文档库 最新最全的文档下载
当前位置:文档库 › 环境化学复习资料总结大学期末复习资料

环境化学复习资料总结大学期末复习资料

环境化学复习资料总结大学期末复习资料
环境化学复习资料总结大学期末复习资料

《环境化学》复习资料总结(课件版)

1.什么是环境化学一、绪论:

(1)环境化学是在化学科学的传统理论和方法基础上发展起来的,以化学物质在环境中出现

而引起的环境问题为研究对象,以解决环境问题为目标的一门新兴学科。

(2)定义:它是一门研究有害化学物质在环境介质中的存在、化学特性、行为和效应及其控制

的化学原理和方法的科学,既是环境科学的核心组成部分,也是化学科学的一个新的重要分支。2、环境化学的内容查明潜在有害物质在环境介质中存在的来源,浓度水平和形态分布;对这

些潜在有害物质溯本求源,并查明它们在环境介质中和不同环境介质之间的环境化学行为;查明这些潜在有害物质对环境、生态系统和人体健康发生作用的途径、方式、程度和风险;探索缓解或消除这些有害物质已造成的影响或防止它们可能造成影响的方法和途径。

3、环境污染物:是环境化学研究的对象,主要指进入环境后使环境的正常组分和性质发生直

接或间接的有害于人类的变化的物质。大部分污染物是人类生产和生活活动产生的。

4、环境学或毒理学意义的重金属:Hg、Cd、Pb、Zn、Cu、Co、Ni、Ba(钡)、Sn(锡)、Sb(锑)等,从毒性角度讲还包括:As、Be、 Li、Se、B、Al 等。

5、BTEX:

苯、甲苯、乙基苯和三个二甲基苯的异构体。是汽油中的重要组成部分,并广泛用作溶剂。这

些化合物是土壤和地下水的常见污染物。

6、PAHs:多环芳烃

7、有机卤化合物:

①氟氯烃(CFCs)②有机溶剂③有机氯农药④PCB 多氯联苯,有209 个同系物和PCT 多氯三

联苯,有8149 个同类物。

8、POPs 名单:

滴滴涕(DDT) 六氯苯二恶英呋喃

9、环境效应:自然过程或人类的生产和生活活动会对环境造成污染和破坏,从而导致环境系

统的结构和功能发生变化。

10、环境本底:也称环境背景值某地未受污染的环境中某种化学元素或化学物质的含量(浓度)。目前,未受污染的环境已经基本不存在,因此获得环境本底已经十分困难,一般只能获

得相对轻污染的环境背景值。

11、环境容量:特定环境单元在不影响其特定环境功能的情况下,能够容纳污染物的最大量。这里的特定环境功能一般以环境质量标准为依据。

12、生物浓缩因子(BCF)

13、生物半衰期(BHL):生物体内某种物质的平衡浓度(mg / L) 环境中该物质的平衡浓度(mg / L)

污染物进入生物体内后,在代谢作用下,污染物削减到初始浓度的一半所需要的时间,即生物

半衰期

14、协同作用:一种污染物的存在会导致另一种污染物的毒性或危害性增加。也称相乘作用。例如伦敦烟雾中,冶炼厂排出的SO2 废气中若含有锌、铁等金属离子的烟气气溶胶,则其危

害性就会大大增加。拮抗作用:一种污染物质的毒性能够被另一种物质所抑制,称为拮抗作用。金属硒(Se)能够抑制Hg 的毒性金属锌(Zn)能够抑制Cd 的毒性

15、常用单位介绍

mg/L----一般水环境中污染物的浓度;

mg/kg----一般土壤中污染物的浓度,或生物体内污染物的浓度;

mg/m3----一般大气中污染物浓度。

ppm, ppb, ppt----10-6,10-9,10-12;LD----致死剂量;

LD100----绝对致死剂量;LD50----半致死剂量;LD0----最大耐受剂量。16、污染物的迁移:污染物在环境中所发生的空间位移及其所引起的富集、分散和消失的过程。有机械迁移、物理

-化学迁移和生物迁移三种方式。

17、污染物的转化:

污染物在环境中通过物理、化学或生物的作用,改变存在形态或转变为另一种物质的过程。有

氧化-还原作用、配合作用、水解作用、生物吸收、代谢等。

1、大气的主要成分:二、大气:

氮(78.8%)、氧(20.95%)、氩(0.934%)、二氧化碳(0.0314%)

2 、对流层(Troposphere ):0-10~15 km 平流层(Stratosphere ):10~15-50km 中间层(Mesosphere):50 -80 km 热层(Thermosphere ):80-500~800 km 3、含硫化合物[COS、

CS2、(CH3)2S、H2S、SO2、H2SO4、MSO4];含氮化合物[N2O、NO、NO2];含碳化合物[CO、

CO2、CHX];含卤素化合物[卤代烃、CFC] 4、自由基:共价键均裂而成的带有未成对电子的碎片,产生方法:光解法、氧-还法、电解法、热解法、诱导分解法等。

5、HO·

O3 光解(清洁大气中HO·的主要来源) O3+ ?ν(λ<290nm)→O + O2 O + H2O →2HO·?HNO2 光解(污染大气中HO·的主要来源)HNO2+ ?ν(λ<400nm)→HO·+NO?H2O2 光解 H2O2 + ?ν(λ<360nm)

→2HO· 6、HO2·

?醛的光解HCHO HCHO+ ?ν(λ<313nm)→H·+HCO·H·+O2 →HO2·HO2·+NO→HO·+NO2?

任何光解过程只要有H·和HCO·生成,均可与O2 作用生成HO2·

HO·+CO→CO2 + H·H·+O2 →HO2·?H2O2 光解H2O2+ ?ν(λ<360nm)→2HO·2HO·+ H2O2→HO2·+ H2O

?亚硝酸酯的光解 CH3ONO CH3ONO + ?ν(λ<300~400nm)→CH3O·+NO CH3O·+ O2→HCHO + HO2·

?烷氧基与O2 的作用RCH2O·+O2→RCHO

+HO2· 7、R·

?醛、酮的光解 CH3CHO + ?ν→CH3·+HCO· CH3COCH3+ ?ν→CH3·+CH3CO·

?O 和HO·的夺H 反应 RH + O→R·+HO· RH + HO·→R·+H2O

RO·: CH3ONO + ?ν→CH3O·+NO CH3ONO2+ ?ν→CH3O·+NO2

RO2·: R·+ O2→RO2· RCO·+ O2→RCOO2·

8、自由基的重要作用:

电子转移[Fe(CN)6]4-+ HO·→[Fe(CN)6]3-+ OH-

氢原子转移RH + HO·→R·+ H2O

自由基双键加成CH2=CH2+ HO·→HOCH2CH2

结合O2 和NO2R·/ RCO·+ O2→RO2·/ RCOO2·RO·/ RCOO2·+ NO2→RONO2/ RCOO2NO2

自由基聚合反应R·+ M →RM·RM·+ M →RM2·RM2·+ nM →RM(M)nM·RM(M)nM·+ R·→RM(M)nMR ?自由基的终止反应2R·→R2RO·+ R·→ROR2R·+ I2→2RI

8、光化学反应:分子、原子、自由基或离子吸收光子而发

生的化学反应9、CFC-XYZ

1)Z = number of fluorine atoms.

2)Y =1 + number of hydrogen atoms.

3)X= number of carbon atoms -1 发泡

剂:CFC-11 CFCl3

10、无机气体污染物:NO、NO2、N2O、NH3、HNO2、HNO3、亚硝酸酯、硝酸酯、亚硝酸盐、硝酸盐、铵盐,来源:天然源:生物有机体腐败人为源:燃烧过程(固定源1/3,流动源2/3)11、NO2 的光解:大气中最重要的化学反应,大气中O3 生成的引发反NO2+?ν(λ<313nm) → NO+ O·

O·+ O2 +M→O3+ M 该反应是O3 生成的引发反应,是O3 唯一的人为来源

12、过氧乙酰硝酸脂PAN:是光化学烟雾的指示物。非甲烷烃(NMHC)

13、光化学烟雾:由前述的氮氧化物和碳氢化合物的转化过程,只要大气中存在三个条件:强烈的太阳光+碳氢化合物、氮氧化合物+低湿度时,就会由光化学反应引发一系列的化学过程,产生一些氧化性很强的物质,如臭氧、PAN,HNO3,H2O2 等二次污染物,该过程实际就是光化学烟雾的形成过程。

含有氮氧化物和碳氢化合物等一次性污染物的大气,在阳光照射下发生化学反应而产生的二次

污染物,这种由一次污染物和二次污染物的混合物所形成的烟雾污染现象,称为光化学烟雾,

因最早在1940 年的美国洛杉矶首先发现,因此又称为洛杉矶烟雾。16、影响光化学烟雾的因素:有机物的反应活性;NMHC/NOX(初始体积分数比);HO·阻化剂:如DEHA(二乙基羟胺)17、硫酸烟雾型污染:

硫酸烟雾也称为伦敦烟雾,因为其最早发生在英国伦敦。?主要是由于燃煤排放的二氧化硫、颗

粒物、以及由于二氧化硫氧化生成的硫酸盐颗粒物所造成的大气污染现象。?这种污染一般发生

在冬季、气温低、湿度高和日光弱的天气条件下。?硫酸烟雾形成过程中,二氧化硫转化为三氧

化硫的氧化反应主要靠雾滴中锰、铁、氨的催化氧化过程。

18、化学烟雾型污染有两种类型,即伦敦烟雾和洛杉矶烟雾,对比如下: 伦敦烟雾(硫酸型烟雾):白天、夜间连续出现;颗粒物、硫酸雾、SO2;燃煤;冬季、气温低、湿度高、日光弱;对

呼吸道刺激;对建筑材料损伤;还原型洛杉矶烟雾(光化学烟雾):一般在白天,夜间消失;HC、PAN、NOx、醛类、O3;燃烧汽油、柴油等石油类产品;夏季、气温高、湿度低、日光强;对眼

睛和呼吸道刺激强烈,橡胶开裂;氧化型

19、酸雨化学组成:

阳离子:H+、Ca2+、NH4+、Na+、K+、Mg2+;阴离子:SO42-、NO3-、Cl-、HCO3- 18、酸雨的形

成必须具备以下几个条件:

?污染源条件,即酸性污染物的排放以及转化条件。

?大气中的气态碱性物质浓度较低,对酸性降水的缓冲能力很弱大气中颗粒物的酸碱度及其缓

冲能力。

?天气形式的影响。

20、空气中颗粒:TSP(总悬浮颗粒物):降尘/飘尘RSP:可吸入悬浮颗粒物PM10: 颗粒物

小于10微米,相当于可吸入悬浮粒子 PM2.5: 颗粒物小于2.5微米21、气溶胶粒子的成核

是通过物理和化学过程形成的。气体经过化学反应,向粒子转化的过程从动力学角度上可

以分为以下四个阶段:

(1) 均相成核或非均相成核,形成细粒子分散在空气中。

(2) 在细粒子表面,经过多相气体反应,使粒子长大。

(3) 由布朗凝聚和湍流凝聚,粒子继续长大。

(4) 通过干沉降(重力沉降或与地面碰撞后沉降)和湿沉降(雨除和冲刷)清除。22、大气颗粒物

的粒度有三个模:即艾根核模、积聚模和粗粒模。以下两种颗粒物合称为细粒(小于2μm):核模:0.005~0.05μm,由蒸汽凝结或光化学反应使气体经成核作用(均相或非均相成核)而形

成的颗粒。积聚模:0.05~2μm,由核模型颗粒凝聚或通过蒸气凝结气而长大的。细颗粒主要

化学组分为SO42-、NH4+、NO3-、Pb 和含有烟炱和凝聚有机物的碳。粒径大于2μm 粗粒模:由

机械粉碎、液滴蒸发等过程形成的,主要是自然界及人类活动的一次污染物。粗颗粒化学组分

为Fe、Ca、Si、Na、Cl、Al 等。23、微粒三种最重要的表面性质:成核作用、粘合和吸着。

24、颗粒物的化学组成:一次颗粒物:Fe、Al、Si、Na、Mg、Cl、Ti 等元素;二次颗粒物:硫酸盐、铵盐、有机物。粗粒子:Si、Fe、Al、Na、Ca、Ti 等元素;细粒子:硝酸盐、硫酸盐、铵盐、痕量元素

三、水环境化学

1、研究重金属、富营养化、持久性有毒有机物

2、水分子的特性:高熔点

(melting point)和高沸点(boiling point) 3、水循环的环境化学意义:

世界河床蓄水量大约16 天就可更换一次(强自净能力);提供淡水资源;污染物的长短距离迁移(对大气污染物的清除作用;地面径流对污染物的冲刷作用)4、水体:水、悬浮物质、胶体物质、溶解物质、底泥、水生生物

5、TDS(中溶解性固体总量)≈[Ca2++Mg2++Na++K+]+[HCO3-+SO42-+Cl-+NO3-]

6、微量元素是指在ng/mL 级的元素,天然水中的微量元素As、Cd、Hg、Ni、Pb、Sb、Sn、Zn、Mn、Cu

7、氧在1.0130×105Pa、25℃饱和水中的溶解度为8.32mg/L。

8、水中有机物:非腐殖质---碳水化合物、脂肪、蛋白质、维生素、低分子量有机物;腐殖质---胡敏素、富里酸、胡敏酸。

9、碳酸盐系统:

碳酸盐系统是天然水中的优良缓冲系统,它对于避免天然水的pH 发生剧烈变化起到重要的缓冲作用;碳酸盐系统和水中的酸度以及碱度关系密切;碳酸盐系统与生物的活动也有密切关系;碳酸盐系统与水处理有关。10、CO2-H2O 系统:CT 表示各种碳酸化合态的总量11、水的碱度:水接受质子能力的量度,指水中能与强酸发生中和作用的全部物质,亦即能接受质子 H+的物质总量。总碱度:在测定已知体积水样碱度时,可用一个强酸标准溶液滴定,用甲基橙为指示剂,当溶液由黄色变为橙红色(pH 约4.3),停止滴定,此时所得的结果称为总碱度,也称为甲基橙碱度。

(总碱度=[HCO3-]+2[CO32-]+[OH-]-[H+](甲基橙碱度))酚酞碱度:如果滴定是以酚酞作为指示剂,当溶液的pH 值降到8.3 时即到终点,表示OH-被中和,CO32-全部转化为HCO3-,作为碳酸盐只中和了一半,因此得到酚酞碱度(碳酸盐碱度)。

(酚酞碱度=[CO32-]+[OH-]-[H2CO3*]-[H+] (碳酸盐碱度))

苛性碱度(强碱碱度)):达到pH 能使溶液中碳酸盐全部为CO32-,此时需酸量称为苛性碱度。

12、酸度是指水中能与强碱发生中和作用的全部物质,亦即放出H+或经过水解能产生H+的物质的总量。

无机酸度:以甲基橙为指示剂滴定到pH=4.3 得到游

离CO2 酸度:以酚酞为指示剂滴定到pH=8.3 得到总

酸度:在pH=10.8 处得到

13、总碱度=CT(α1+2α2)+KW/[H+]-[H+];当pH 在5-9 范围内、[碱度]≥10-3mol/L 或pH 在6-8 范围内、[碱度]≥10-4mol/L 时,[H+]、[OH-]项可忽略不计,得到简化式:CT=α[碱度] 14、天然水的缓冲能力:△B=[碱度][10△pH-1]/(1+K1×10pH+△pH)

15、水中无机污染物的迁移转化:吸附--解吸絮凝—沉降沉淀--溶解氧化--还原配合作用

16、水中颗粒物的类别:矿物、金属水合氧化物、腐殖质、悬浮物、其他泡沫、表面活性剂等

半胶体以及藻类、细菌、病毒等生物胶体。非粘土矿物:常为石英(SiO2)、长石(KalSi3O8)等,晶体交错,结实、颗粒粗,不易碎裂,缺乏粘结性。粘土矿物:常为云母、蒙脱石、高岭石,

层状结构,易于碎裂,颗粒较细,具有粘结性,可以生成稳定的聚集体。(粘土矿物是天然水

中最重要、最复杂的无机胶体,是天然水中具有显著胶体化学特性的微粒。主要成分为铝或

镁的硅酸盐,具有片状晶体结构。)腐殖质对物质迁移的作用:腐殖质能与金属离子结合;对

水中有机污染物溶解作用;与水中的水合氧化物、黏土矿物等无机胶体物质结合成为有机-无

机胶体复合物。

17、水环境中颗粒物的吸附作用主要有:表面吸附、离子交换吸附、专属吸附。表面吸附(surface adsorption):由于胶体具有巨大的比表面和表面能,固液界面存在表面吸附作用,

胶体表面积愈大,所产生的表面吸附能也愈大,胶体的吸附作用也就愈强,它是属于一种物理

吸附。离子交换吸附:在吸附过程中,胶体每吸附一部分阳离子,同时也放出等量的其他阳离子,因此把这种吸附称为离子交换吸附,它属于物理化学吸附。专属吸附:指吸附过程中,溶

质离子以配位离子的形式与胶体进行作用,除了化学键的作用外,尚有加强的憎水键和范德华力

或氢键在起作用。专属吸附作用不但可使表面电荷改变符号,而且可使离子化合物吸附在同号

电荷的表面上。

18、水合氧化物对金属离子的专属吸附与非专属吸附的区别:

项目发生吸附的表面净电荷的符号金属离子所起的作用吸附时所发生的反应

发生吸附时要求体系的pH 值吸附发生的位置

非专属吸附—反离子阳离子交换>零电位点扩散层

专属吸附—、0、+ 配位离子配位体交换任意值内层

19、吸附等温线:水体中颗粒物对溶质的吸附是一个动态平衡过程,在固定的温度条件下,当

吸附达到平衡时,颗粒物表面上的吸附量(G)与溶液中溶质平衡浓度(c)之间的关系。G=(Co-C)

V/m,水体中常见的吸附等温线有三类:Henry 型、Freundlich 型、Langmuir 型,简称为H、F、

L 型

20、影响吸附作用的因素有:溶液pH;值颗粒物的粒度和浓度;温度、几种离子共存时的竞

争作用。

21、pHzpc:在某一pH 时,出现零电位,该点为零电位点相应的pH 值

22、固体的氧化物和氢氧化物具有两性的特征,它们和质子或羟基离子都发生反应,存在一个

pH 值,在该值下溶解度为最小值。在碱性或酸性更强的pH 值区域内,溶解度都会变得更大。23、电子活度:电子作为反应物的有效浓度pE= -lg(αe) αe--水溶液中电子的活度 pE

越大,电子活度越小,体系氧化能力或接受电子的能力越强,供出电子能力越弱; pE 越小,

电子活度越大,体系还原能力或供出电子的能力越强,接受电子的能力越弱24、决定电位:

某个单体系的含量比其他体系高得多,该单体系的电位几乎等于混合体系的 pE,被视作决

定电位。在一般水环境中,溶解氧是“决定电位”,而有机污染物积累的厌氧体系中有机物

是“决定电位”。25、NTA(氮基三乙酸钠)、EDTA(乙二胺四乙酸钠)螯合剂NTA

26、水中多数金属污染物以配合物形态存在,配合物的性质决定了重金属的迁移、转化和毒性。

27、Cl 配合作用对重金属迁移的影响大大提高了难溶金属化合物的溶解度;减弱了胶体对重

金属离子的吸附作用。

28、天然水体中配合作用的特点:

(1)大多数配合物稳定地存在于水中;

(2)羟基、卤素配体的竞争配位作用,影响金属难溶盐的溶解度;

(3)重金属离子与不同配体的配位作用,改变其化学形态和毒性。

29、河水中腐殖质含量:10-50mg/L 底泥中腐殖质含量:1-3%

30、腐殖质配合物对重金属迁移的影响:影响颗粒物对重金属的吸附能力;影响重金属化合物的溶

解度;影响重金属的毒性。 31、在烷基汞中,只有甲基汞、乙基汞和丙基汞三种烷基汞为水俣

病的致病性物质。

32、影响无机汞甲基化的因素:无机汞的形态(前提);微生物的数量和种类(过程);温度、

营养物;沉积物中富汞层的位置; pH 的影响。

33、影响重金属在水中迁移的主要因素:

水体的 pH;悬浮物或胶体物质对重金属离子的吸附;无机、有机络合剂的种类和数量;重金

属元素或其他化合物的氧化态及水体的氧化还原条件;微生物的作用。34、有毒有害有机污染物: 多环芳烃(PAHs) 多氯联苯(PCBs) 有机农药

35、迁移:吸附作用挥发作用生物富集转化:光解水解生物降解

36、分配定律:在一定温度下,溶质以相同的分子量(不离解、不缔合)在不相混溶的两相中

溶解,即进行分配,当分配作用达到平衡时,该溶质在两相中的浓度之比是一定值,这一定量

规律为分配定律。分配系数(KP):Kp=Cs/Cw Cs、Cw:分别为有机物在沉积物中和水中的平

衡浓度。

37、生物浓缩因子 (BCF) =有机物在生物体内的浓度/有机物在水中的浓度(大小与生物体内脂

肪含量呈正比)。

38、NAD:烟酰胺腺嘌呤二核苷酸

38、有机污染物迁移转化的途径:以气态挥发进入大气;通过微生物、化学或光化学作用等降

解为无害物;溶解在水中;被水中悬浮颗粒物、沉积物吸附从水相转入底泥;被水生生物富集,

通过直接饮用或经食物链富集进入人体。

四、土壤:

1、土壤环境问题:土壤酸化、盐碱化、土壤污染、土壤沙漠化(石漠化)、陆地植被破坏、水土流失。

2、CEC 表示每千克干土中所含全部阳离子的总量,是表示土壤吸附性质的重要指标。

3、Al 对土壤的危害:三价Al 与土壤胶体结合能力强,易排挤其它阳离子使其进入土壤溶液

而遭受淋溶损失;研究表明,土壤对植物的酸害实际是铝害,过多的铝离子抑制植物生长。4、土壤氧化还原能力的大小可以用土壤的氧化还原电位(Eh)来衡量。

5、重金属污染的危害:影响植物生长;影响土壤生物群的变化及物质的转化;影响人体健康

6、影响土壤中重金属迁移转化及生物效应的主要因素:胶体对重金属的吸附;各种无机及有机配体的配合或螯合作用;土壤pE;土壤pH;共存离子的作用;土壤微生物的作用

7、典型农药:有机氯农药(DDT 林丹)有机磷农药

五、补充:

1、PTS:是指一类具有很强的毒性,在环境中难降解,可远距离传输,并随食物链在动物和人体中累积、放大,具有内分泌干扰特性的污染物,包括POPs 和某些重金属污染物。

2、Kow :辛醇-水分配系数,既化学物质在辛醇中浓度和在水中浓度的比例。标化分配系数:表示有机毒物在沉积物(或土壤)与水之间的分配系数,以有机碳为基础。Koc = Kp / Xoc。

3、毒性大小:CH3HgCH3>醋酸苯汞>HgCl2>HgO>HgS

4、一般DO 低于4mg/L 水质将恶化。

5、腐殖质中不溶于NaOH 的部分称为腐黑物,可溶于NaOH 的部分称为腐殖酸,既溶于碱又溶于酸的部分称为富里酸。

6、有机胶体比表面其范围为350-900m2/g 。

7、二氟一氯一溴甲烷 Halon-1211 CBrClF2。

8、水汽(H2O)、二氧化碳(CO2)、氧化亚氮 (N2O)、甲烷(CH4)和臭氧(O3)是地球大气中主要的温室气体。

9、在一般天然水环境中,决定电位物质是溶解氧,而在有机物累积的厌氧环境中,决定电

位物质是有机物;水中有机物的有氧分解产物为 H2O CO2 NO3- 、SO42-等,不会

造成水质恶化,而缺氧分解产物为 CH4 NH3 H2S 等,将会使水质进一步恶化。

大学 物理化学 笔记总结

第一章 物理化学的定义,相变化(物质在熔点沸点间的转化) 物理化学的基本组成:1化学热力学(方向限度)2化学动力学(速率与机理)3结构化学 物理化学的研究方法、热力学方法、动力学方法、量子力学方法 系统、环境的定义。系统的分类:开放系统,封闭系统,隔离系统 系统的性质:强度性(不可加),广延性(可加)。系统的状态 状态函数及其性质:1单值函数2仅取决于始末态3全微分性质。 热力学能、热和功的定义 热分:潜热,显热。功分:膨胀功、非膨胀功。 热力学第一定律的两类表述:1第一类永动机不可制成。2封闭体系:能量可从一种形式转变为另一种形式,但转变过程中能量保持不变。、 恒容热、恒压热,焓的定义。PV U H def +≡ 恒容热:①封闭系统② W f =0 ③W e =0 恒压热:①封闭系统②W f =0 ③d p =0 理想气体的热力学能和焓是温度的函数。 C, C V , C V ,m , C P , C P,m 的定义。 △u =n C V ,m (T 2-T 1) △H=n C P,m (T 2-T 1) C V ,m =a+bT+cT 2+…/ a+bT -1+cT -2 +… 单原子分子C V ,m = 23R C P ,m =25R 双原子分子C V ,m =25R C P ,m =2 7R γ单= 35 γ双=5 7 C P,m - C V ,m =R R=8.3145J ·mol -1·k -1 可逆过程定义及特点:①阻力与动力相差很小量②完成一个循环无任何功和热交换③膨胀过程系统对环境做最大功,压缩过程环境对系统做最小功 可逆过程完成一个循环 △u=0 ∑=0W ∑=0Q W 、 Q 、△u 、△H 的计算 ①等容过程:W =0 Q =△u △u=n C V ,m (T 2-T 1) △H=n C P,m (T 2-T 1) ②等压过程:W =-Pe(V 2-V 1) Q=△H △u=n C V ,m (T 2-T 1) △H=n C P ,m (T 2-T 1) ③等温过程:W=-nRTln 1 2V V Q=-W △u=△H=0 ④绝热可逆过程:W=n C V ,m (T 2-T 1) /?? ? ???? ?-??? ? ??--1112111γγv v v p Q=0 △u=n C V ,m (T 2-T 1) △H=n C P ,m (T 2-T 1) 21p p =(12v v )γ 21T T =(12v v )1-γ 21T T =(2 1p p ) γ γ1 - 相变化过程中△H 及△u 的计算△u=△H-P △V=△H-nRT 见书1-10 化学计量系数ν 化学反应进度??= B νB n ?(必与指定的化学反应方程对应) 化学反应热效应定义, 盖斯定律:一个化学反应,不管是一步完成或是经数步完成,反应的总标准摩尔焓变是相同的,即盖斯定律。 标准摩尔反应焓变:)(H m T r θ ?= ∑B B θν m H (B ,,β T ) 化学反应θ m H r ?的计算:1 )(H m T r θ ?= ∑?B B θν m f H (B ,,β T ) θ m f H ?:在温度为T ,

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

大学普通化学复习知识点

配浙大普通化学第五版复习,根据注册结构师考试摘选课本内容编辑。 .1物质的结构和物质状态 原子结构的近代概念;原子轨道和电子云;原子核外电子分布;原子和离子的电子结构;原子结构和元素周期律;元素周期表;周期;族;元素性质及氧化物及其酸碱性。离子键的特征;共价键的特征和类型;杂化轨道与分子空间构型;分子结构式;键的极性和分子的极性;分子间力与氢键;晶体与非晶体;晶体类型与物质性质。 3.2溶液 溶液的浓度;非电解质稀溶液通性;渗透压;弱电解质溶液的解离平衡;分压定律;解离常数;同离子效应;缓冲溶液;水的离子积及溶液的pH值;盐类的水解及溶液的酸碱性;溶度积常数;溶度积规则。 3.3化学反应速率及化学平衡 反应热与热化学方程式;化学反应速率;温度和反应物浓度对反应速率的影响;活化能的物理意义;催化剂;化学反应方向的判断;化学平衡的特征;化学平衡移动原理。 3.4氧化还原反应与电化学 氧化还原的概念;氧化剂与还原剂;氧化还原电对;氧化还原反应方程式的配平;原电池的组成和符号;电极反应与电池反应;标准电极电势;电极电势的影响因素及应用;金属腐蚀与防护。 3.5;有机化学 有机物特点、分类及命名;官能团及分子构造式;同分异构;有机物的重要反应:加成、取代、消除、氧化、催化加氢、聚合反应、加聚与缩聚;基本有机物的结构、基本性质及用途:烷烃、烯烃、炔烃、;芳烃、卤代烃、醇、苯酚、醛和酮、羧酸、酯;合成材料:高分子化合物、塑料、合成橡胶、合成纤维、工程塑料。;第1章 热化学与能源 系统环境 按照系统与环境之间有无物质和能量交换,可将系统分成三类: (1)敞开系统与环境之间既有物质交换又有能量交换的系统,又称开放系统。 (2)封闭系统与环境之间没有物质交换,但可以有能量交换的系统。通常在密闭容器中的系统即为封闭系统。热力学中主要讨论封闭系统。 (3}隔离系统与环境之间既无物质交换又无能量交换的系统,又称孤立系统。绝热、密闭的恒容系统即为隔离系统。 系统中具有相同的物理性质和化学性质的均匀部分称为相。所谓均匀是指其分散度达到分子或离子大小的数量级。相与相之间有明确的界面,超过此相界面,一定有某些宏观性质(如密度、折射率、组成等)要发生突变。 系统的状态是指用来描述系统的诸如压力P、体积V温度T、质量M和组成等各种宏观性质的综合表现。用来描述系统状态的物理量称为状态函数。

大学有机化学B知识点总结(精编版)

有机化学期末复习总结 一、有机化合物的命名 命名是学习有机化学的“语言”,因此,要求学习者必须掌握。有机合物的命名包括俗名、习惯命名、系统命名等方法,要求能对常见有机化合物写出正确的名称或根据名称写出结构式或构型式。 1.俗名及缩写:要求掌握一些常用俗名所代表的化合物的结构式,如: 甘油、石炭酸、蚁酸、水杨醛、水杨酸、草酸、呋喃、吡咯、吡啶、甘氨酸、丙氨酸、葡萄糖、果糖等。 2、习惯命名法:要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法,掌握常见烃基的结构,如:烯丙基、丙烯基、正丙基、异丙基、异丁基、叔丁基、苄基等。 3、系统命名法:系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则。其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视。要牢记命名中所遵循的“次序规则”。 4、次序规则:次序规则是各种取代基按照优先顺序排列的规则 (1)原子:原子序数大的排在前面,同位素质量数大的优先。几种常见原子的优先次序为:I>Br>Cl>S>P>O>N>C>H (2)饱和基团:如果第一个原子序数相同,则比较第二个原子的原子序数,依次类推。常见的烃基优先次序为:(CH3)3C->(CH3)2CH->CH3CH2->CH3(3)不饱和基团:可看作是与两个或三个相同的原子相连。不饱和烃基的优先次序为: -C≡CH>-CH=CH2>(CH3)2CH- 次序规则主要应用于烷烃的系统命名和烯烃中几何异构体的命名 烷烃的系统命名:如果在主链上连有几个不同的取代基,则取代基按照“次序规则”依次列出,优先基团后列出。 按照次序规则,烷基的优先次序为:叔丁基>异丁基>异丙基>丁基>丙基>乙基>甲基。 (4)、几何异构体的命名:烯烃几何异构体的命名包括顺、反和Z、E两种方法。简单的化合物可以用顺反表示,也可以用Z、E表示。用顺反表示时,相同的原

无机化学读书笔记

无机化学读书笔记 【篇一:无机化学学习心得】 《普通化学》培训总结 本人作为化学专业的一名普通老师,有幸参加了高等学校教师网络 在线培训课程,同济大学吴庆生教授主讲的《普通化学》生动形象,他渊博的知识、严谨的态度、丰富的经验以及独特的教学艺术,给 我留下深刻的印象,使我受益良多。 本门课程的培训视频以在校的普通化学及其相关课程的授课老师为 对象,主要介绍了普通化学的课程定位、课时安排、教学理念、难 重点教学设计、主要的教学方法、示范教学、考核与评价、教学前 沿等内容。通过主讲教师对其多年课程教学经验的分享,经过面对 面交流,为我们指点迷津,提高了我们对本门课程教学能力。 我作为一名老师队伍当中的新人,需要从学生的学习思维模式和立 场迅速切换到老师的授课思维状态,经过本门课程的学习,使我有 了一定的感悟。我初步明白,作为一名老师,要竭尽所能的将知识 传授给学生,但用何种教学方式才能更好地激发学生的学习热情与 潜能,这是我目前以至于以后都要不断思考、总结的问题。经过此 次的培训,给我提供了一些思路,我打算从以下几方面着手: 第一,丰富教学形式。以丰富多样的课堂教学模式,充分结合当代 学生的性格特点,不拘泥于枯燥的理论教学,而要采用富有激情、 生动形象、理论结合实际的教学方式,把理论化学与生活中的化学 结合在一起,使学生能更好地运用到生活的方方面面,做到理论与 实践完美结合。当然,除了课堂教学之外,还要适当增加实践教学,激发学生的学习热情。 第二,充分利用多媒体教学与板书教学相结合的方式。对一些无机 化学当中抽象的内容,要采用动画的方式,具象地展现在学生面前,以便于他们更好地理解。 第三,教学要详略得当,对于重难点问题,要深入解析,以具体的 教学案例深入分析问题,使学生更好地掌握所学内容和解决问题的 方法,同时,要将所学内容完美结合,前后串起来,在学习新知识 的同时,复习旧知识,而且便于更好地理解所学内容。 以上就是我本次学习的心得体会,我非常感谢吴教授的精彩授课, 同时非常荣幸有这次机会可以跟吴教授面对面交流学习,使我我受 益匪浅,希望以后还有更多的交流、学习和提升的机会。

浙江大学普通化学知识点总结二

普通化学知识点总结 二.化学热力学基础 本章研究化学反应进行的方向及限度问题。 1.热力学第一定律 (1)体系:根据体系与环境之间能量、物质交换的情况,将体系分类。①开放体系:既有物质交换,又有能量交换②封闭体系:没有物质交换,但有能量交换③孤立体系:既没有物质交换,又没有能量交换。(2)过程:①可逆(reversible)过程:热力学系统从状态A出发,经过过程p到达另一状态B;如果存在另一过程p*,它能使系统和环境完全复原,即系统回到原来状态A,同时消除原来过程p对环境产生的影响,则过程p称为可逆过程。 ②准静态过程(平衡过程):若系统从一个平衡状态连续经过无数个中间的平衡状态过渡到另一个平衡状态,在任意有限的时间内,系统状态不发生改变,该过程称为准静态过程。 准静态过程是可逆过程的必要条件(可逆过程要求没有非平衡损失和耗散损失,准静态过程只满足前者)。在一般讨论中,认为两者等价。 ③自发过程:自发过程是由于体系与环境不平衡引起的,故自发过程都是不可逆过程。 综上,在以下讨论中,可以粗糙地认为:“不可逆(irreversible),非平衡,自发”三者等价,“可逆,平衡,非自发”三者等价。 (3)热力学第一定律:,式中 ①为内能增量。内能是体系内部所有能量的总和,包括分子动能,分子间势能,分子内部的能量(转动、振动、电子和核运动),但不包括体系整体运动的能量。内能是状态函数,U = f((n,T,V))。 ②W为体系对外界做功,分为非体积功和体积功,即。 注意当环境压力与体系压力不等时,应该用环境压力,因为体系处于非平衡态时,压力p没有意义。

可以证明,恒温膨胀或压缩,可逆过程比不可逆过程的功(代数值)大。 ③Q为体系吸热量。分物理过程和化学过程讨论如下: 物理过程:相变潜热(熔化热,汽化热,升华热等):单位质量的物质在等温等压情况下,从一个相变化到另一个相吸收或放出的热量。利用T1、T2温度下的饱和蒸气压,可以计算出摩尔蒸发热(焓)。 变温过程的热:,上式中C为热容,是温度的函数。恒容过程(且不含非体积功)的(摩尔)热容称为恒容(摩尔)热容,恒压过程的(摩尔)热容称为恒压(摩尔)热容。理想气体两者的关系为:恒容过程中=。 恒压过程中--,得=-。定义状态函数焓(Enthalpy) ,所以=。因此,通常讲的蒸发焓等于恒压蒸发热,反应焓(变)等于恒压反应热。对理想气体而言,与内能一样,焓也只是温度的函数。 化学反应热:化学反应后体系回到反应前的温度,与环境交换的热量。可利用弹式量热计测量: 样品在纯氧气氛中完全燃烧,使氧弹及周围介质温度升高。已知仪器的热容C,测量反应过程温度改变值ΔT(较小以近似保证“回到反应前的温度”),即可求算样品的恒容燃烧热:反应热=C×ΔT,一般用已知燃烧热的标准物质来标定弹式量热计的仪器常数。 对于任意化学反应,容易证明以下关系成立:,其中为反应中气态组分的物质的量增量。 利用状态函数法(盖斯定律),也可以推得某些反应的反应热。如果将一些常见物质的标准摩尔生成焓集结成表,则更能方便地计算许多反应热。标准摩尔生成焓是指在标准压力)下,以最稳定相态的单质为原料,生成1mol某物质的反应的焓变(恒压反应热),用记号表示,f(form)表示形成,是标准压力的上标(反应组分不混合),m表示摩尔。显然所有最稳定相态单质的标准摩尔生成焓为零。

大学无机化学知识点总结.

无机化学,有机化学,物理化学,分析化学 无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函 数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部 分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai k e t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温 物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功, W>O ;系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之 和称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θ P 下的状态,混合气体 中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。

初中物理化学知识点总结.doc

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集方法的三种方法:排水法(不容于水的气体),向上排空气法(密度 比空气大的气体),向下排空气法(密度比空气小的气体)。

注册电气工程师 普通化学知识点总结(可打印版)

注册电气工程师普通化学知识点总结一、物质的结构与状态 (一)波函数Ψ Ψ(n,n,n),确定一个原子轨道: 主量子数n:电子离核的远近和电子能量的高低,n越大,电子能量越高。 n = 1, 2, 3, 4, ... 角量子数l:亚层,确定原子轨道的形状;对于多电子原子,与n一起确定原子轨道的能量。l = 0, 1, 2, ..., n-1 磁量子数m:确定原子轨道的空间取向。 一个电子层内,波函数Ψ数目=n2 Ψ(n,l,m,m s),确定一个电子完整的运动状态。 自旋量子数m s:电子自身两种不同的运动状态。 m s= ±1/2 (二)原子核外电子分布三原则 1)能量最低原理:电子由能量低的轨道向能量高的轨道排布(电子先填充能量低的轨道,后填充能量高的轨道. 2)Pauli(保利)不相容原理:每个原子轨道中只能容纳两个自旋方向相反的电子(即同一原子中没有运动状态完全相同的电子,亦即无四个量子数完全相同的电子). 3)Hunt(洪特)规则:电子在能量简并的轨道中, 要分占各轨道,且保持自旋方向相同. 保持高对称性, 以获得稳定. 包括: 轨道全空, 半充满,全充满三种分布.

(三)元素周期律

元素在周期表中的分区 (四)化学键与分子结构 σ键:头碰头

氢键 物质的熔点与沸点 同类型的单质和化合物,一般随摩尔质量的增加而增大。含有氢键的比不含的要大。 物质的溶解性 相似者相溶,(非)极性易溶于(非)极性。 (五)晶体结构 离子晶体,离子电荷与半径规律如下: 1)同一周期,从左到右,电荷数增多,半径减小; 2)同一元素,电荷数增多,半径减小; 3)同一族,从上到下,离子半径增大; (六)物质状态 1)理想气体的状态方程: ①摩尔表示: 克拉珀龙方程pV=nRT 其中p为气体压强,单位帕斯卡(帕 Pa) V为气体体积,单位为立方米(m3) n为气体的物质的量,单位为摩尔(摩 mol) T为体系的热力学温度,单位开尔文(开 K) R为比例常数,单位是焦耳/(摩尔·开),即J/(mol·K) 对任意理想气体而言,R是一定的,约为8.31441±0.00026 J/(mol·K). ②质量表示: pV=mrT 此时r是和气体种类有关系的,r=R/M,M为此气体的平均分子量 ③分子数表示: pV=NKT N为分子数 K为波尔兹曼常数,K=1.38066×10-23J/K 2)道尔顿分压定律 气体混合物总压力等于各组分气体分压总和: p=p a +p b +...

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

厦门大学物理化学近年真题考点归纳

表格中所写章节以傅献彩五版物理化学为准2007大题汇总 2008大题汇总

2009大题汇总 2010年大题汇总

2011年大题汇总

2012大题汇总 2013年大题汇总

以上列了近几年厦门大学物理化学考试科目大题的主要考点。厦门大学的物理化学不同于其他学校,他考察的题型比较单一。一般12~16分的选择题,然后剩下的大概十道左右的大题。 首先,复习过程中一般使用傅献彩的物理化学课本,据悉厦大本校上课也是使用这本教材。第一章气体的不用看,统计热力学一般就考一个选择,也可舍弃(明确说明只考概念),第十四章胶体近年来也只考选择,也可考虑舍弃。厦大的物化热力学考察并非重点,但热力学函数的关系、麦克斯韦关系要会熟练推导,并要求熟悉各个函数的意义,今年来有向热化学、能源方面考察的趋势。相图每年必考,且分值较大,考察的相图也较为常规,多进行几个典型相图的练习总结规律就行,步冷曲线也一般会要求绘制,杠杆规则的应用,并注意这部分可以和第四章结合考察。化学平衡也几乎年年考,这部分相对简单。电解质这一章本身就比较简单,一般是求电导率以及弱电解质平衡常数。第九十章电化学每年必考大题,能斯特方程要熟练运用,注意超电势的问题以及电解过程中离子浓度的改变。第十一十二章动力学每年考察的比重比较大,常用的反应级数求解、稳态近似平衡假设的使用及其使用条件、过渡态理论中热力学函数与活化能的关系、重要的关系式的推导。第十三章也年年考大题,开尔文公式、毛细现象,都很简单,但要注意浸润与不浸润时方程中R的正负(14年考的汞和玻璃,非常遗憾做错了) 最后,厦大物化最重要的参考书是孙世刚编写的物理化学的学习指导以及物理化学题库,历年真题很多出自上面。要将上面的习题反复练习。

物理化学重点超强总结归纳

第一章热力学第一定律 1、热力学三大系统: (1)敞开系统:有物质和能量交换; (2)密闭系统:无物质交换,有能量交换; (3)隔绝系统(孤立系统):无物质和能量交换。 2、状态性质(状态函数): (1)容量性质(广度性质):如体积,质量,热容量。 数值与物质的量成正比;具有加和性。 (2)强度性质:如压力,温度,粘度,密度。 数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。 特征:往往两个容量性质之比成为系统的强度性质。 3、热力学四大平衡: (1)热平衡:没有热隔壁,系统各部分没有温度差。 (2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同 (3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。 (4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。 4、热力学第一定律的数学表达式: ?U = Q + W Q为吸收的热(+),W为得到的功(+)。

12、在通常温度下,对理想气体来说,定容摩尔热容为: 单原子分子系统 ,V m C =32 R 双原子分子(或线型分子)系统 ,V m C =52R 多原子分子(非线型)系统 ,V m C 6 32 R R == 定压摩尔热容: 单原子分子系统 ,52 p m C R = 双原子分子(或线型分子)系统 ,,p m V m C C R -=,72 p m C R = 多原子分子(非线型)系统 ,4p m C R = 可以看出: ,,p m V m C C R -= 13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经 ,2' p m c C a bT T =++ 验常数,与物质和温度范围有关) 14、在发生一绝热过程时,由于0Q δ=,于是dU W δ= 理想气体的绝热可逆过程,有:,V m nC dT pdV =- ? 22 ,11 ln ln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ?= ,,p m V m C pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =( )H p μ??- J T μ->0 经节流膨胀后,气体温度降低; J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。 16、气体的节流膨胀为一定焓过程,即0H ?=。 17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所 吸收或放出的热,称为此过程的热效应,或“反应热”。 18、化学反应进度:()()() n B n B B ξ ν-= 末初 (对于产物v 取正值,反应物取负值) 1ξ=时,r r m U U ξ ??= ,r r m H H ξ ??= 19、(1)标准摩尔生成焓(0 r m H ?):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的 标准摩尔生成焓。 (2)标准摩尔燃烧焓(0 c m H ?):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标 准摩尔燃烧焓。 任意一反应的反应焓0 r m H ?等于反应物燃烧焓之和减去产物燃烧焓之和。 20、反应焓与温度的关系-------基尔霍夫方程

大学物理化学知识整理

第一章 理想气体 1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。 2、分压力:混合气体中某一组分的压力。在混合气体中,各种组分的气体分子 分别占有相同的体积(即容器的总空间)和具有相同的温度。混合气体的总压力是 各种分子对器壁产生撞击的共同作用的结果。每一种组分所产生的压力叫分压 力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。 P y P B B =,其中∑=B B B B n n y 。 分压定律:∑=B B P P 道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组 分单独存在时所产生的压力的总和。 ∑=B B V RT n P ) /( 3、压缩因子Z Z=)(/)(理实m m V V 4、德华状态方程 RT b V V a p m m =-+))((2 nRT nb V V an p =-+))((22 5、临界状态(临界状态任何物质的表面力都等于0) 临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数: (1)临界温度c T ——气体能够液化的最高温度。高于这个温度,无论如何 加压 气体都不可能液化;

(2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。 6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。取决于状 态,主要取决于温度,温度越高,饱和蒸气压越高。 7、沸点:蒸气压等于外压时的温度。 8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。 对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、r r r c r r r c c c T V p Z T V p RT V p Z =?= 10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应 的Z 。 11、阿玛格定律:B B Vy V = p RT n V B B /= 12、单原子理想气体 R C m p 25,=,双原子理想气体R C m p 27,= 第二章 热力学第一定律 1、热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能 从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过 程中能量的总和不变,△U=Q+W (适用于非开放系统)。 2、

物理化学知识点(全)

第二章 热力学第一定律 内容摘要 ?热力学第一定律表述 ?热力学第一定律在简单变化中的应用 ?热力学第一定律在相变化中的应用 ?热力学第一定律在化学变化中的应用 一、热力学第一定律表述 U Q W ?=+ d U Q W δδ=+ 适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+? 2、U 是状态函数,是广度量 W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 2、基础公式 热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ 理想气体 ? 状态方程 pV=nRT

? 过程方程 恒温:1122p V p V = ? 恒压: 1122//V T V T = ? 恒容: 1122/ / p T p T = ? 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--= 1111 22 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程 1、 可逆相变化 Q p =n Δ 相变 H m W = -p ΔV 无气体存在: W = 0 有气体相,只需考虑气体,且视为理想气体 ΔU = n Δ 相变 H m - p ΔV 2、相变焓基础数据及相互关系 Δ 冷凝H m (T) = -Δ蒸发H m (T) Δ凝固H m (T) = -Δ熔化H m (T) Δ 凝华 H m (T) = -Δ 升华 H m (T) (有关手册提供的通常为可逆相变焓) 3、不可逆相变化 Δ 相变 H m (T 2) = Δ 相变 H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆; 2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤; 3.除可逆相变化,其余步骤均为简单变化计算. 4.逐步计算后加和。 四、热力学第一定律在化学变化中的应用 1、基础数据 标准摩尔生成焓 Δf H θm,B (T) (附录九) 标准摩尔燃烧焓 Δc H θ m.B (T)(附录十) 2、基本公式 ?反应进度 ξ=△ξ= △n B /νB = (n B -n B.0) /νB ?由标准摩尔生成焓计算标准摩尔反应焓 Δr H θm.B (T)= ΣνB Δf H θ m.B (T) ?由标准摩尔燃烧焓计算标准摩尔反应焓 Δr H θ m.B (T)=-Σ νB Δc H θ m.B (T) (摩尔焓---- ξ=1时的相应焓值) ?恒容反应热与恒压反应热的关系 Q p =Δr H Q v =Δr U Δr H =Δr U + RT ΣνB (g) ?Kirchhoff 公式 微分式 d Δr H θ m (T) / dT=Δr C p.m 积分式 Δr H θm (T 2) = Δr H θ m (T 1)+∫Σ(νB C p.m )dT 本章课后作业: 教材p.91-96(3、4、10、11、16、17、38、20、23、24、28、30、33、34)

大学物理化学实验思考题答案总结

蔗糖水解速率常数的测定 1.蔗糖水解反应速率常数和哪些因素有关? 答:主要和温度、反应物浓度和作为催化剂的H+浓度有关。 2.在测量蔗糖转化速率常数时,选用长的旋光管好?还是短的旋光管好? 答:选用长的旋光管好。旋光度和旋光管长度呈正比。对于旋光能力较弱或者较稀的溶液,为了提高准确度,降低读数的相对误差,应选用较长的旋光管。根据公式(a)=a*1000/LC,在其他条件不变的情况下,L越长,a越大,则a的相对测量误差越小。 3.如何根据蔗糖、葡萄糖、果糖的比旋光度数据计算? 答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100 α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100 式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t=20℃L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32° α∞=×2×10/100×(52.2-91.9)=-3.94° 4.试估计本实验的误差,怎样减少误差? 答:本实验的误差主要是蔗糖反应在整个实验过程中不恒温。在混合蔗糖溶液和盐酸时,尤其在测定旋光度时,温度已不再是测量温度,可以改用带有恒温实施的旋光仪,保证实验在恒温下进行,在本实验条件下,测定时要力求动作迅速熟练。其他误差主要是用旋光仪测定时的读数误差,调节明暗度判断终点的误差,移取反应物时的体积误差,计时误差等等,这些都由主观因素决定,可通过认真预习实验,实验过程中严格进行操作来避免。 乙酸乙酯皂化反应速率常数测定 电导的测定及其应用 1、本实验为何要测水的电导率? 答:因为普通蒸馏水中常溶有CO2和氨等杂质而存在一定电导,故实验所测的电导值是欲测电解质和水的电导的总和。作电导实验时需纯度较高的水,称为电导水。水的电导率相对弱电解质的电导率来说是不能够忽略的。所以要测水的电导率。 2、实验中为何通常用镀铂黑电极?铂黑电极使用时应注意什么?为什么?

普通化学知识点总结全

普通化学复习资料 3.1物质的结构与物质的状态 1.核外电子的运动特性 核外电子运动具有能量量子化、波粒二象性和统计性的特征,不能用经典的牛顿力学来描述核外电子的运动状态。 2.核外电子的运动规律的描述 由于微观粒子具有波的特性,所以在量子力学中用波函数Ψ来描述核外电子的运动状态,以代替经典力学中的原子轨道概念。 (1)波函数Ψ(原子轨道):用空间坐标来描写波的数学函数式,以表征原子中电子的运动状态。 一个确定的波函数Ψ,称为一个原子轨道。 (2)概率密度(几率密度):Ψ2表示微观粒子在空间某位置单位体积内出现的概率即概率密度。 (3)电子云:用黑点疏密的程度描述原子核外电子出现的概率密度(Ψ2)分布规律的图形。黑点较密的地方,表示电子出现的概率密度较大,单位体积内电子出现的机会较多。 (4)四个量子数:波函数Ψ三个量子数取值相互制约: 1)主量子数n的物理意义: n的取值:n=1,2,3,4……∞ ,

意义:表示核外的电子层数并确定电子到核的平均距离;确定单电子原子的电子运动的能量。 n = 1,2,3,4, ……∞,对应于电子层K,L,M,N, ···具有相同n值的原子轨道称为处于同一电子层。 2)角量子数ι: ι的取值:受n的限制,ι= 0,1,2……n-1 (n个)。 意义:表示亚层,确定原子轨道的形状;对于多电子原子,与n共同确定原子轨道的能量。… ι的取值: 1 , 2 , 3 , 4 电子亚层: s, p, d, f…… 轨道形状:球形纺锤形梅花形复杂 图3-1 3)磁量子数m: m的取值:受ι的限制, m=0 ,±1,±2……±ι(2ι+1个) 。 意义:确定原子轨道的空间取向。 ι=0, m=0, s轨道空间取向为1; ι=1, m=0 ,±1, p轨道空间取向为3; ι=2, m=0 ,±1,±2 , d轨道空间取向为5; …… n,ι相同的轨道称为等价轨道。 s轨道有1个等价轨道,表示为: p轨道有3个等价轨道,表示为:

大学有机化学知识点总结(推荐文档)

有机化学复习总结 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1 )伞形式: COOH OH H 3 2)锯架式:CH 3 OH H H OH C 2H 5 3) 纽曼投影式: H H 4)菲舍尔投影式:COOH CH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅 式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型, 在相反侧,为E 构型。 CH 3 C H C 2H 5CH 3C C H 2H 5Cl (Z)-3-氯-2-戊烯 (E)-3-氯-2-戊烯 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式; 在相反侧,则为反式。

大学物理化学知识点归纳只是分享

大学物理化学知识点 归纳

第一章 气体的pvT 关系 一、 理想气体状态方程 pV=(m/M )RT=nRT (1.1) 或pV m =p (V/n )=RT (1.2) 式中p 、V 、T 及n 的单位分别为P a 、m 3、K 及mol 。V m =V/n 称为气体的摩尔体积,其单位为m 3·mol 。R=8.314510J ·mol -1 ·K -1称为摩尔气体常数。 此式适用于理想,近似于地适用 于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程 (1.3) pV=nRT=(∑B B n )RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑B B y M B (1.5) M mix =m/n= ∑B B m /∑B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气体的温度T 及总体积V 的条件下所具有的压力。而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。以上两

式适用于理想气体混合系统,也近似适用于低压混合系统。 3.阿马加定律 V B * =n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B 在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以T c 或t c 表示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an 2/V 2)(V-nb)=nRT (1.12) 上述两式中的a 和b 可视为仅与气体种类有关而与温度无关的常数,称为范德华常数。a 的单位为Pa ·m 6 ·mol ,b 的单位是m 3mol.-1。该 方程适用于几个兆帕气压范围内实际气体p 、V 、T 的计算。 2.维里方程 Z(p ,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C /

相关文档
相关文档 最新文档