文档库 最新最全的文档下载
当前位置:文档库 › (完整版)直线和圆基础习题和经典习题加答案

(完整版)直线和圆基础习题和经典习题加答案

(完整版)直线和圆基础习题和经典习题加答案
(完整版)直线和圆基础习题和经典习题加答案

【知识网络】

综合复习和应用直线和圆的基础知识,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题,提高分析问题和解决问题能力. 【典型例题】

[例1](1)直线x +y=1与圆x 2+y 2-2ay=0(a >0)没有公共点,则a 的取值范围是 ( ) A .(0, 2 -1) B .( 2 -1, 2 +1)

C .(- 2 -1, 2 -1)

D .(0, 2 +1

(2)圆(x -1)2+(y + 3 )2=1的切线方程中有一个是 ( ) A .x -y=0 B .x +y=0 C .x=0 D .y=0

(3)“a =b ”是“直线2

2

2()()2y x x a y b =+-++=与圆相切”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件

(4)已知直线5x +12y +a=0与圆x 2+y 2-2x=0相切,则a 的值为 .

(5)过点(1, 2 )的直线l 将圆(x -2)2+y 2=4分成两段弧,当弧所对的圆心角最小时,直线l 的斜率k= .

[例2] 设圆上点A (2,3)关于直线x +2y=0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为2 2 ,求圆的方程.

[例3] 已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ|的比等于λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线.

[例4] 已知与曲线C :x 2+y 2-2x -2y +1=0相切的直线l 叫x 轴,y 轴于A ,B 两点,|OA|=a,|OB|=b(a >2,b >2). (1)求证:(a -2)(b -2)=2;

(2)求线段AB 中点的轨迹方程; (3)求△AOB 面积的最小值.

【课内练习】

1.过坐标原点且与圆x 2+y 2-4x +2y +5

2

=0相切的直线的方程为 ( )

A.y=-3x 或y=1

3x B.y=3x 或y=-

1

3x

C.y=-3x 或y=-1

3x D.y=3x 或y=

1

3x

2.圆(x-2)2+y2=5关于原点(0,0)对称的圆的方程为

( ) A.(x+2)2+y2=5 B.x2+(y-2)2=5

C.(x-2)2+(y-2)2=5 D.x2+(y+2)2=5

3.对曲线|x|-|y|=1围成的图形,下列叙述不正确的是()

A.关于x轴对称B.关于y轴对称C.关于原点轴对称D.关于y=x轴对称4.直线l1:y=kx+1与圆x2+y2+kx-y-4=0的两个交点关于直线l2:y+x=0对称,那么这两个交点中有一个是()

A.(1,2)B.(-1,2)C.(-3,2)D.(2,-3)

5.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k的取值范围是.6.已知直线ax+by+c=0与圆O:x2+y2=1相交于A、B两点,且|AB|=3,则 =.

7.直线l1:y=-2x+4关于点M(2,3)的对称直线方程是.

8.求直线l1:x+y-4=0关于直线l:4y+3x-1=0对称的直线l2的方程.

9.已知圆C:x2+y2+2x-4y+3=0

(1)若C的切线在x轴,y轴上的截距的绝对值相等,求此切线方程;

(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为原点,且有|PM|=|PO|,求使|PM|最小的P点的坐标.

10.由动点P引圆x2+y2=10的两条切线PA,PB,直线PA,PB的斜率分别为k1,k2.

(1)若k1+k2+k1k2=-1,求动点P的轨迹方程;

(2)若点P在直线x+y=m上,且PA⊥PB,求实数m的取值范围.

11.5直线与圆的综合应用

A 组

1.设直线过点(0,a ),其斜率为1,且与圆x 2+y 2=2相切,则a 的值为 ( ) A .±2 B .±2 C .±2 2 D .±4

2.将直线2x -y +λ=0,沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y=0相切,则实数λ的值为 A .-3或7 B .-2或8 C .0或10 D .1或11 3.从原点向圆 x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为( ) A .π B . 2π C . 4π D . 6π

4.若三点A (2,2),B (a,0),C (0,b)(a ,b 均不为0)共线,则

11

a b

+的值等于 .

5.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4有两个不同的交点A ,B ,且弦AB 的长为2 3 ,则a 等于 .

6.光线经过点A (1,7

4

),经直线l :x +y +1=0反射,反射线经过点B (1,1).

(1)求入射线所在的方程; (2)求反射点的坐标.

7.在△ABC 中,BC 边上的高所在的直线方程为x -2y +1=0,∠A 的平分线所在直线方程为y=0,若B 点的坐标为(1,2),求点A 和点C 的坐标.

8.过圆O :x 2+y 2=4与y 轴正半轴的交点A 作这个圆的切线l ,M 为l 上任意一点,过M 作圆O 的另一条切线,切点为Q ,当点M 在直线l 上移动时,求△MAQ 垂心H 的轨迹方程.

B 组

1.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA|=2|PB|,则点P 的轨迹所包围

的图形的面积等于 ( )

A .π

B .4π

C .8π

D .9π

2.和x 轴相切,且与圆x 2+y 2=1外切的圆的圆心的轨迹方程是 ( ) A .x 2=2y +1 B .x 2=-2y +1 C .x 2=2y -1 D .x 2=2|y|+1

3.设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、 B 的值,则所得不同直线的条数是 ( )

A .20

B .19

C .18

D .16

4.设直线0132=++y x 和圆0322

2

=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是 . 5.已知圆M :(x +cosθ)2+(y -sinθ)2=1,直线l :y=kx ,下面四个命题 A .对任意实数k 和θ,直线l 和圆M 都相切; B .对任意实数k 和θ,直线l 和圆M 有公共点;

C .对任意实数θ,必存在实数k ,使得直线l 和圆M 相切;

D .对任意实数k ,必存在实数θ,使得直线l 和圆M 相切. 其中真命题的代号是 (写出所有真命题的代号). 6.已知点A ,B 的坐标为(-3,0),(3,0),C 为线段AB 上的任意一点,P ,Q 是分别以AC ,BC 为直径的两圆O 1,O 2的外公切线的切点,求PQ 中点的轨迹方程. 7.已知△ABC 的顶点A (-1,-4),且∠B 和∠C 的平分线分别为l BT :y +1=0,l CK :x +y +1=0,求BC 边所在直线的方程.

8.设a,b,c,都是整数,过圆x 2+y 2=(3a +1)2外一点P (b 3-b,c 3-c)向圆引两条切线,试证明:过这两切点的直线上的任意一点都不是格点(纵横坐标均为整数的点).

11.5直线与圆的综合应用

【典型例题】

例1 (1)A .提示:用点到直线的距离公式. (2)C .提示:依据圆心和半径判断.

(3)A .提示:将直线与圆相切转化成关于ab 的等量关系.

(4)-18或8.提示:用点到直线的距离公式,注意去绝对值符号时的两种可能情况. (5)

2

2

.提示:过圆心(2,0)与点(1, 2 )的直线m 的斜率是- 2 ,要使劣弧所对圆心角最小,只需直线l 与直线m 垂直.

例2、设圆的方程为(x -a)2+(y -b)2=r 2, 点A (2,3)关于直线x +2y=0的对称点仍在圆上,说明圆心在直线x +2y=0上,a +2b=0,又(2-a)2+(3-b)2=r 2,而圆与直线x -y +1=0

相交的弦长为2 2 ,,故r 2-

)2

=2,依据上述方程解得:

b 1=-3a 1=6r 12=52

或{

b 2=-7a 2=14r 22=244

∴所求圆的方程为(x -6)2+(y +3)2=52,或(x -14)2+(y +7)2=224.

例3、设切点为N ,则|MN|2=|MO|2-|ON|2=|MO|2-1,设M (x,y),则

λ2-1)

(x 2+y 2)-4λx +(1+4λ2)=0

当λ=1时,表示直线x=5

4

当λ≠1时,方程化为2222

222

213()1(1)x y λλλλ+-+=--,它表示圆心在222(,0)1

λλ-,

的一个圆.

例4、(1)设出直线方程的截距式,用点到直线的距离等于1,化减即得;

(2)设AB 中点M(x,y),则a=2x,b=2y,代入(a -2)(b -2)=2,得(x -1)(y -1)=1

2 (x >1,y >

1);

(3)由(a -2)(b -2)=2得ab +2=2(a +b)≥4ab ,解得ab ≥2+ 2 (ab ≤2- 2 不合,舍去),当且仅当a=b 时,ab 取最小值6+4 2 ,△AOB 面积的最小值是3+2 2 . 【课内练习】

1.A .提示:依据圆心到直线的距离求直线的斜率. 2.D .提示:求圆心关于原点的对称点.

3.C.提示:画张图看,或考虑有关字母替代规律. 4.A .提示:圆心在直线l 2上.

5.0<k <4

3 .提示:直接用点到直线的距离公式或用△法.

6.2

1

-

.提示:求弦所对圆心角. 7.2x +y -10=0.提示:所求直线上任意一点(x,y)关于(2,3)的对称点(4-x,6-y)在已知直线上.

8.2x +11y +16=0.提示:求出两直线的交点,再求一个特殊点关于l 的对称点,用两点式写l 2的方程;或直接设l 2上的任意一点,求其关于l 的对称点,对称点在直线l 1上.求对称点时注意,一是垂直,二是平分. 9.(1)提示:∵切线在x 轴,y 轴上的截距的绝对值相等,∴切线的斜率是±1.分别依据斜率设出切线的斜率,用点到直线的距离公式,或△法,解得切线的方程为:x +y -3=0, x +y +1=0, x -y +5=0, x -y +1=0.

(2)将圆的方程化成标准式(x +1)2+(y -2)2=2,圆心C (-1,2),半径r= 2 , ∵切线PM 与CM 垂直,∴|PM|2=|PC|2-|CM|2, 又∵|PM|=|PO|,坐标代入化简得2x 1-4y 1+3=0.

|PM|最小时即|PO|最小,而|PO|最小即P 点到直线2x 1-4y 1+3=0

. 从而解方程组22

11119202430

x y x y ?+=

???-+=?,得满足条件的点P 坐标为(-310 ,35 )

10.(1)由题意设P (x 0,y 0)在圆外,切线l :y -y 0=k(x -x 0)

=

∴(x 02-10)k 2-2x 0·y 0k +y 02-10=0

由k 1+k 2+k 1k 2=-1得点P 的轨迹方程是x +y±2 5 =0.

(2)∵P (x 0,y 0)在直线x +y=m 上,∴y 0=m -x 0,又PA ⊥PB ,∴k 1k 2=-1,202

010

110

y x -=--,即:x 02+y 02=20,将y 0=m -x 0代入化简得,2x 02-2mx 0+m 2-20=0

∵△≥0,∴-210 ≤m≤210 ,又∵x 02+y 02>10恒成立,∴m >2,或m <-2 5 ∴m 的取值范围是[-210 ,-2 5 ]∪(2 5 ,210 ]

11.5直线与圆的综合应用

A 组

1.B .提示:用点到直线的距离公式或用△法.

2.A .提示:先求出向左平移后直线的方程,再用点到直线的距离公式. 3.B .提示:考虑切线的斜率及劣弧所对圆心角.

4.1

2 .提示:由三点共线得两两连线斜率相等,2a +2b=ab ,两边同除以ab 即可.

5.0.提示:依据半径、弦长、弦心距的关系求解.

6.(1)入射线所在直线的方程是:5x -4y +2=0;(2)反射点(-23 ,-1

3 ).提示:用入

射角等于反射角原理.

7.点A 既在BC 边上的高所在的直线上,又在∠A 的平分线所在直线上,由

???x -2y +1=0y=0

得A (-1,0) ∴k AB =1

又∠A 的平分线所在直线方程为y=0 ∴k AC =-1

∴AC 边所在的直线方程为 y=-(x +1) ① 又k BC =-2,

∴BC 边所在的直线方程为 y -2=-2(x -1) ② ①②联列得C 的坐标为(5,-6)

8.设所求轨迹上的任意一点H (x,y),圆上的切点Q (x 0,y 0)

∵QH ⊥l,AH ⊥MQ,∴AH ∥OQ,AQ ∥QH .又|OA|=|OQ|,∴四边形AOQH 为菱形. ∴x 0=x,y 0=y -2.

∵点Q (x 0,y 0)在圆上,x 02+y 02=4

∴H 点的轨迹方程是:x 2+(y -2)2=4(x≠0).

B 组

1.B .提示:直接将动点坐标代如等式,求得点的轨迹是一个以(2,0)为圆心,2为半径的圆.

2.D .提示:设圆心(x,y)

||1y + 3.C .提示:考虑斜率不相等的情况.

4.0323=--y x .提示:弦的垂直平分线过圆心.

5. B ,D .提示:圆心到直线的距离

d =

=|sin(θ+?)

|≤1. 6.作MC ⊥AB 交PQ 于M ,则MC 是两圆的公切线.|MC|=|MQ|=|MP|,M 为PQ 的中点.设M (x,y),则点C ,O 1,O 2的坐标分别为(x,0),(-3+x 2 ,0),( 3+x 2

,0)

连O 1M ,O 2M ,由平面几何知识知∠O 1MO 2=90°.

∴|O 1M|2+|O 2M|2=|O 1O 2|2,代入坐标化简得:x 2+4y 2=9(-3<x <3)

7.∵BT,CK 分别是∠B 和∠C 的平分线,∴点A 关于BT,CK 的对称点A′,A″必在BC 所在直线上,所以BC 的方程是x +2y -3=0.

8.线段OP 的中点坐标为(12 (b 3-b),12 (c 3-c)),以OP 为直径的圆的方程是[x -1

2 (b 3-

b)]2+[y -12 (c 3-c)]2=[ 12 (b 3-b)]2+[1

2

(c 3-c)]2……①

将x 2+y 2=(3a +1)2代入①得:(b 3-b)x +(c 3-c)y=(3a +1)2

这就是过两切点的切线方程.

因b 3-b=b(b +1)(b -1),它为三个连续整数的乘积,显然能被整除. 同理,c 3-c 也能被3整除.

于是(3a +1)2要能被3整除,3a +1要能被3整除,因a 是整数,故这是不可能的. 从而原命题得证.

初三数学圆的知识点总结及经典例题详解

1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.

1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . ° ° ° ° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . ° ° ° ° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . ° ° ° 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . ° ° ° ° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. .4 C D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° ° 12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 . A. 3cm B. 4 cm C.5 cm D.6 cm 点、直线和圆的位置关系 1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离 2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定 4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . 个 个 个 D.不能确定 5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 不能确定 6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系? D B C A O ? ? C B A O ? B O C A D ? B O C A D ? B O C A D ? C B A O

圆的面积练习题及答案

(人教新课标)六年级数学上册圆的面积 班级______姓名______ 一、填空。 1.圆周率是一个()的小数。 2.圆的周长总是()的π倍。 3.半径是3分米的一个圆,它的面积是()平方分米。周长是()米。 4.一根长62.8米的铁丝围成一个圆形,这个圆形的面积是()平方米。 5.一个直径为20米的圆形游泳池,占地面积是()平方米;它的周长是()米。 6.一个直径是4厘米的半圆形,它的周长是()厘米;它的面积是()平方厘米。 二、判断。 1.圆周率指的是圆的周长和直径的比值。 () 2.圆的半径是2,它的周长和面积相等。 () 3.周长相等的两个圆,面积也一定相等。 () 4.如果圆的半径扩大2倍,那么它的周长也扩大2倍,面积扩大4倍。 () 三、应用题。 1.一个圆环铁片零件,内圆半径是2厘米,外圆半径是3厘米。它的面积是多少平方厘米? 2.在一块周长是80米的正方形花坛里,用一串红围出一个最大的圆形,这个圆形的面积是多少平方米?这个花坛还剩下多少平方米的空地? 3.从一块长5分米,宽4分米的长方形木板上锯下一个最大的圆,剩下的木板是多少平方分米?

多少平方米? 参考答案 一、填空。 1. 无限不循环

2. 它的直径 3. 28.26 18.84 4. 314 5. 314、62.8 6. 10.28、12.56 二、判断。 1.√ 2.× 3.√ 4.√ 三、应用题。 1. 3.14×(32-22)=15.7 2. 202-314=86(平方米) 3. 20-3.14×4=7.44(平方分米) 4. 12 5.6÷4=31.4(米) 31.4÷3.14=10(米) (10×2)2+3.14×102×2=400+628=1028(平方米)

浓度问题九大题型总结奥数

奥数浓度问题 引子: 一个好玩的故事 - -- 熊喝豆浆:黑熊领着三个弟弟在森林里游玩了半天,感到又渴又累,正好路过了狐狸开的豆浆店。 只见店门口张贴着广告:“既甜又浓的豆浆每杯0.3元。”黑熊便招呼弟弟们歇脚,一起来 喝豆浆。黑熊从狐狸手中接过一杯豆浆,给最小的弟弟喝掉丄,加满水后给老三喝掉了1, 6 3 再加满水后,又给老二喝了一半,最后自己把剩下的一半喝完。 狐狸开始收钱了,他要求黑熊最小的弟弟付出0.3 X 1= 0.05(元);老三0.3 X 1= 6 3 0.1(元); 老二与黑熊付的一样多,0.3 X 1= 0.15(元)。兄弟一共付了0.45元。 2 兄弟们很惊讶,不是说,一杯豆浆0.3元,为什么多付0.45 —0.3 = 0.15元?肯定是黑熊再敲诈我们。 不服气的黑熊嚷起来:“多收我们坚决不干。” “不给,休想离开。” 现在,大家说说为什么会这样呢? 1、“稀释”问题:特点是加“溶剂”,解题关键是找到始终不变的量(溶质)。例1、要把30克含盐16%勺盐水稀释成含盐0.15%的盐水,须加水多少克? 例2、现有烧碱35克,配制成浓度为28%勺烧碱溶液,须加多少水? 例3、治棉铃虫须配制0.05%的“1059”溶液,问在599千克水中,应加入30%勺“1059” 溶液多少千克? 2、“浓缩”问题:特点是减少溶剂,解题关键是找到始终不变的量(溶质)。 例4、在含盐0.5%的盐水中蒸去了236千克水,就变成了含盐30%勺盐水,问原来的盐水是多少千克? 例5、要从含盐12.5%的盐水40千克中蒸去多少水分才能制出含盐20%勺盐水? 3、“加浓”问题:特点是增加溶质,解题关键是找到始终不变的量(溶剂)。例&有含盐8%勺盐水40千克,要配制成含盐20%勺盐水,须加盐多少千克? 4、配制问题:是指两种或两种以上的不同浓度的溶液混合配制成新溶液(成品),解题关键是分析所取原溶液的溶质与成品溶质不变及溶液前后质量不变,找到两个等量关系。 例7、把含盐5%勺食盐水与含盐8%勺食盐水混合制成含盐6%勺食盐水600克,分别应取两种食盐水各多少千克? 例8在浓度为50%的硫酸溶液100千克中,再加入多少千克浓度为5%的硫酸溶液,就可以配制成浓度为25%的硫酸溶液? 5含水量问题 例9仓库运来含水量为90%的水果100千克,1星期后再测发现含水量降低了,变为80%,现在这批水果的总重量是多少千克? 6、重复操作问题(牢记浓度公式,灵活运用浓度变化规律,浓度问题的难点)

2012中考数学复习(48):正多边形和圆

中考数学复习(48):正多边形和圆 知识考点: 1、掌握正多边形的边长、半径、中心角、边心距、周长、面积等的计算; 2、掌握圆周长、弧长的计算公式,能灵活运用它们来计算组合图形的周长; 3、掌握圆、扇形、弓形的面积计算方法,会通过割补、等积变换求组合图形的面积; 4、掌握圆柱、圆锥的侧面展开图的有关计算。 精典例题: 【例1】如图,两相交圆的公共弦AB 为32,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比。 分析:欲求两圆的面积之比,根据圆的面积计算公式,只须求出两圆的半径3R 与6R 的平方比即可。 解:设正三角形外接圆⊙O 1的半径为3R ,正六边形外接圆⊙O 2的半径 为6R ,由题意得:AB R 3 3 3=,AB R =6,∴3R ∶6R =3∶3; ∴⊙O 1的面积∶⊙O 2的面积=1∶3。 【例2】已知扇形的圆心角为1500,弧长为π20,求扇形的面积。 分析:此题欲求扇形的面积,想到利用扇形的面积公式,lR R n S 2 1 3602=π= 扇形,由条件n =1500,π20=l 看到,不管是用前者还是用后者都必须求出扇形的半径,怎么求?由条件想到利用弧长公式不难求出扇形半径。 解:设扇形的半径为R ,则180 R n l π=,n =1500,π20=l ∴18015020R ππ= ,24=R ∴ππ24024202 1 21=??=lR S =扇形。 【例3】如图,已知PA 、PB 切⊙O 于A 、B 两点,PO =4cm ,∠APB =600,求阴影部 分的周长。 分析:此题欲求阴影部分的周长,须求PA 、PB 和? AB 的长,连结OA 、OB ,根据切线长定理得PA =PB ,∠PAO =∠PBO =Rt ∠,∠APO =∠BPO =300,在Rt △PAO 中可求出PA 的长,根据四边形内角和定理可得∠AOB =1200 ,因此可求出? AB 的长,从而能求出阴影部分的周长。 解:连结OA 、OB ∵PA 、PB 是⊙O 的切线,A 、B 为切点 ∴PA =PB ,∠PAO =∠PBO =Rt ∠ 2 O 1O ?? 例1图 B A 例3图

圆的基本性质练习题一

圆的基本性质练习 一、看准了再选 1..如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是() A.110° B.70° C.55° D.125° 2.如图,⊙O的直径CD过弦EF的中点G且EF⊥CD,若∠EOD=40°,则∠DCF等于() A.80° B. 50° C.40° D. 20° 3.直线a上有一点到圆心O的距离等于⊙O的半径,则直线a与⊙O的位置关系是() A、相离B、相切C、相切或相交D、相交 4.在⊙O中,弦AB垂直并且平分一条半径,则劣弧AB的度数等于() A.30° B.120° C.150° D.60° 5.如图,⊙O的半径OA=3,以点A为圆心,OA的长为半径画弧交⊙O于B,C?则BC=(). A.32 B.33 C. 3 2 3 D . 33 2 6..如图所示,∠1,∠2,∠3的大小关系是(). A.∠1>∠2>∠3 B.∠3>∠1>∠2 C.∠2>∠1>∠3 D.∠3>∠2>∠1 7..如图,已知∠BAC=45°,一动点O在射线AB上运动(点O?与点A不重合),设OA=x,如果半径为1的圆O与射线AC有公共点,那么x的取值范围是() A.02 8.如图,AB、AC与⊙O相切于点B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是() O C F G D E A P B C O

A .65° B .115° C .65°或115° D .130°或50° 9如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP ,则与∠PAB 相等 的角有( )个。 A 、1 B 、2 C 、3 D 、4 10.边长分别为3,4,5的三角形的内切圆半径与外接圆的半径之比为( ). A .1:5 B .2:5 C .3:5 D .4:5 11.如图所示,圆弧形桥拱的跨度AB=12m ,拱高CD=4m ,则拱桥的直径为( ). A .6.5m B .9m C .13m D .15m 二.想好了再规范的写画 12.如图所示,线段AD 过圆心O 交⊙O 于D ,C 两点,∠EOD=78°,AE 交⊙O 于B ,? 且AB=OC ,求∠A 的度数. O E D C B A 13.如图AB 是⊙O 的直径,AC 是弦,OD ⊥AB 于O ,交AC 于D ,OD=2,∠A=30°,求CD 。 14.如图,已知在Rt △ABC 中,AC=12,BC=9,D 是AB 上一点,以O 为圆心,BD 为直径的⊙O 切AC 于E ,求AD 的长。 15.如图所示,AB 是⊙O 的直径,AB=AC , D , E 在⊙O 上,说明BD=DE C E A D O B · B A C D O

(完整版)六年级圆的面积经典题型讲解+练习

圆(二)圆的面积 知 知识梳理 1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S 表示。 2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化 抽象为具体。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼出的图形与圆的周长和半径的关系。 圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 因为: 长方形面积 = 长 × 宽 所以: 圆的面积 = 圆周长的一半 × 圆的半径 S 圆 = πr × r 圆的面积公式: S 圆 = πr 2 r 2 = S ÷ π 4、环形的面积:一个环形,外圆的半径是R ,内圆的半径是r 。(R =r +环的宽度.) S 环 = πR2-πr2 或 环形的面积公式: S 环 = π(R2-r2)。 5、扇形的面积计算公式: S 扇 = πr 2 × 360 n (n 表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。 例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。 7、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。 8、(选学)两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如: 两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9 9、常用平方数 典题探究 例1 填空 1.鼓楼中心岛是半径 10米的圆,它的占地面积是( )平方米。

浓度问题典型题目汇总

浓 度 问 题 专 题 专题简析: 在百分数应用题中有一类叫溶液配比问题,即浓度问题。我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。这个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即, 浓度=溶质质量溶液质量 ×100%=溶质质量溶质质量+溶剂质量 ×100% 解答浓度问题,首先要弄清什么是浓度。在解答浓度问题时,根据题 意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。 浓度问题变化多,有些题目难度较大,计算也较复杂。要根据题目的条件和问题逐一分析,也可以分步解答。 例题1。 有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖 【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度, 糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。因此,可以先根据原来糖水中的浓度求出水的质量, 再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。 原来糖水中水的质量:600×(1-7%)=558(克) 现在糖水的质量 :558÷(1-10%)=620(克) 加入糖的质量 :620-600=20(克) 答:需要加入20克糖。 练习1 1、 现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需 要加糖多少克 2、 有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千 克 3、 有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升 纯酒精。第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多

《正多边形和圆》练习题

思路解析:如图,设正三角形的边长为a ,则高 AD= 3 思路解析:因为正 n 边形的中心角为 360? 3 4 24.3 正多边形和圆 5 分钟训练(预习类训练,可用于课前) 1.圆的半径扩大一倍,则它的相应的圆内接正 n 边形的边长与半径之比( ) A.扩大了一倍 B.扩大了两倍 C.扩大了四倍 D.没有变化 思路解析:由题意知 圆的半径扩大一倍,则相应的圆内接正 n 边形的边长也扩大一倍,所 以相应的圆内接正 n 边形的边长与半径之比没有变化. 答案:D 2.正三角形的高、外接圆半径、边心距之比为( ) A.3∶2∶1 B.4∶3∶2 C.4∶2∶1 D.6∶4∶3 3 a ,外接圆半径 OA= a ,边心距 2 3 OD= 3 6 a , 所以 AD ∶OA ∶OD=3∶2∶1. 答案:A 3.正 五边形共有__________条对称轴,正六边形共有__________条对称轴. 思路解析:正 n 边形的对称轴与它的边数相同. 答案:5 6 4.中心角是 45°的正多边形的边数是__________. 360? ,所以 45°= ,所以 n=8. n n 答案:8 5.(2010 上海静安检测△)已知 ABC 的周长为 20,△ABC 的内切圆与边 AB 相切于点 D,AD=4, 那么 BC=__________. 思路解析:由切线长定理及三角形周长可得. 答案:6 10 分钟训练(强化类训练,可用于课中) 1.若正 n 边形的一个外角是一个内角的 2 3 时,此时该正 n 边形有_________条对称轴. 360? (n - 2) ? 180? 思路解析:因为正 n 边形的外角为 ,一个内角为 , n n 360? 2 (n - 2) ? 180? 所以由题意得 = · ,解这个方程得 n=5. n 3 n 答案:5 2.同圆的内接正三角 形与内接正方形的边长的比是( ) A. 6 6 B. C. D. 2 3 4 3 思路解析:画图分析,分别求出正三角形、正方形的边长,知应选 A. 答案:A 3.周长相等的正三角形、正四边形、正六边形的面积 S 3、S 4、S 6 之间的大小关系是( )

中考数学-圆的基本性质和计算经典练习题

8错误!未指定书签。?如图,方格纸中4个小正方形的边长均为 1, 则图中阴影部分三个小 扇形的面积和为 (结果保留n ) 中考数学 圆的基本性质和计算经典练习题 一、填空题 1错误!未指定书签。?如图,在O O 中,已知 OAC 20 ° , OA // CD ,则 AOD ? 圆心,C 是AB 上一点,0C 丄AB ,垂足为D , AB 300m, CD 50m,则这段弯路 的半径是 m 3错误!未指定书签。?如图,AB 为O O 的直径,点 C , D 在O O 上, BAC 50°,则 ADC 4错误!未指定书签。?如图所示,边长为1的小正方形构成的网格中,半径为 1的O O 的圆 心O 在格点上,则/ AED 的正切值等于 5错误!未指定书签。. 若O 为ABC 的外 心 D C, I ■ ■ BOC 60 ,则 BAC 6错误!未指定书签。? 使吨AB, PC 切 C 如图,AB 为半圆 半圆O 于点C, O 的直径,延长AB 到点P, 点D 是 A C 上和点C 不重 合 的一点,贝y D 的度数为 7错误!未指定书签。 .如图, 在 Rt A ABC 中, BAC 90o , BC 6,点D 为BC 中点, 将厶ABD 绕点 A 按逆时针方向旋转120° 得到△ ABD ,则点 D 在旋转过程中所经过 的路程为 ?(结果保留 ) 晶,点O 是这段弧的 第1题 2错误!未指定书签。

9错误!未指定书签。?矩形ABCD 勺边 AB=8, AD=6,现将矩形 ABCD 放在直线l 上且沿着I 向右作无滑动地翻滚,当它翻滚至类似开始 的 位置 A 1 B 1 C 1 D 1时(如图所示),则顶点A 所经过的路线长是 __________ . 二、选择题 10错误!未指定书签。?如图,O O 内切于 △ ABC ,切点分别为D , E , F .已 知 B 50° , C 60° ,连结 C,则AB 的长为 O 的位置关系是 为了在“六一”儿童节联欢晚会上表演节目, 她打算剪去部分扇形纸片后, 利用剩下的 纸片制作成一个底面半径为 10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片 的圆心角为( ). A 9° B 、18° C 63° D 72 三、解答题 第10题 第11题 12题 第13题 11错误!未指定书签。 .如图,两个同心圆的半径分别为 3cm 和 5cm, 弦AB 与小圆相切于点 40cm Ax -A 1 1 x V 1 OE, OF , DE , DF ,那么 EDF 等于 ( ) A. 40° B. 55° C. 65 D. 70° A. 4cm .5cm C. 6cm .8cm 12错误!未指定书签。 ?如图,在直角坐标系中,O O 的半径为 1,则直线 A.相离 E.相交 C.相切 D. 以上三种情形都有 可能 13错误!未指定书签。 ?现有30%圆周的一个扇形彩纸片,该扇形的半径为 40cm 小红同学

小学数学-圆的面积精选练习题

圆的面积练习精选 一、填空 1.一个圆形桌面的直径是2米,它的面积是()平方米。 2.已知圆的周长c,求d=(),求r=()。 3.圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。 4.环形面积S=()。 5.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。 6.大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。 7.圆的半径增加1/4圆的周长增加(),圆的面积增加()。 8.一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。 9.将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长 长10厘米,这个长方形的面积是()平方厘米。 10.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米; 再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。

11.大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为()平方厘米。 12.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是()平方厘米。 13.鼓楼中心岛是半径10米的圆,它的占地面积是()平方米。 14.小华量得一根树干的周长是75.36厘米,这根树干的横截面大约是()平方厘米 15.一只羊栓在一块草地中央的树桩上,树桩到羊颈的绳长是3米。这只羊可以吃到() 平方米地面的草。 16.一根2米长的铁丝,围成一个半径是30厘米的圆,(接头处不计),还多()米, 围成的面积是() 17.用一根10.28米的绳子,围成一个半圆形,这个半圆的半径是(),面积是()18.从一个长8分米,宽5分米的长方形木板上锯下一个最大的圆,这个圆的面积是() 19.大圆的半径等于小圆的直径,大圆的面积是小圆面积的() 20.一个圆的周长扩大3倍,面积就扩大()倍。 21.用三根同样长的铁丝分别围成一个长方形、一个正方形、和一个圆,其中()面积最小,()面积最大 二、应用题

最新正多边形和圆知识点整理+典型例题+课后练习

个性化辅导教案 1 2 学生姓名:授课教师:所授科目: 3 学生年级: 上课时间: 2016 年月日时分至时分共4 小时

分析:要求正六边形的周长,只要求AB 的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA ,过O 点作OM ⊥AB 垂于M ,在Rt △AOM?中便可求得AM ,又应用垂径定理可求得AB 的长.正六边形的面积是由六块正三角形 面积组成的。 例2:已知⊙O 和⊙O 上的一点A(如图). (1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ; (2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边. F D E C B A O M

例3(中考): 如图,在桌面上有半径为2 cm的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少? 课堂练习: 选择题 1.一个正多边形的一个内角为120°,则这个正多边形的边数为( ) A.9 B.8 C.7 D.6

2.如图所示,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( ) A. cm B. cm C.cm D.1 cm 第2题图第3题图第4题图 3.如图所示,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 ( ) A.7 B.8 C.9 D.10 4.如图4所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是(). A.60° B.45° C.30° D.22.5° 5.若半径为5cm的一段弧长等于半径为2cm的圆的周长,?则这段弧所对的圆心角为() A.18° B.36° C.72° D.144° 6.正六边形的周长为12,则同半径的正三角形的面积为________,同半径的正方形的周长为________. 7. 正六边形的外接圆的半径与内切圆的半径之比为 . 8.如图所示,正△ABC的外接圆的圆心为O,半径为2,求△ABC的边长a,周长P,边心距r,面积S.

2018中考复习-圆的基本性质练习题

1、(2017黄冈)已知:如图,在⊙O 中,0 ,70OA BC AOB ⊥∠=,则A D C ∠的度数为( ) A . 30° B . 35° C. 45° D .70° 解:∵OA ⊥BC ∴⌒BC =⌒AC ∵∠AOB=70° ∴∠ADC=∠AOB=35° 故选:B . 2、(2017毕节)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=30°,则∠BAD 为( ) A .30° B .50° C .60° D .70° 解:连接BD , ∵∠ACD=30°, ∴∠ABD=30°, ∵AB 为直径, ∴∠ADB=90°, ∴∠BAD=90°﹣∠ABD=60°. 故选C .

3、如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为⌒ABO 上一点(不与O 、A 两点重合),则cosC 的值为( ) A .43 B .53 C .34 D .54 如图,连接AB , ∵∠AOB=90°,∴AB 为圆的直径, 由圆周角定理,得∠C=∠ABO , 在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, 5 4 . 故选D . 4、(2016南宁)如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为( ) A .140° B.70° C.60° D.40° 解:∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE=40°, ∴∠DOE=180°﹣40°=140°, ∴∠P=∠DOE=70°.故选B .

圆的面积练习题

圆的面积练习题 一、思考并填空: 1. 画一个周长是1 2.56厘米的圆,圆规两脚间的距离是(2 ) 厘米。 2. 一个圆形花坛的周长是25.12米,它的面积是()平方 米。 3. 一个半径为4厘米的圆,把它平均剪成若干份后,拼成一个近 似平行四边形,这个平行四边形的底是()厘米,高是()厘米。 4. 圆的半径扩大到原来的3倍,周长就扩大到原来的()倍,面积就增加了原来的()倍。 5. 圆环的外圆半径和内圆直径都是10厘米,圆环宽是()厘米,面积是()平方厘米。 6. 一辆拖拉机,它的后轮的直径是前轮的2倍,若后轮滚动8圈,前轮滚动()圈。 7. 长方形、正方形、等边三角形、等腰梯形和圆都是轴对称图形,按对称轴条数从多到少的顺序排列依次是()。 8.把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于(),长方形的宽就是圆的()。因为长方形的面积是(),所以圆的面积是().9.圆的直径是6厘米,它的周长是(),面积是()。10.圆的周长是25.12分米,它的面积是()。11.甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的(),甲圆面积是乙圆面积的()。

12.一个圆的半径是8厘米,这个圆面积的3/4 是()平方厘米。 13.周长相等的长方形、正方形、圆,()面积最大。14.圆的半径由6厘米增加到9厘米,圆的面积增加了()平方厘米。15.要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是()。16.要在底面半径是12厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是8厘米,需用铁丝()厘米。 17.用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是()厘米。这个圆的面积是()平方厘米。18.有大小两个圆,大圆直径是小圆半径的4倍,小圆与大圆周长的比是(),小圆与大圆面积的比是()。19.一个半圆半径是r,它的周长是()。二、我是小法官。 1.圆心决定圆的位置,半径决定圆的大小。() 2.如果圆和正方形的周长相等,那么圆的直径大于正方形的边长。() 3.同心圆的几个圆组成的图形有无数条对称轴。() 4.有两个大小不等的圆,大圆的圆周率比小圆的大。() 5.周长相等的长方形、正方形和圆中,面积最大的是圆。() 三、选择题。 1.小圆的直径等于大圆的半径,小圆的面积等于大圆的面积() A 1/2 B 1/4 C 1/8 D 1/16 2.周长是15.7厘米的圆,画圆时圆规两脚间的距离是

正多边形和圆练习题及答案

正多边形和圆练习 一、课前预习(5分钟训练) 2?圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( 有变化 2?正三角形的商、外接圆半径、边心距之比为( C.4 : 2 ; 1 4?中心角是45。的正多边形的边数是 5?已知△ABC 的周K 为20,A ABC 的内切圆与边AB 相切于点D,AD=4,那么 BC= 二、课中强化(10分钟训练) i. 若正n 边形的一个外角是一个内角的彳时,此时该正n 边形有 称轴. 2?同圆的内接正三角?形与内接正方形的边长的比是( 3?周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关 系 是( 4?已知OO 和OO 上的一点A (如图24-3-1). (1)作OO 的内接正方形ABCD 和内接正六边形AEFCGH ; ⑵在⑴题的作图中,如果点E 在弧AD 上,求证:DE 是OO 内接正十二边形 的一边. A ?扩大了一倍 B ?扩大了两倍 C ?扩大了四倍 D ?没 3?正?五边形共有 条对称轴,正六边形共有 条对称轴. 条对 >S4>S6 >S4>3 C>S3>S4 >S6>S3

图 24-3-1 三、课后巩固(30分钟训练) 1 ■正六边形的两条平行边之间的距离为1,则它的边长为( 二边形 3?已知正六边形的半径为3 cm,则这个正六边形的周长为 4?正多边形的一个中?心角为36度,那么这个正多边形的一个内角等于 度. 5?如图24-3-2.两相交圆的公共弦AB 为2? 在OOi 中为内接正三角形的一边, 在002中为内接正六边形的一边,求这两圆的面积之比. 6?某正多边形的每个内角比其外角大100\求这个正多边形的边数. 2.已知正多边形的边心距与边长的比%,则此正多边形为( B.正方形 A ?正三角形 C ?正六边形 D ?正十 cm.

圆基本性质(竞赛)

1 / 3 圆的基本性质 〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个 圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是 最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的 圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题; 6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦” ③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。 典型例题 1.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( ) (A)16cm 或6cm, (B)3cm 或8cm (C)3cm (D )8cm 2.P ∠与⊙O 交于A ,B ,C ,D 四点,AQ ,CQ 为圆的两条弦,弧BQ 的度数为,42? 弧QD 的度数为,38?求__________=∠+∠Q P 3.如图,⊙O 中直径AB 垂直于弦CD ,若AB=10,CD=6,则BE 的长为________[1] 4.如图,正方形CDEF 的边CD 在半圆O 的直径上,正方形的过长为1,AC=a, BC=b, 在 5)4(;1)3(;5)2(;1)1(22=+==+=-b a ab b a b a ,各式中成立的个数为_______[3] 5。如图,四过形内接于⊙O, AD 为直径, 若?=∠60CBE , 则圆心角=∠AOC ________]120[? 6.BC 为半圆O 的直径, A 、D 为半圆上的两点, AB=3, BC=2, 则∠ D=___________ ]150[?

圆的面积练习题资料

圆的面积练习题

一、填空: 1. 画一个周长是1 2.56厘米的圆,圆规两脚间的距离是()厘米。 2. 一个圆形花坛的周长是25.12米,它的面积是()平方米。 3. 一个半径为4厘米的圆,把它平均剪成若干份后,拼成一个近似平行四边形,这个平行四边形的底是()厘米,高是()厘米。 4. 圆的半径扩大到原来的3倍,周长就扩大到原来的()倍,面积就增加了原来的()倍。 5. 圆环的外圆半径和内圆直径都是10厘米,圆环宽是()厘米,面积是()平方厘米。 6. 一辆拖拉机,它的后轮的直径是前轮的2倍,若后轮滚动8圈,前轮滚动()圈。 7. 长方形、正方形、等边三角形、等腰梯形和圆都是轴对称图形,按对称轴条数从多到少的顺序排列依次是()。 8.把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于 (),长方形的宽就是圆的()。因为长方形的面积是 (),所以圆的面积是(). 9.圆的直径是6厘米,它的周长是(),面积是()。 10.圆的周长是25.12分米,它的面积是()。 11.甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的(),甲圆面积是乙圆面积的()。 12.一个圆的半径是8厘米,这个圆面积的3/4 是()平方厘米。 13.周长相等的长方形、正方形、圆,()面积最大。 14.圆的半径由6厘米增加到9厘米,圆的面积增加了()平方厘米。 15.要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是()。 16.要在底面半径是12厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是8厘米,需用铁丝()厘米。 17.用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是()厘米。这个圆的面积是()平方厘米。 18.有大小两个圆,大圆直径是小圆半径的4倍,小圆与大圆周长的比是(),小圆与大圆面积的比是()。 19.一个半圆半径是r,它的周长是()。 二、我是小法官。 1.圆心决定圆的位置,半径决定圆的大小。() 2.如果圆和正方形的周长相等,那么圆的直径大于正方形的边长。() 仅供学习与交流,如有侵权请联系网站删除谢谢2

小升初典型应用题精练(溶液浓度问题)附答案

典型应用题精练(溶液浓度问题) 浓度问题的内容与我们实际的生活联系很紧密,就知识点而言它包括小学所学2个重点知识:百分数,比例。 一、浓度问题中的基本量 溶质:通常为盐水中的“盐”,糖水中的“糖”,酒精溶液中的“酒精”等 溶剂:一般为水,部分题目中也会出现煤油等 溶液:溶质和溶液的混合液体。 浓度:溶质质量与溶液质量的比值。 二、几个基本量之间的运算关系 1、溶液=溶质+溶剂 2、=100%= 100% +??溶质溶质 浓度溶液 溶质溶液 三、解浓度问题的一般方法 1、寻找溶液配比前后的不变量,依靠不变量建立等量关系列方程 2、十字交叉法:(甲溶液浓度大于乙溶液浓度) 形象表达: A B =甲溶液质量乙溶液质 量 B A = 甲溶液与混合溶液的浓度差混合溶液与乙溶液的浓度差 注:十字交叉法在浓度问题中的运用也称之为浓度三角,浓度三角与十字交叉法实质上是相同的.浓度三角的表示方法如下: :: 乙溶液质量 甲溶液质量z-y x-z y % 浓度x 混合浓度z% 3、列方程解应用题也是解决浓度问题的重要方法. 1、一杯盐水,第一次加入一定量的水后,盐水的含盐百分比为15%,第二次又加入同样多的水,盐水的含盐百分比变为12%;第三次再加入同样多的水,盐水的含盐百分比将变为多少? 2、 有两包糖,第一包糖由奶糖和水果糖组成,其中4 1 为奶糖;第二包糖由酥糖和水果糖组成,其中 5 1为酥糖。将两包糖混合后,水果糖占78%,那么奶糖与酥糖的比例是多少?

3、甲种酒精4千克,乙种酒精6千克,混合成的酒精含纯酒精62%。如果甲种酒精和乙种酒精一样多,混合成的酒精含纯酒精61%。甲、乙两种酒精中含纯酒精的百分比各是多少? 4、若干升含盐70%的溶液与若干升含盐58%的溶液混合后得到含盐62%的溶液,如果每种溶液各多取15升,混合后得到含盐63.25%的溶液,第一次混合时含盐70%的溶液取了多少升? 5、某商品按零售价10元卖出20件所得到的利润和按照零售价9元卖出30件所得到的利润相等,求该商品的进价。 6、 4千克浓度为30%的溶液和多少千克浓度为10%的溶液能混合成26%的溶液? 7、有两种溶液,甲溶液的酒精浓度为10%,盐浓度为30%,乙溶液中的酒精浓度为40%,盐浓度为0。现在有甲溶液1千克,那么需要多少千克乙溶液,将它与甲溶液混合后得到的溶液的酒精浓度和盐浓度相等? 8、有浓度为30%的酒精若干,添加了一定数量的水后稀释成浓度为24%的酒精溶液。如果再加入同样多的水,那么酒精溶液的浓度变为多少?

41【基础】正多边形和圆(基础课程讲义例题练习含答案)

正多边形和圆—知识讲解(基础) 【学习目标】 1.了解正多边形和圆的有关概念及对称性; 2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正 多边形; 3.会进行正多边形的有关计算. 【要点梳理】 知识点一、正多边形的概念 各边相等,各角也相等的多边形是正多边形. 要点诠释: 判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形). 知识点二、正多边形的重要元素 1.正多边形的外接圆和圆的内接正多边形 正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 2.正多边形的有关概念 (1)一个正多边形的外接圆的圆心叫做这个正多边形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形的中心角. (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距. 3.正多边形的有关计算 (1)正n边形每一个内角的度数是; (2)正n边形每个中心角的度数是; (3)正n边形每个外角的度数是. 要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形. 知识点三、正多边形的性质 1.正多边形都只有一个外接圆,圆有无数个内接正多边形. 2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形. 3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.

与圆的基本性质有关的计算与证明 专题练习题

与圆的基本性质有关的计算与证明 专题练习题 1.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( ) A .60° B .45° C .35° D .30° 2.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB=3∠ADB ,则( ) A .DE =E B B.2DE =EB C.3DE =DO D .DE =OB 3.如图,线段AB 是⊙O 的直径,弦CD ⊥AB ,∠CAB =40°,则∠ABD 与∠AOD 分别等于( ) A .40°,80° B .50°,100° C .50°,80° D .40°,100° 4.如图,C ,D 是以线段AB 为直径的⊙O 上两点,若CA =CD ,且∠ACD =40°,则∠CAB =( ) A .10° B .20° C .30° D .40° 5.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( ) A .45° B .50° C .60° D .75° 6.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E , 连接AC.若∠ABC=105°,∠BAC =25°,则∠E 的度数为( )

A.45° B.50° C.55° D.60° 7.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则∠BOC的度数是( ) A.120°B.135°C.150°D.165° 8.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为________. 9.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=_______度. 10.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连接OD交BE于点M,且MD=2,则BE长为_______. 11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是_________.12.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26 m,OE⊥CD于点E.水位正常时测得OE∶CD=5∶24.

相关文档
相关文档 最新文档