文档库 最新最全的文档下载
当前位置:文档库 › 等边三角形的培优

等边三角形的培优

等边三角形的培优
等边三角形的培优

等边三角形培优讲义

1、等边三角形的性质:

(1)等边三角形的三条边相等,三个角都等于60;

(2)等边三角形每个角的平分线与所对的中线,高线互相垂直;

(3)等边三角形的每条边上的中线、高线以及所对角的平分线相等.

2、等边三角形的判定:

(1)三条边相等的三角形是等边三角形;

(2)三个角都相等的三角形是等边三角形;

(3)有一个角为60的等腰三角形是等边三角形。

例题讲解:

1.下列三角形:①有两个角等于0

60的等腰三角形;?③三

60;②有一个角等于0

个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条

腰上的高的等腰三角形.其中是等边三角形的有()

A.①②③ B.①②④ C.①③ D.①②③④

2.如图,△ABC为等边三角形,且BM=CN,AM与BN相交于点P,则∠APN=()

A 70

B 60

C 50 D不确定

3.如图,C为线段AB上一点,在AB的同侧作等边△ACM和等边△BCN,连接AN、BM,若∠MBN=40°,则∠ANB的大小是()

A 60

B 65

C 70

D 80

4、如图2,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是( )

A.钝角三角形

B.直角三角形

C.等边三角形

D.非等腰三角形

5、如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_________.

第二题第三题

6、如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_____________.

7、如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_______________.

8.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是

9.如图,等边△ABC的三条角平分线相交于点O,OD∥AB交BC于D,OE∥AC交BC于点E,那么这个图形中的等腰三角形共有________个。

10.如图,将第一个图(图①)所示的正三角形连接各边中点进行分割,得到第二个图(②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,…,则得到的第七个图中,共有___________个正三角形.

11、在等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方坐等边△CDE,连接BE

(1)求证:△ACD≌△BCE;

(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长。

12、在等边△ABC中的AC延长线上取一点E,以CE为边做等边△CDE,使它与

△ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点,

求证:(1)△CNM为等边三角形;(2)若让△CDE绕C旋转,下列结论会发生变化吗?①AD=BE;②AD与BE交角的度数;③三角形CNM为等边三角形。

13、已知O是等边△ABC内的一点,∠AOB、∠BOC∠AOC的角度之比为6:5:4,求在以OA、OB、OC为边的三角形中,此三边所对的角度之比

14.如图,在等边ABC ?中,BE AD CD AE ,,=相交于点AD BQ P ⊥,于点Q . 求证:PQ BP 2=.

15、如图,△ABC 是等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°的∠NDM ,角的两边分别交AB 、AC 边于M 、N 两点,连接

MN .试探究

BM 、MN 、CN 之间的数量关系,并加以证明.

16、如图,△ABC 是等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,M 是AB

延长线上一点,N 是CA 延长线上一点,且∠MDN=60°,试探究BM 、MN 、CN 之间的数量关系,并给出证明

B

17、如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.

(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;

(2)连结AD,交OC于点E,求∠AEO的度数.

18.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是1,求六边形的周长。

19.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC 延长线上一点,当PA=CQ时,连PQ交AC边于D,求DE的长

20、如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B 向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.

(1)当∠BQD=30°时,求AP的长;

(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

21.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.

E D

A B

22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时,△DMN 也随之整体移动) .

(1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由; (3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.

图① 图② 图③

A

·

B

C

D

E

F

· ·

N M

F

E

D

C

B A

N

M

F

E

D

C

B

A

·

23、(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF

与BD之间的数量关系吗?并证明你发现的结论.

(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其

他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?

(3)深入探究:

Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.

Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.

24、阅读与理解:

图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在

一起(C与C′重合)的图形.

操作与证明:

(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;

(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证

明你的结论;

猜想与发现:

根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?

25.基本问题:已知等边△ABC ,BM=CN 。 (1)写出BN 、AM 之间数量关系;

(2)当点M 运动到BC 延长线上时,其余条件不变,则(1)的结论是否成立?

变式问题:1。如图等边△ABC 和等边△CDE ,点P 为射线BC 一动点,∠APK=60°,PK 交直线CD 于K 。 (1)试探索AP 、PK 之间的数量关系;

(2)当点P 运动到BC 延长线上时,上题结论是否依然成立?为什么。

C

F

P

M

D

A

D

M A B

P

F

E

A

B

E D

M

C

26.已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1,

h 2,h 3,△ABC 的高为h .“若点P 在一边BC 上[如图(1)],此时h 3=0可得结论:h 1+h 2+h 3=h .”请直接应用上述信息解决下列问题:当点P 在△ABC 内[如图(2)],以及点P 在△ABC 外[如图(3)]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h 1,h 2,h 3与h 之间又有怎样的关系,请写出你的猜想,不需要证明.

(1) (2) (3)

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

培优专题 等腰三角形

培优专题 等腰三角形 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 例1 如图1-1,△ABC 中,AB=BC ,M 、N 为BC 边上两点,且∠BAM=∠CAN ,MN=AN ,求∠MAC 的度数. 分析 AB=AC ,MN=AN 可知△ABC 和△AMN 均为等腰三角形,充分利用等腰三角形的性质寻找所求角间的关系. 练习1 1.如图,已知△ABC 中,AB=AC ,AD=AE ,∠BAE=30°,则∠DEC 等于( ). A .7.5° B .10° C .12.5° D .15° 2.如图,AA ′、BB ′分别是△ABC 的外角∠EAB 和∠CBD 的平分线,且AA ′=AB=B ′B ,A ′、B 、C 在一直线上,则∠ACB 的度数是多少? 3.如图,等腰三角形ABC 中,AB=BC ,∠A=20°.D 是AB 边上的点,且AD=BC ,?连结CD ,则∠BDC=________. 例2 如图1-5,D 是等边三角形ABC 的AB 边延长线上一点,BD?的垂直平分线HE?交AC 延长线于点E ,那么CE 与AD 相等吗?试说明理由. 分析 要说明似乎没有任何关系的两条线段相等,往往需要做一些工作,如添加辅助线,构造全等三角形等,从而达到解决问题的目的.

人教版数学八年级培优和竞赛教程3.三角形及其有关概念

3、三角形及其有关概念 【知识精读】 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段: (1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质 (1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180° (3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5 4. S S ABE ?? 基础。 5. 例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020?<

∴?<?∠∠B C 90 ∴>?390∠B ,即∠B >?30 ∴?<

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

初中几何经典培优题型(三角形)

全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换 中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思 维模式是全等变换中的“旋转”. 3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形 全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线 段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接 起来,利用三角形面积的知识解答. 常见辅助线写法: ⑴过点A作BC的平行线AF交DE于F ⑵过点A作BC的垂线,垂足为D ⑶延长AB至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点

全等三角形专题培优[带答案]

全等三角形专题培优 考试总分: 110 分考试时间: 120 分钟 卷I(选择题) 一、选择题(共 10 小题,每小题 2 分,共 20 分) 1.如图为个边长相等的正方形的组合图形,则 A. B. C. D. 2.下列定理中逆定理不存在的是() A.角平分线上的点到这个角的两边距离相等 B.在一个三角形中,如果两边相等,那么它们所对的角也相等 C.同位角相等,两直线平行 D.全等三角形的对应角相等 3.已知:如图,,,,则不正确的结论是() A.与互为余角 B. C. D. 4.如图,是的中位线,延长至使,连接,则的值为() A. B. C. D. 5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B. C. D. 6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有() A.个 B.个 C.个 D.个 7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可 供选择的地址有() A.一处 B.二处 C.三处 D.四处 8.如图,是的角平分线,则等于() A. B. C. D. 9.已知是的中线,且比的周长大,则与的差为() A. B. C. D. 10.若一个三角形的两条边与高重合,那么它的三个内角中() A.都是锐角 B.有一个是直角 C.有一个是钝角 D.不能确定 卷II(非选择题) 二、填空题(共 10 小题,每小题 2 分,共 20 分) 11.问题情境:在中,,,点为边上一点(不与点,重合) ,交直线于点,连接,将线段绕点顺时针方向旋转得

人教版初二数学培优和竞赛二合一讲炼教程:三角形及其有关概念

人教版初二数学培优和竞赛二合一讲炼教程 3、三角形及其有关概念 【知识精读】 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段: (1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质 (1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180° (3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5 4. S S ABE ?? 基础。 5. 例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020?<

又∠C =2∠B ,∴?<?∠∠B C 90 ∴>?390∠B ,即∠B >?30 ∴?<

word完整版培优专题3 等腰三角形含答案1推荐文档

3:在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系, 理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问 【知识精读】 (-)等腰三角形的性质 1.有关定理及其推论 定理:等腰三角形有两边相等; 3等腰三角形 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的 顶角平分线、底边上的中线、底边上的高互相重合。等腰三角形是以底边的垂直平分线为对 称轴的轴对称图形; 推论2:等边三角形的各角都相等,并且每一个角都等于 60 2.定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系, 由两边相等推出两 角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、 底边上的高、顶 角的平分线“三线合一”的性质是今后证明两条线段相等, 两个角相等以及两条直线互相垂 直的重要依据。 (二)等腰三角形的判定 1.有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成 “等角 对 等边”。) 推论 1:三个角都相等的三角形是等边三角形。 推论 2:有一个角等于60°的等腰三角形是等边三角形。 推论 它是证明线段相等的重要定

题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题, 在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合, 添加辅助线时, 有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况 来定。 【分类解析】 例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM 丄BC ,垂足为M 。求证:M 是BE 的中点。 所以/ 1 = - / ABC 2 又因为CE = CD ,所以/ CDE = / E 所以/ ACB = 2/ E 即/ 1=/ E 所以BD = BE ,又DM 丄BC ,垂足为 M 分析:欲证M 是BE 的中点,已知 DM 丄BC ,所以想到连结 BD ,证BD = ED 。因为△ ABC 是等边三角形,/ DBE = - / ABC ,而由 CE = CD ,又可证/ E = - / ACB ,所以/ 1 2 2 =/ E ,从而问题得证。 证明:因为三角形 ABC 是等边三角形,D 是AC 的中点 所以M 是BE 的中点 (等腰三角形三线合一定理) 例2.如图,已知: ABC 中,AB AC , D 是 BC 上一点,且 AD DB , DC CA , 求 BAC 的度数。 E D

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

全等三角形培优竞赛讲义(四)等腰三角形

全等三角形培优竞赛讲义(四) 等腰三角形 【知识点精读】-、等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 二、等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线

人教版八年级数学上册等腰三角形培优专题练习.doc

等腰三角形培优专题 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 练习 1.如图,已知△ A.7.5°ABC中, AB B.10° =AC ,AD = C.12.5 ° AE ,∠ BAE D.18° = 30 °,则 ∠ DEC 等于(). 2.如图,AA′、 BB′分别是△ABC的外角∠C 在一直线上,则∠ACB的度数是多少?EAB 和∠CBD 的平分线,且AA′= AB = B′B,A′、 B 、 3.如图,则∠ BDC 等腰三角形 = ________ ABC . 中,AB =AC ,∠ A =20 °. D 是AB 边上的点,且AD = BC ,连 结 CD , 例 2 如图, D 是等边三角形ABC 的 AB 边延长线上一点, E 是等边三角形ABC 的 AC 边延长线上一点,且EB = ED .那么CE 与 AD 相等吗?试说明理由. E

C A B D

练习 线交1.已知如图,在△ CA 的延长线于点 ABC中,AB=CD,D是 F ,判断AD 与 AF 相等吗? AB 上一点,DE⊥BC , E 为垂足,ED? 的延长 2.如图,△ABC = 15°,则 BD 与 A . BD>BA 是等腰直角三角形,∠ BA 的大小关系是( B . BD

全等三角形培优竞赛题精选

全等三角形证明 1、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 2.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C 3、P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

4、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证: AC-AB=2BE 5、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 6、(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. F A E D C B

7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明): 8、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。 求证:AM 是△ABC 的中线。 M F E C B A 9.已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。 O E D C B A

相似三角形培优专题

相似三角形培优专题1. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D. 求证:(1)△ACD∽△ABC; (2)AC2=AD?AB; (3)CD2=AD?DB. A 证明:(1)∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°=∠ACB, ∵∠A=∠A, ∴△ACD∽△ABC. (2)∵△ACD∽△ABC, ∴AC AD AB AC =, ∴AC2=AD?AB; (3)∵CD⊥AB, ∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°, ∵∠ACB=90° ∴∠A+∠B=90° ∴∠ACD=∠B ∴△ACD∽△BCD, ∴CD AD BD CD =, ∴CD2=AD?DB.

2.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证: (1)△ACP∽△PDB, (2)CD2=AC?BD. 证明:(1)∵△PCD是等边三角形, ∴∠PCD=∠PDC=∠CPD=60°, ∴∠ACP=∠PDB=120°, ∵∠APB=120°, ∴∠APC+∠BPD=60°, ∵∠CAP+∠APC=60° ∴∠BPD=∠CAP, ∴△ACP∽△PDB; (2)由(1)得△ACP∽△PDB, ∴, ∵△PCD是等边三角形, ∴PC=PD=CD, ∴, ∴CD2=AC?BD.

3. 如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC 的边BC=15,高AH=10, (1)求证:△ADG∽△ABC; (2)求这个正方形的边长和面积. 解:(1)∵四边形形DEFG是正方形, ∴DG∥BC ∴△ADG∽△ABC; (2) 如图,高AH交DG于M,设正方形DEFG的边长为x,则DE=MH=x, ∴AM=AH﹣MH=10﹣x, ∵ADG∽△ABC, ∴DG AM BC AH =, ∴ 10 1510 x x - =, ∴x=6, ∴x2=36. 答:正方形DEFG的边长和面积分别为6,36.

三角形培优训练100题集锦.docx

三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折” 。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角 形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移” 或“翻转折叠” 。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证 明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连 接起来,利用三角形面积的知识解答。 1、已知,如图△ ABC 中, AB=5, AC=3,求中线 AD 的取值范围 . 2、如图,△ ABC中, E、 F 分别在 AB、 AC 上, DE⊥ DF, D 是中点,试比较BE+CF与 EF的大小 . A E F B D C

培优专题讲解_等腰三角形(含解答)-

等腰三角形专题练习题 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 例1如图1-1,△ABC中,AB=BC,M、N为BC边上两点,且∠BAM=∠CAN,MN=AN,求∠MAC的度数. 练习1 1.如图1-2,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于().A.7.5° B.10° C.12.5° D.18° 1-2 2.如图1-3,AA′、BB′分别是△ABC的外角∠EAB和∠CBD的平分线,且AA′=AB=B′B,A′、B、C在一直线上,则∠ACB的度数是多少? 1-3

3.如图1-4,等腰三角形ABC中,AB=BC,∠A=20°.D是AB边上的点,且AD=BC,?连结CD,则∠BDC=________. 1-4 例2 如图1-5,D是等边三角形ABC的AB边延长线上一点,BD?的垂直平分线HE?交AC 延长线于点E,那么CE与AD相等吗?试说明理由. 练习2 1.已知如图1-6,在△ABC中,AB=CD,D是AB上一点,DE⊥BC,E为垂足,ED?的延长线交CA的延长线于点F,判断AD与AF相等吗? 1-6 1-7 1-8 2.如图1-7,△ABC是等腰直角三角形,∠BAC=90°,点D是△ABC内一点,且∠DAC=∠DCA=15°,则BD与BA的大小关系是() A.BD>BA B.BD

全等三角形培优经典题

全等三角形培优经典题

全等三角形培优习题 1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)直接写出线段EG与CG的数量关系; (2)将图1中△BEF绕B点逆时针旋转45o,如图2所示,取DF中点G,连接EG,CG. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立? A D E G 图1 F A D C G 图2 F A E 图3 D

2、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E是边BC的中点.90 AEF ∠=o,且EF交正方 形外角DCG ∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的 中点M,连接ME,则AM=EC,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. A D F C G E 图A D F C G E 图 A D F C G E B 图

八年级数学下等腰三角形和等边三角形培优练习题

八年级数学下等腰三角形和等边三角形培优练习题 一、填空选择题: 1.如下图1,等边△的边长为3,P 为上一点,且=1,D 为上一点,若∠=60°,则的长为( ) A . 3 2 B .23 C . 12 D . 34 2.如上图2,△中,D 、E 分别是、的中点,平分∠,交于点F ,若=6, 则的长是( )(A )2 (B )3 (C ) 2 5 (D )4 3.如上图3,点A 的坐标是(2,2),若点P 在x 轴上,且△是等腰三角形,则点P 的坐标 不可能... 是( )A .(4,0) B .(1.0) C .(-22,0) D .(2,0) 4.如上图1,==,若∠A =40°,则∠的度数是( ) A .20o B .30o C .35o D .40o 5.如上图2,△中,==6,=8,平分么交于点E ,点D 为的中点,连结,则△的周长是( ) A .7+5 B .10 C .4+25 D .12 6.如上图3,在△中,,∠36°,、分别是△、△的角平分线, 则图中的等腰三角形有 ( ) (A)5个 (B)4个 (C)3个 (D)2个 7.在等腰ABC △中,AB AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7 B .11 C .7或11 D .7或10 8.等腰三角形一腰上的高与另一腰的夹角为30o,腰长为4 ,则其腰上的高为 . 9.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 10.在△中,=,的垂直平分线与所在的直线相交所得到锐角为50°, 则∠B 等于_ 度. A D C P B 60° E D C B A (第6题) B A D C 1 2 3 4 -1 1 2 x y A

培优专题等腰三角形(含答案)

9、等腰三角形 【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问

题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。求证:M 是BE 的中点。 A D 1 B M C E 分析:欲证M 是BE 的中点,已知DM ⊥BC ,所以想到连结BD ,证BD =ED 。因为△ABC 是等边三角形,∠DBE =21∠ABC ,而由CE =CD ,又可证∠E =2 1 ∠ACB ,所以∠1=∠E ,从而问题得证。 证明:因为三角形ABC 是等边三角形,D 是AC 的中点 所以∠1= 2 1 ∠ABC 又因为CE =CD ,所以∠CDE =∠E 所以∠ACB =2∠E 即∠1=∠E 所以BD =BE ,又DM ⊥BC ,垂足为M 所以M 是BE 的中点 (等腰三角形三线合一定理) 例2. 如图,已知:ABC ?中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。 A B C D

全等三角形培优竞赛讲义(二)

全等三角形培优竞赛讲义(二) 【知识点精读】 1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。 2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等; 4. 寻找对应元素的方法 (1)根据对应顶点找 如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。 (2)根据已知的对应元素寻找 相等的角是对应角,相等的边是对应边;相等的角所对的边是对应边,相等的边所对的角是对应边;两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。 ①翻折如图(1)?BOC≌?EOD,?BOC可以看成是由?EOD沿直线AO翻折180?得到的; ②旋转如图(2)?COD≌?BOA,?COD可以看成是由?BOA绕着点O旋转180?得到的; ③平移如图(3)?DEF≌?ACB,?DEF可以看成是由?ACB沿CB方向平行移动而得到的。 5. 判定三角形全等的方法: (1)边角边公理、角边角公理、边边边公理、斜边直角边公理 (2)推论:角角边定理 6. 注意问题: (1)在判定两个三角形全等时,至少有一边对应相等; (2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。 全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在

培优专题2 直角三角形(学生版)

培优专题2 直角三角形 一、 知识点回顾   二、典型例题分析 例1(2013?沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE; 的长. (2)若CD=,求AD

例2、(2013?抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是 ; (2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论; (3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP 三者之间的数量关系.

n t h r e g 三、中考题练  一.选择题(共9小题)1.(2013?郴州)如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于( ) A .25° B .30° C .35° D .40°2.(2007?芜湖)如图,在△ABC 中AD ⊥BC ,C E ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是( )  A . 1B .2 C .3 D . 43.(2011?衡阳)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .   4.(2010?滨州)如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若AE=2,EM+CM 的最小值为 .

全等三角形培优经典题

全等三角形培优习题 1、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)直接写出线段EG 与CG 的数量关系; (2)将图1中△BEF 绕B 点逆时针旋转45o ,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立? 2 1 E 是边BC 的 EF DCG ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除 B , C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖 的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. F B D 图1 B D 图2 B 图3 D

1.下列命题中正确的是() A.全等三角形的高相等 B.全等三角形的中线相等 C.全等三角形的角平分线相等 D.全等三角形对应角的平分线相等 2.下列说法正确的是() A.周长相等的两个三角形全等 B.有两边和其中一边的对角对应相等的两个三角形 AB=BE,BC=DB。 CE=DE 求证:EDC EBC∠ = ∠。 7.已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分. 8.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.猜想线段AC与EF的关系,并证明你的结论. 9如图ABD ?和ACE ?均为等边三角形,求证: A D F C G E B 图1 A D F C G E B 图2 A D F C G E B 图3 A B E O F D C

相关文档
相关文档 最新文档