文档库 最新最全的文档下载
当前位置:文档库 › 二轮复习数学学案(17)推理与证明

二轮复习数学学案(17)推理与证明

推理与证明

【学法导航】

了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

解答推理问题时,先明确出是哪种推理形式,显然归纳、演绎等推理方式在以往的学习中已经接触过,类比推理相对而言学生比较为陌生. 所以复习类比推理时应抓住两点:一是找出合理的类比对象,二是找出类比对象,再进一步找出两类事物间的相似性或一致性. 解答证明题时,要注意是采用直接证明还是间接证明。在解决直接证明题时,综合法和分析法往往可以结合起来使用。综合法的使用是“由因索果”,分析法证明问题是“执果索因”,它们是两种思路截然相反的证明方法,分析法便于寻找解题思路,而综合法便于叙述,因此使用时往往联合使用。分析法要注意叙述的形式:要证A ,只要证明B ,B 应是A 成立的充分条件。

复习反证法时,注意:一是“否定结论”部分,把握住结论的“反”是什么? 二是“导出矛盾”部分,矛盾有时是与已知条件矛盾,有时是与假设矛盾,而有时又是与某定义、定理、公理或事实矛盾,因此要弄明白究竟是与什么矛盾.

对于 些难于从正面入手的数学证明问题,解题时可从问题的反面入手,探求已知与未知的关系,从而将问题得以解决。因此当遇到“否定性”、“唯一性”、“无限性”、“至多”、“至少”等类型命题时,宜选用反证法。

【专题综合】

推理是数学的基本思维过程,高中数学课程的重要目标就是培养和提高学生的推理能力,因此本部分内容在高中数学中占有重要地位,是高考的重要内容.由于解答高考试题的过程就是推理的过程,因此本部分内容的考查将会渗透到每一个高考题中.在复习时,应注意理解常用的推理的方法,了解其含义,掌握其过程以解决具体问题.因此2007年、2008年山东卷、广东卷、海南、宁夏卷没有单独考查此内容也在情理之中。2009年的高考题中只有江苏卷、福建卷、浙江卷的高考试题中出现了合情推理与演绎推理的试题。但是,今后的高考中考查推理内容,最有可能把推理渗透到解答题中考查,因为解答与证明题本身就是一种 合情推理与演绎推理作为一种推理工具是很容易被解答与证明题接受的.

1.与数列结合考察推理 例1(09浙江文)设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T , , ,

16

12

T T 成等比数列. 答案.

812

48

,T T T T 【命题意图】此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列

的知识,也考查了通过已知条件进行类比推理的方法和能力

【解析】对于等比数列,通过类比,有等比数列{}n b 的前n 项积为n T ,则4T ,81248,

T T T T ,16

12

T T 成等比数列.

2.与解析几何集合考察推理

例2(03年上海)已知椭圆具有性质:若,M N 是椭圆上关于原点对称的两个点,点P 是椭圆上的任意一点,当直线,PM PN 的斜率都存在时,则PM PN k k 是与点P 位置无关的定值,

试对双曲线22

221x y a b -=写出具有类似特性的性质。

答案:2

2b a

-.

3.与立体几何结合考察推理

例3在?DEF 中有余弦定理:DFE EF DF EF DF DE ∠?-+=cos 22

22. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱ABC-111C B A 的3个侧面面积与其中两个侧面所成二面角之间的关系式,并予以证明.

分析 根据类比猜想得出θcos 211111111112

2

2

B BC

C A ABB B BCC A ABB C C AA S S S S S ?-+=. 其中θ为侧面为11A ABB 与11B BCC 所成的二面角的平面角.

证明: 作斜三棱柱111C B A ABC -的直截面DEF ,则DFE ∠为面11A ABB 与面11B BCC 所成角,在DEF ?中有余弦定理:θ∠?-+=cos 22

22EF DF EF DF DE ,

同乘以2

1AA ,得θ∠???-?+?=?cos 2112

12

2

12

2

12

AA EF AA DF AA EF AA DF AA DE

即 θ

c o s 211111111112

22B B C C A ABB B BCC A ABB C C AA S S S S S ?-+= 【变式】类比正弦定理:如图,在三棱柱ABC —A 1B 1C 1中,二面角B —AA 1—C 、C —BB 1—A 、B —CC 1—A 所成的二面角分别为α、β、γ,则有

111111BB C C AA C C BB C C S S S sin sin sin α

β

γ

=

=

N

M

P

C 1

B 1

A 1 C

B A

证明:作平面DEF 与三棱柱ABC -A 1B 1C 1侧棱垂直,分别交侧棱AA 1,BB 1 ,CC 1于点D ,E ,F ,则EDF ∠=α,DEF β∠=,DFE γ∠=, 在?DEF 中,根据正弦定理得

EF DF DE

sin sin sin αβγ

==

,即111EF AA DF AA DE AA sin sin sin αβγ???== 而111AA BB CC ==,且111AA BB CC ==,因此

111111BB C C AA C C BB C C S S S sin sin sin α

β

γ

== .

例4(2007广东理)如果一个凸多面体n 棱锥,那么这个凸多面体的所有顶点所确定的直线共

有 2)

1(+n n __ 条.这些直线中共有)(n f 对异面直线,则)4(f = 12 ; )(n f =

2)

1)(2(--n n n .(答案用数字或n 的解析式表示)

4构造数表考察推理

例5(2007湖南理)将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 21n

- 行;第61行中1的个数是 32 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1

…… ……………………………………… 图1 5.实际问题

例6(2007年广东文10).图3是某汽车维修公司的维修点环形分布图公司在年初分配给A 、 B 、C 、D 四个维修点某种配件各50件.在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n)为 A .18 B .17 C .16 D .15

【解析】很多同学根据题意发现n=16可行,判除A,B 选项,但对于C,D 选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设A B →的件数为1x (规定:当

10x <时,则B 调整了1||x 件给A,下同!),B C →的件数为2x ,C D →的件数为3x ,D A →的件数为4x ,依题意可得

415040x x +-=,125045x x +-=,235054x x +-=,345061x x +-=,从而

215x x =+,311x x =+,4110x x =-,故调动件次11111()|||5||1||10|f x x x x x =+++++-,

画出图像(或绝对值的几何意义)可得最小值为16,故选(C). 【答案】:C

5.与其他章节知识结合考察证明

例7(2008年海南宁夏21)设函数1

()()f x ax a b x b

=+∈+Z ,,曲线()y f x =在点(2(2))

f ,处的切线方程为y =3. (1)求()f x 的解析式:

(2)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心;

(3)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 解:(1)2

1

()()f x a x b '=-

+,

于是2

121210(2)a b a b ?+=?+???-=+??

,,解得11a b =??=-?,,或94

8.3a b ?=????=-??,

因a b ∈Z ,,故1()1f x x x =+

-. (2)证明:已知函数1y x =,21

y x

=都是奇函数.

所以函数1

()g x x x =+也是奇函数,其图像是以原点为中心的中心对称图形.而

1

()111

f x x x =-++-.

可知,函数()g x 的图像按向量(11)=,a 平移,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形.

(3)证明:在曲线上任取一点00011x x x ??

+

?-??

,.

由02

01

()1(1)f x x '=-

-知,过此点的切线方程为

2000200111()1(1)x x y x x x x ??-+-=--??--??

. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ??+ ?-??

,.

令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,. 直线1x =与直线y x =的交点为(11),.

从而所围三角形的面积为

000001112

12112222121

x x x x x +---=-=--.

所以,所围三角形的面积为定值2.

6.综合应用数学归纳法证明与正整数有关的问题

例8(2009山东卷理)等比数列{n a }的前n 项和为n S , 已知对任意的n N +

∈ ,点(,)n n

S ,均在函数(0x

y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值;

(11)当b=2时,记 22(l o g

1)()n n b a n N +=+∈

证明:对任意的n N +

,不等式

1212111

·······n n

b b b b b b +++>成立 解:因为对任意的n N +

∈,点(,)n n S ,均在函数(0x

y b r b =+>且1,,b b r ≠均为常数的图像上

.所

n

n S b r =

+

,当1n =时,

11a S b r

==+,当

2

n ≥时,1

111()(1)n

n n n n n n n a S S b r b

r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列,所以

1r =-,公比为b ,1(1)n n a b b -=-

(2)当b=2时,1

1(1)2n n n a b b --=-=, 1222(log 1)2(log 21)2n n n b a n -=+=+=

1212n n b n b n

++=,所以121211135721·······2462n n b b b n b b b n ++++=??

下面用数学归纳法证明不等式

1212111

35721·······2462n n b b b n b b b n

++++=??> .

① 当1n =时,左边=

32,右边

,

因为3

2

>所以不等式成立. ② 假设当n k =时不等式成立,

1212111

35721·······2462k k b b b k b b b k

++++=??> .则当1n k =+时,左边=

11212111113572123

(246222)

k k k k b b b b k k b b b b k k ++++++++=?????

+

2322k k +>==

=+所以当1n k =+时,不等式也成立.

由①、②可得不等式恒成立.

点评:本题主要考查了等比数列的定义,通项公式,以及已知n S 求n a 的基本题型,并运用数学归纳法证明与自然数有关的命题,以及放缩法证明不等式. 7.创新性问题

例9(2007北京理)(本小题共13分)已知集合{}12(2)k A a a a k = ,,

,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.

其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -?,则称集合A 具有性质P .

(I )检验集合{}0123,

,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;

(II )对任何具有性质P 的集合A ,证明:(1)

2

k k n -≤

; (III )判断m 和n 的大小关系,并证明你的结论.

(I )解:集合{}0123,

,,不具有性质P . 集合{}123-,

,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,, {}(21)23T =-(),,,.

(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2

k 个.

因为0A ?,所以()(1

2)i i a a T i k ?= ,,,,; 又因为当a A ∈时,a A -?时,a A -?,所以当()i j a a T ∈,时,

()(12j i a a T i j k ?= ,,,,,.

从而,集合T 中元素的个数最多为21(1)

()22

k k k k --=

, 即(1)

2

k k n -≤

. (III )解:m n =,证明如下:

(1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从而()a b b T +∈,. 如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而

a b c d +=+与b d =中也至少有一个不成立. 故()a b b +,与()c d d +,也是T 的不同元素.

可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,

(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立, 故()a b b -,与()c d d -,也是S 的不同元素.

可见,T 中元素的个数不多于S 中元素的个数,即n m ≤, 由(1)(2)可知,m n =.

【专题突破】

1. 观察下列数的特点

1,2,2,3,3,3,4,4,4,4,… 中,第100项是( C ) (A ) 10 (B ) 13 (C ) 14 (D ) 100 解析 . 由规律可得:数字相同的数依次个数为 1,2,3,4,… n 由

2

)

1(+n n ≤100 n ∈*N 得,n=14,所以应选(C ) 2.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2

+AC 2

=BC 2

”拓展到空间,类比平面几何的勾股定理,“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直,则可得” ( C ) (A)AB 2

+AC 2

+ AD 2

=BC 2

+ CD 2

+ BD 2

(B)BCD ADB ACD ABC

S S S S

????=??2222

(C)2

2

2

2

BCD ADB ACD ABC S S S S ????=++

(D)AB 2

×AC 2

×AD 2

=BC 2

×CD 2

×BD 2

3. 由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据

“三段论”推理出一个结论,则这个结论是 ( A ) (A) 正方形的对角线相等 (B) 平行四边形的对角线相等 (C) 正方形是平行四边形 (D)其它 4.若数列{a n },(n ∈N *

)是等差数列,则有数列b n =

n

a a a n +?++21(n ∈N *

)也是等差数

列,类比上述性质,相应地:若数列{C n }是等比数列,且C n >0(n ∈N *

),则有d n =______

n

n c c c ?21·______ (n ∈N *)也是等比数列。

5.依次有下列等式:2

2

2

576543,3432,11=++++=++=,按此规律下去,第8个等式为 8+9+10+11+12+13+14+15+16+17+18+19+20+21+22=2

15 。 6.在等差数列{}n a 中,若010=a ,则有等式

n a a a +???++21),19(1921+-∈<+???++=N n n a a a n 成立,类比上述性质,相应地:在

等比数列{}n b 中,若19=b ,

则有等式 ).,17(*

172121N n n b b b b b b n n ∈

3

150sin 90sin 30sin 2

2

2

=

++

2

3125sin 65sin 5sin 222=

++ 通过观察上述两等式的规律,请你写出一般性的命题: __________________________________________=2

3

并给出( * )式的证明。

一般形式: 2

3)120(sin )60(sin sin 222=

++++ ααα 证明 左边 = 2

)

2402cos(12)1202cos(122cos 1 +-+

+-+-ααα =

)]2402cos()1202cos(2[cos 21

23 ++++-ααα = -+-+- 240cos 2cos 120sin 2sin 120cos 2cos 2[cos 21

23ααα ]240sin 2sin α

=

]2sin 232cos 212sin 232cos 212[cos 2123ααααα+----= 右边=2

3 ∴原式得证

(将一般形式写成 2223

sin (60)sin sin (60),2

ααα-+++=

2223

sin (240)sin (120)sin 2

ααα??-+-+=

等均正确。)

例1.通过计算可得下列等式:

1121222+?=- 1222322+?=- 1323422+?=-

┅┅

12)1(22+?=-+n n n

将以上各式分别相加得:n n n +++++?=-+)321(21)1(2

2

即:2)

1(321+=

++++n n n 类比上述求法:请你求出2

222321n ++++ 的值..

[解] 11313122

3

3

+?+?=- 12323232

3

3

+?+?=-

1333334233+?+?=- 同 ┅┅ 133)1(233+?+?=-+n n n n

将以上各式分别相加得:

n n n n ++++?+++++?=-+)321(3)321(31)1(222233

所以: ]2

131)1[(3132132222n n n n n +---+=++++

相关文档
相关文档 最新文档