文档库 最新最全的文档下载
当前位置:文档库 › 拉格朗日动力学

拉格朗日动力学

张力减径机的动力学和运动学的分析详细版

文件编号:GD/FS-1093 (解决方案范本系列) 张力减径机的动力学和运动学的分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

张力减径机的动力学和运动学的分 析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 文章主要对三辊式张力减径机进行分析,主要分析张力减径机的动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速度控制来分析张力减径机运动学特征,通过对张力减径机受力分析、轧制压力和轧制力矩进行分析张力减径机的动力学特征分析。 张力减径机是现代化的生产机组,其作用和优越性使其在大规模无缝钢管生产中不可缺少。随着我国钢管工业的发展张力减径机组正被广泛运用。对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的优点。以下分析张力减径机的运动学

和动力学原理。 1.张力减径机的运动学特征 1.1.运动学特征 在张力减径的过程中,要求各个机架的延伸系数和轧辊圆周协调一致,同时决定连轧机工作的基本条件要求通过每个机架的金属的秒流量相等。 在所有的机架都充满金属而C不等于0的情况下,对于每对轧辊在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和金属之间的滑移达到。因此当C不等于0时,减径机任何一个机架中的变形条件发生变化,都会影响其余机架中的变形条件,但由于连轧过程本身存在着相适应,自相调整的过程,因此即使在这种相互作用的复杂关系中减径过程仍然能够在任一瞬间保持秒流量相等。但是当差别较大时,必然会造成严重的拉钢和推钢,轻者不能获得

拉格朗日乘子法约束最优化

一、 编程实现以下科学计算算法,并举一例应用之。 “拉格朗日乘子法约束最优化” 拉格朗日乘子法求约束最优化问题实例。采用拉格朗日乘子法如下最优化问题: )(),(min 212121x x x x x l +++=λλ。 在MA TLAB 中编写函数ex1208.m 来进行求解,具体代码如下所示。 %%%ex1208.m 拉格朗日乘子法求最优化解 x=zeros(1,2) %用syms 表示出转化后的无约束函数 syms x y lama f=x+y+lama*(x^2+y^2-2); %分别求函数关于x 、y 、lama 的偏导 dx=diff(f,x); dy=diff(f,y); dlama=diff(f,lama); %令偏导为零,求解x 、y xx=solve(dx,x); %将x 表示为lama 函数 yy=solve(dy,y); %将y 表示为lama 函数 ff=subs(dlama,{x,y},{xx,yy}); %代入dlama 得关于lama 的一元函数 lamao=solve(ff); %求解得lama0 xo=subs(xx,lama,lamao) %求得取极值处的x0 yo=subs(yy,lama,lamao) %取极值处的y0 fo=subs(f,{x,y,lama},{xo,yo,lamao}) %取极值处的函数值 程序运行结果为: xo= 1 -1 yo= 1 -1 fo= 2 -2 流程图:

二、编程解决以下科学计算和工程实际问题。、 1、利用MA TLAB提供的randn函数声称符合正态分布的10 5随机矩阵A, 进行如下操作: (1)A各列元素的均值和标准方差。 (2)A的最大元素和最小元素。 (3)求A每行元素的和以及全部元素之和。 (4)分别对A的每列元素按升序、每行元素按降序排序。 代码: clear all;close all; clc; A=randn(10,5); meanA=mean(A); %(1)A各列元素的均值 stdA=std(A); %(1)A各列元素的标准方差 maxA=max(max(A)); %(2)A的最大元素 minA=min(min(A)); %(2)A的最小元素 rowsumA=sum(A,2); %(3)A每行元素的和 sumA=sum(rowsumA); %(3)A全部元素的和 sort1=sort(A); %(4)A的每列元素按升序排列 sort2=sort(A,2,’descend’); %(4)A的每列元素按降序排列 运行结果:因生成矩阵随机,故无固定结果 流程图:

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于 ),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2 243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从 几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2 243y x z +=的顶点。

例2函数2 2y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面2 2y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: ),(,0),(0000==y x f y x f y x 证不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x 类似地可证 ),(00=y x f y

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

电路的拉格朗日动力学方程

电路的拉格朗日的动力学方程 拉格朗日方程 拉格朗日方程:对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J.-L.拉格朗日首先导出的。 从虚位移原理可以得到受理想约束的质点系不含约束力的平衡方程,而动静法(达朗贝尔原理)则将列写平衡方程的静力学方法应用于建立质点系的动力学方程,将这两者结合起来,便可得到不含约束力的质点系动力学方程,这就是动力学普遍方程。而拉格朗日方程则是动力学普遍方程在广义坐标下的具体表现形式。 拉格朗日方程可以用来建立不含约束力的动力学方程,也可以用来在给定系统运动规律的情况下求解作用在系统上的主动力。如果要想求约束力,可以将拉格朗日方程与动静法或动量定理(或质心运动定理)联用。 通常,我们将牛顿定律及建立在此基础上的力学理论称为牛顿力学(也称矢量力学),将拉格朗日方程及建立在此基础上的理论称为拉格朗日力学。拉格朗日力学通过位形空间描述力学系统的运动,它适合于研究受约束质点系的运动。拉格朗日力学在解决微幅振动问题和刚体动力学的一些问题的过程中起了重要的作用。 为了得到广义坐标表示的完整力学系的动力学方程拉格朗日方程,需要先导出达朗伯-拉格朗日方程。 一、达朗伯-拉格朗日方程 设受完整约束的力学体系有n 个质点,体系中每一个质点都服从如下形式的牛顿运动定律,设第i 个质点受主动力,受约束反力,则 n i R F r m i i i i , ,2 ,1 , =+=n i R F r m i i i i , ,2 ,1 ,0 ==++- 称为达朗伯惯性力或称有效力 这个达朗伯惯性力与力学中定义过的惯性力不是一个概念,那里的惯性力是对某一非惯性系而言的,而上式中各质点的并不相等,所以这里并不存在一个统一的非惯性系。

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

拉格朗日方程

拉格朗日方程,因约瑟夫·路易斯·拉格朗日而命名,是拉格朗日力学的主要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。 简介 拉格朗日方程:对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J.-L.拉格朗日首先导出的。 通常可写成: 式中T为系统用各广义坐标qj和各广义速度q'j所表示的动能;Qj为对应于qj的广义力;N(=3n-k)为这完整系统的自由度;n 为系统的质点数;k为完整约束方程个数。 从虚位移原理可以得到受理想约束的质点系不含约束力的平衡方程,而动静法(达朗贝尔原理)则将列写平衡方程的静力学方法应用于建立质点系的动力学方程,将这两者结合起来,便可得到不含约束力的质点系动力学方程,这就是动力学普遍方程。而拉格朗日方程则是动力学普遍方程在广义坐标下的具体表现形式。 拉格朗日方程可以用来建立不含约束力的动力学方程,也可以用来在给定系统运动规律的情况下求解作用在系统上的主动力。如

果要想求约束力,可以将拉格朗日方程与动静法或动量定理(或质心运动定理)联用。 通常,我们将牛顿定律及建立在此基础上的力学理论称为牛顿力学(也称矢量力学),将拉格朗日方程及建立在此基础上的理论称为拉格朗日力学。拉格朗日力学通过位形空间描述力学系统的运动,它适合于研究受约束质点系的运动。拉格朗日力学在解决微幅振动问题和刚体动力学的一些问题的过程中起了重要的作用。 应用 用拉格朗日方程解题的优点是:①广义坐标个数通常比x坐标少,即N<3n,故拉氏方程个数比直角坐标的牛顿方程个数少,即运动微分方程组的阶数较低,问题易于求解;②广义坐标可根据约束条件作适当的选择,使力学问题的运算简化,并且不必考虑约束力;③T和L都是标量,比力的矢量关系式更易表达,因此较易列出动力方程。下面是两个例子: ①图1是一个半径为a、质量为m1的圆盘,它的中心用铰链与质量为m2的直杆相连。此杆的另一端用铰链固接在半径为b的空心圆筒的中心O;杆长l=b-a。圆盘绕O点摆动。杆的动能为

拉格朗日乘数法

§4 条件极值 (一) 教学目的:了解拉格朗日乘数法,学会用拉格朗日乘数法求条件极值. (二) 教学内容:条件极值;拉格朗日乘数法. 基本要求: (1)了解拉格朗日乘数法的证明,掌握用拉格朗日乘数法求条件极值的方法. (2) 较高要求:用条件极值的方法证明或构造不等式. (三) 教学建议: (1) 本节的重点是用拉格朗日乘数法求条件极值.要求学生熟练掌握. (2) 多个条件的的条件极值问题,计算量较大,可布置少量习题. (3) 在解决很多问题中,用条件极值的方法证明或构造不等式,是个好方法.可推荐给 较好学生. —————————————————————— 在许多极值问题中,函数的自变量往往要受到一些条件的限制,比如,要设计一个容积为V 的长方体形开口水箱,确定长、宽和高, 使水箱的表面积最小. 设水箱的长、宽、高分别为 z y x ,,, 则水箱容积 xyz V = 焊制水箱用去的钢板面积为 xy yz xz z y x S ++=)(2),,( 这实际上是求函数 ),,(z y x S 在 xyz V = 限制下的最小值问题。 这类附有条件限制的极值问题称为条件极值问题, 其一般形式是在条件 )(,,,2,1,0),,,(21n m m k x x x n k <== ? 限制下,求函数 ),,,(21n x x x f 的极值 条件极值与无条件极值的区别 条件极值是限制在一个子流形上的极值,条件极值存在时无条件极值不一定存在,即使存在二者也不一定相等。 例如,求马鞍面 12 2+-=y x z 被平面 XOZ 平面所截的曲线上的最低点。请看这个问题的几何图形(x31马鞍面) 从其几何图形可以看出整个马鞍面没有极值点,但限制在马鞍面被平面 XOZ 平面所截的曲线上,有极小值 1,这个极小值就称为条件极值。

流体运动描述方法(欧拉法和拉格朗日法)

在流体力学里,有两种描述流体运动的方法:欧拉(Euler)和拉格朗日(Lagrange)方法。欧拉法描述的是任何时刻流场中各种变量的分布,而拉格朗日法却是去追踪每个粒子从某一时刻起的运动轨迹。 在一个风和日丽的午后,YC坐在河岸边看河水流,恩,她总是很闲。如果YC的位置不动,她在自己目光能及的河面上划出一块区域,数某一时刻经过的船只数,如果可能的话,再数数经过的鱼儿数;当然,如果手头有些仪器,她可以干干正事,比如测测水流的速度、水的压力、水的温度等,由此得到每一时刻这一河流区域水流各物理量的分布。那么YC是在用欧拉方法研究流体。 这时,YC忽然看到一条船上坐着她的初恋情人,虽然根据陈安对初恋情人的定义,YC根本没有初恋情人。现在假设她有,天哪,他们有20年没见面了,他还欠她20元呢,不能放了他。于是YC记下第一眼看到初恋情人的时间,并迅速测出此时船的位置和速度,然后撒腿追去。假设这条船是顺水而下,船的速度即是水流的速度。每隔一个时间点,她便测一下船的速度和位置。为了曾经的爱情,还有那不计利息的20元,她越过山岗,淌过小溪,直到那条船离开了她的视线。于是,她得到了这条船在河流中的运动轨迹。YC此时所用的研究方法就是拉格朗日法。 Understood? 而在一些复杂的两相流动问题里,比如粒子在流场中运动的问题,我们关注的是粒子的运动轨迹,因此,我们可以用拉格朗日方法追踪粒子在流场中的运动,同时,用欧拉方法来计算流场的各物理量。 在许多工程领域,都有纤维在流场中运动的问题。如果将纤维在流场中的运动视为两相流动,必须为纤维作一些改变,因为它不同于一般的刚性粒子。它细长,细长到你无法用一个粒子来代表一根纤维;它柔,柔得自己的每一部分可以相对于其他部分发生变形。我在《柔性纤维的妖娆运动》里,为slender and flexible纤维建立了模型,把纤维离散成一个个粒子,并在粒子之间建立了弹性或粘弹性的连接。为了研究纤维在流场中运动的问题,我们首先用欧拉法来研究流场,通过求解Navier-Stokes方程,得到流场中每一时刻每一位置的各个物理量。根据这些物理量,我们算出每个纤维粒子在这一时刻这一位置流场中所受的流体动力(hydrodynamic force),则可以算出每个纤维粒子的运动。假设一根纤维离散为100个粒子,算出每个粒子的运动,将每一时刻这些粒子的位置连接起来,就回复成一根纤维的运动轨迹了。所以说,我们是用拉格朗日方法在追踪纤维的运动轨迹,同时还可以得到变形纤维的妖娆模样呢! 我在前一篇博文中说:“在某年某月某一天,两个毫无关系的人,走到了同一个学校、同一个班级,并从此没再分开。这其实是个很危险的旅程,如果一个人早一年,另一个人晚一年;又或许,如果一个人开始想去一个大学,却在最后改变了主意。这样,两个人就失去了相识的初始条件和边界条件,陪在他们身边的,就会是另外的人了。”你们看出来了吗?这里其实用的是拉格朗日方法,因为我是在追踪人的轨迹。如果我和他不能在某一时空同时出现,那么我和他就不可能相遇、相爱、结为夫妻,因为他的轨迹和我是不同的。但是,即使在1987年9月1日,我没有在中国纺织大学的纺织871班级里遇到他,那么我也可能遇见并爱上另一个男生,因为在这样一个时空区域里,总会有人出现。这就是欧拉方法,我不去追踪他,我只坐在我的时空里,静静等待属于我的那个人。 也就是说,获得爱情有两种方法。一种是拉格朗日法,你拼命去追踪你爱的人;另一种是欧拉法,你静静地坐在你的时空里,等待属于你的那个人。 那么,哪种方法更能获得幸福呢?

第二章挖掘装置动力学及运动学分析.

第二章挖掘装置运动学及动力学分析 2.1 挖掘装置的结构及工作特点 挖掘装载机反铲工作装置的结构,其基本型式见图 2-1 所示。 图2-1反铲结构简图 工作特点:反铲工作装置主要用于挖掘停机面以下的土壤,其挖掘轨迹决定于各液压缸的运动及其相互配合的情况。当采用动臂液压缸工作进行挖掘时(斗杆、铲斗液压缸不工作可以得到最大的挖掘半径和最大的挖掘行程,此时铲斗的挖掘轨迹系以动臂下铰点 C 为中心,斗齿尖 V 至 C 的距离|CV|为半径而作的圆弧线,其极限挖掘高度和挖掘深度(不是最大挖掘深度,分别决定于动臂的最大上倾角和下倾角(动臂对水平线的夹角,也即决定于动臂液压缸的行程由于这种挖掘方式时间

长,并且稳定条件限制了挖掘力的发挥,实际工作中基本上不采用。 当仅以斗杆液压缸工作进行挖掘时,铲斗的挖掘轨迹系以动臂与斗杆的铰点 F 为中心,斗齿尖 V 至 F 的距离|FV|为半径所作的圆弧线,同样,弧线的长度与包角决定于斗杆液压缸的行程 。当动臂位于最大下倾角时,可以得到最大挖掘深度,并且有较大的挖掘行程,在较硬的土质条件下工作时,能够保证装满铲斗,故中小型挖掘机构在实际工作中常以斗杆挖掘进行工作。 反铲装置如果仅以铲斗液压缸工作进行挖掘时,挖掘轨迹则为以铲斗与斗杆的铰点 Q 为中心,该铰点 Q 至斗齿尖 V 的距离 |QV|为半径所作的圆弧线。同理,圆弧线的包角( 铲斗的转角及弧长决定于铲斗液压缸的行程(|GH|–|GH|)。显然,以铲斗液压缸进行挖掘时的挖掘行程较短,如使铲斗在挖掘行程结束时能够装满土壤,需要有较大的挖掘力以保证能够挖掘较大厚度的土壤。所以,一般挖掘机构的斗齿最大挖掘力都在采用铲斗液压缸工作时实现。用铲斗液压缸进行挖掘常用于清除障碍,挖掘较松软的土壤以提高生产率,因此在一般土方工程机械中(土壤多为Ⅲ级土以下,转斗挖掘最常采用。在实际挖掘中,往往需要采

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

拉格朗日分析方法

1 摘要 幻灯片1 z 拉格朗日对偶 z 拉格朗日对偶的强度 z 拉格朗日对偶的解 2 拉格朗日对偶 幻灯片2 z 考虑 d Dx b Ax t s x c Z IP ≥≥′=..min X 是整数 z {}d Dx eger x X ≥?=|int z 在X 中求最优情况能有效的求解 2.1 公式 幻灯片3 z 考虑 ()()X x t s Ax b x c Z ∈?′+′=..min λλ z 对固定的λ,问题得到有效的求解 z ()()() i i m i Ax b x c Z ?′+′==λλ,...,1min z ()λZ 是凹的,肯分段的线性的 2.2 弱对偶性 幻灯片4 如果(有最优解且)D ,0≥λ,则()IP Z Z ≤λ z 证明:是(的一个最优解 *x )D z 则因此 0*≤?Ax b () IP Z x c Ax b x c =′≤?′+′***λ z 因为()() ,,* **Ax b x c Z X x ?′+′≤∈λλ,因此()IP Z Z ≤λ

2.3 关键问题 z 考虑拉格朗日对偶: 幻灯片5 ()0 ..max ≥=λλt s Z Z D z IP D Z Z ≤z 我们需要求一个分段的线性凹函数的最大值 幻灯片6 3 LD 的强度 3.1 主要定理 幻灯片7 {.|int d Dx eger x X ≥?=},注意到()X CH 是多面体,则 () X CH x b Ax t s x c Z D ∈≥′=..min 3.2 例子 幻灯片8 15 6323521..3min 2121212121≤+≥+≤+??≥??x x x x x x x x t s x x ???≥0,21x x 整数

二次型及其矩阵表示

第六章 二次型 第一讲 二次型及其矩阵表示、标准形 教 学 目 的:通过本节的学习,使学生了解并掌握二次型的基本概念及其矩 阵表示方法. 教学重点与难点:二次型的矩阵表示 教学计划时数:2课时 教 学 过 程: 一、二次型的概念 定义1:含有n 个变量n x x x ,,,21 的二次齐次函数 22 2 121112221212112323221,1(,, ,)22222n nn n n n n n n n n n f x x x a x a x a x a x x a x x a x x a x x a x x --=+++++ ++++++ (1) 称为二次型. 附:1、当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型; 2、ij a 可以等于0,即(1)式中的各项都存在. 例1 ()2 2 2 12312313,,2454f x x x x x x x x =++-;()123121323,,f x x x x x x x x x =++ 都为实二次型; 二、二次线性与对称矩阵 在(1)式中,取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=令12(,,,)T n x x x x =,则(1) 式可化为 11121121 222212121 2 (,,,)(,, ,).n n T n n n n nn n a a a x a a a x f x x x x x x x Ax a a a x ???? ??? ??? == ??? ??????? 称12(,, ,)T n f x x x x Ax =为二次型的矩阵形式,记为()T f x x Ax =,其中实对称矩阵A 称 为该二次型的矩阵.二次型f 称为实对称矩阵A 的二次型.实对称矩阵A 的秩称为二次型f 的秩,即()()R A R f =.

结构动力学拉格朗日方程

二、拉格朗日方程及其应用 虽然可以直接用牛顿第二定律或达朗贝尔原理建立多自由度系统的运动微分方程,但是在许多情况下应用拉格朗日方程法更为方便。这里用最简单的方式推导拉格朗日方程,以便更好地理解这个被广泛应用的方程的意义。我们知道,对于一能量守恒的系统,系统的动能和势能的总和是不变的,因此,它们的总和对时间的导数等于零,即: 式中:是系统的动能,它是系统广义速度的函数;是系统的势能,它是系统广义坐标 的函数。下面将说明,这两者分别可以用广义坐标和广义速度的二次型表示。 单自由度系统的动能和势能公式如下: 这个结论可以推广到多自由度系统。如下图4-6,使系统各质点产生位移 ,则在处的力为 (a) 设系统有个力作用,则系统总势能为: (b) 把公式(a)代入(b)中,得: (c) 若用矩阵符号,上式可写成: 若把改为更一般的广义坐标符号,上式变为: (d) 上式就是用广义坐标和刚度矩阵的二次型表示的系统势能表达式。

若以表示质量的速度,可以仿照单自由度系统动能的方法表示多自由度系统的动能: 或写成矩阵形式: 我们假设系统的动能只与广义速度有关而与广义坐标无关,对微振动这是成立的。下面来推导拉格朗日方程。为此,对进行全微分: (e) 将对求导,有: 将上式乘以并对从到求和,有: (f) 比较(a),(f)两式可知: (g) 对(g)进行一次微分,得 (h) (h),(e)两式相减可得: 根据守恒系统的原理,有 (i)

因为个广义坐标是独立的,不可能都等于零,因此要上式成立必须使 (j)当系统还作用有除有势力之外的附加力时, 外力在上所作的功将是 令,则可得: (4-8)式中是除有势力之外的所有外力,其中包括阻尼力,阻尼力可表示为: (4-9)

拉格朗日插值法知识讲解

拉格朗日插值法

5.2 拉格朗日(Lagrange)插值 可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的 特性,例如,多项式是无穷光滑的,容易计算它的导数和积分,故常选用代数多项式作为插值函数。 5.2.1 线性插值 问题5.1给定两个插值点其中,怎样做通过这两点的一次插值函数? 过两点作一条直线,这条直线就是通过这两点的一次多项式插值函数,简称线性插值。如图5.1所示。 图5.1 线性插值函数 在初等数学中,可用两点式、点斜式或截距式构造通过两点的一条直线。 下面先用待定系数法构造插值直线。 设直线方程为,将分别代入直线方程得: 当时,因,所以方程组有解,而且解是唯一的。这也表明,平面上两个点,有且仅有一条直线通过。用待定系数法构造插值多项式的方法简单直观,容易看到解的存在性和惟一性,但要解一个方程组才能得到插值函数的系数,因工作量较大和不便向高阶推广,故这种构造方法通常不宜采用。 当时,若用两点式表示这条直线,则有:

(5.1)这种形式称为拉格朗日插值多项式。 ,,称为插值基函数,计算,的值,易见 (5.2) 在拉格朗日插值多项式中可将看做两条直线,的叠加,并可看到两个插值点的作用和地位都是平等的。 拉格朗日插值多项式型式免除了解方程组的计算,易于向高次插值多项式型式推广。 线性插值误差 定理5.1记为以为插值点的插值函数,。这里,设一阶连续可导,在上存在,则对任意给定的,至少存在一点,使 (5.3)证明令,因是的根,所以可设 对任何一个固定的点,引进辅助函数: 则。 由定义可得,这样至少有3个零点,不失一般性,假定,分别在和上应用洛尔定理,可知在每个区间至少存在一个零点,不妨

《线性代数》教学大纲-哈尔滨理工大学

《线性代数》教学大纲 Lin ear Aigebra 课程编号:070A1060 适用专业:理工管各专业学时:40 学分:3 一、内容简介 内容包括:行列式,矩阵的运算,向量的线性相关性,线性方程组的基本理论及解法,特征值与特征向量的概念与计算,矩阵的相似对角阵及用正交变换化对称矩阵为对角阵的方法,化二次型为标准形,线性空间与线性变换。 二、本课程的目的和任务 线性代数是高等学校理工科和经济学科等有关专业的一门重要基础课。它不但是其它数学课程的基础,也是各类工程及经济管理课程的基础。另外,由于计算机科学的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决,于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。 三、本课程与其它课程的关系 本课程的先修课是高等数学中的“空间解析几何与向量代数”部分。作为基础课,它是许多后继课,如计算方法、数理统计、运筹学以及其他专业基础课和专业课的基础。 随着对教学内容的改革,本课程可以与高等数学中的某些部分结合起来讲授,如向量代数;又可在多元函数的微分学中介绍其部分应用,如二次型的正定性。 四、本课程的基本要求 通过本课程的学习,要求学生熟练掌握行列式的计算,矩阵的初等变换,矩阵秩的定义和计算,禾U用矩阵的初等变换求解方程组及逆阵,向量组的线性相关性,禾U用正交变换化对称矩阵为对角形矩阵等有关基础知识,并具有熟练的矩阵运算能力和利用矩阵方法解决一些实际问题的能力,从而为学习后继课及进一步扩大知识面奠定必要的数学基础。具体要求如下: n阶行列式的定义 第一讲二阶与三阶行列式、全排列及其逆序数、目的:理 解n阶行列式的定义。 要求:掌握二阶、三阶行列式的计算,会求全排列的逆序数,利用定义计算简单的行列式。 第二讲对换、行列式的性质目的:理解n阶行列式的性质。

拉格朗日方程

拉格朗日方程 拉格朗日方程:对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J.-L.拉格朗日首先导出的。 通常可写成: 式中T为系统用各广义坐标qj和各广义速度q'j所表示的动能;Qj为对应于qj的广义力;N(=3n-k)为这完整系统的自由度;n 为系统的质点数;k为完整约束方程个数。 从虚位移原理可以得到受理想约束的质点系不含约束力的平衡方程,而动静法(达朗贝尔原理)则将列写平衡方程的静力学方法应用于建立质点系的动力学方程,将这两者结合起来,便可得到不含约束力的质点系动力学方程,这就是动力学普遍方程。而拉格朗日方程则是动力学普遍方程在广义坐标下的具体表现形式。 拉格朗日方程可以用来建立不含约束力的动力学方程,也可以用来在给定系统运动规律的情况下求解作用在系统上的主动力。如果要想求约束力,可以将拉格朗日方程与动静法或动量定理(或质心运动定理)联用。 通常,我们将牛顿定律及建立在此基础上的力学理论称为牛顿力学(也称矢量力学),将拉格朗日方程及建立在此基础上的理论称为拉格朗日力学。拉格朗日力学通过位形空间描述力学系统的运

动,它适合于研究受约束质点系的运动。拉格朗日力学在解决微幅振动问题和刚体动力学的一些问题的过程中起了重要的作用。 用拉格朗日方程解题的优点是:①广义坐标个数通常比x坐标少,即N<3n,故拉氏方程个数比直角坐标的牛顿方程个数少,即运动微分方程组的阶数较低,问题易于求解;②广义坐标可根据约束条件作适当的选择,使力学问题的运算简化,并且不必考虑约束力;③T和L都是标量,比力的矢量关系式更易表达,因此较易列出动力方程。

求解二次规划问题的拉格朗日及有效集方法样本

求解二次规划问题的拉格朗 日及有效集方法——最优化方法课程实验报告 学院: 数学与统计学院 班级: 硕2041班 姓名: 王彭 学号: 指导教师: 阮小娥 同组人: 钱东东

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 求解二次规划问题的拉格朗日 及有效集方法 摘要 二次规划师非线性优化中的一种特殊情形, 它的目标函数是二次实函数, 约束函数都是线性函数。由于二次规划比较简单, 便于求解( 仅次于线性规划) , 而且一些非线性优化问题能够转化为求解一些列的二次规划问题, 因此二次规划的求解方法较早引起人们的重视, 称为求解非线性优化的一个重要途径。二次规划的算法较多, 本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。 关键字: 二次规划, 拉格朗日方法, 有效集方法。

【目录】 摘要................................................ 错误!未定义书签。 1 等式约束凸二次规划的解法.......................... 错误!未定义书签。 1.1 问题描述.................................... 错误!未定义书签。 1.2 拉格朗日方法求解等式约束二次规划问题........ 错误!未定义书签。 1.2.1 拉格朗日方法的推导.................... 错误!未定义书签。 1.2.2 拉格朗日方法的应用.................... 错误!未定义书签。 2 一般凸二次规划问题的解法.......................... 错误!未定义书签。 2.1 问题描述.................................... 错误!未定义书签。 2.2 有效集法求解一般凸二次规划问题.............. 错误!未定义书签。 2.2.1 有效集方法的理论推导.................. 错误!未定义书签。 2.2.2 有效集方法的算法步骤.................. 错误!未定义书签。 2.2.3 有效集方法的应用...................... 错误!未定义书签。 3 总结与体会........................................ 错误!未定义书签。 4 附录.............................................. 错误!未定义书签。 4.1 拉格朗日方法的matlab程序................... 错误!未定义书签。 4.2 有效集方法的Matlab程序..................... 错误!未定义书签。

02 第二节 化二次型为标准型

第二节 化二次型为标准形 若二次型),,,(21n x x x f 经可逆线性变换化为只含平方项的形式 ,2 222211n n y b y b y b +++ 则称之为二次型),,,(21n x x x f 的标准形. 由上节讨论知,二次型AX X x x x f T n =),,,(21 在线性变换CY X =下,可化为 .)(Y AC C Y T T 如果AC C T 为对角矩阵 ? ????? ????? ?=n b b b B 21 则),,,(21n x x x f 就可化为标准形,2 222211n n y b y b y b +++ 其标准形中的系数恰好为对角阵B 的对角线上的元素,因此上面的问题归结为A 能否合同于一个对角矩阵. 内容分布图示 ★ 二次型的标准性 ★ 用配方法化二次型为标准形 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 用初等变换化二次型为标准形 ★ 例5 ★ 例6 ★ 定理3 -4 ★ 用正交变换化二次型为标准形 ★ 例7 ★ 例8 ★ 二次型与对称矩阵的规范形 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题5-2 ★ 返回 内容要点: 一、用配方法化二次型为标准形. 定理1 任一二次型都可以通过可逆线性变换化为标准形. 拉格朗日配方法的步骤: (1) 若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量进行同样过程直到所有变量都配成平方项为止, 经过可逆线性变换, 就得到标准形; (2) 若二次型中不含有平方项, 但是)(0j i a ij ≠≠,则先作可逆变换 ),,,2,1(j i k n k y x y y x y y x k k j i j j i i ≠=? ?? ??=+=-=且 化二次型为含有平方项的二次型, 然后再按(ⅰ)中方法配方. 注:配方法是一种可逆线性变换, 但平方项的系数与A 的特征值无关. 因为二次型f 与它的对称矩阵A 有一一对应的关系,由定理1即得: 定理2 对任一实对称矩阵A ,存在非奇异矩阵C ,使=B AC C T 为对角矩阵. 即任一 实对称矩阵都与一个对角矩阵合同. 二、用初等变换化二次为标准型 设有可逆线性变换为CY X =,它把二次型AX X T 化为标准型BY Y T ,则 B AC C T =. 已

相关文档
相关文档 最新文档