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下: 原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

因式分解相关知识点整理【竞赛专用】

因式分解相关知识点整理【竞赛专用】1.因式分解的思路:“一提、二代、三分组” 2.常用公式: [1]a 2 b 2(a b)(a b) [2](a b) 2 a 22ab b 2 [3]a 3b3(a b)(a 2?ab [4](a b)3 a 33a 2b3ab 2⑸若n为正奇数,则a n b n ⑹若n为正整数,则a n b n b 2 ) b3 (a b)(a n1 a n 2b a n 3b 2 (a b)(a n i a n 2b a n 3b 2 应用公式时,按某个字母降幕排列是一个简单而有用的措施,值得注意。 3.常用分组方法(注意:每组项数须平均分配): (1 )按不同字母分组 (2) b.按不同字母的幕分组(幕次相近的放在一起) (3)按不同项的系数分组 注:当分组不当,无法继续分解原式时,就应回到分组前的状况 4.拆项与添项 (1 )若整式按某一字母的升幕或降幕排列,那么以拆开中项为宜 (2)可以配完全平方(配方法) 5.十字相乘法(二次齐次式ax 2bxy cy2也可用此法分解,令y1代入原式即可) ax+c例子: X bx+d x+2 X x+3 adx bcx+cd abx2+3x+6 x 2+ 2 x abx2+(ad bc) x+cd x 2+5x+6将以上竖式简化,就可以得到十字相乘法的竖式: a - b c -d 1 1 X2 3 ab bc5 补充一个结论:— 若二次三项式ax bx c的系数和a b c 0,则ax bx c (x 1)(ax c) ax 2 bxy cy 2 dxz eyz fz2的三元齐次式.) 把其中三组二元三项式或二元齐次式分别用十字相乘法来分解,如果其中两组包含相同字母ab n2 b n1) ab n 2 b n 1 ) 第1页-2008.09 - v1.01

因式分解解析

因式分解解析 一、选择题 1.下列变形,属于因式分解的有( ) ①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1) A .1个 B .2个 C .3个 D .4个 【答案】B 【解析】 【分析】 【详解】 解:①x 2-16=(x+4)(x-4),是因式分解; ②x 2+3x-16=x (x+3)-16,不是因式分解; ③(x+4)(x-4)=x 2-16,是整式乘法; ④x 2+x =x (x +1)),是因式分解. 故选B . 2.下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222111x y x x y -+=-++ C .()()2111x x x -=+- D .()ax bx c x a b c ++=+ 【答案】C 【解析】 【分析】 根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 【详解】 解:A 、是整式的乘法运算,故选项错误; B 、右边不是积的形式,故选项错误; C 、x 2-1=(x+1)(x-1),正确; D 、等式不成立,故选项错误. 故选:C . 【点睛】 熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式. 3.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+ B .21x x ++ C .21x x -- D .21x x +- 【答案】B 【解析】 解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .

因式分解知识点归纳总结一

因式分解知识点归纳总结一 (一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1.平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m +n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m+ n) =(m +n)?(a +b). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式. 2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数.

相关文档