文档库 最新最全的文档下载
当前位置:文档库 › (题型全)古典概型练习题

(题型全)古典概型练习题

(题型全)古典概型练习题
(题型全)古典概型练习题

古典概型习题

1. 从1004名学生中选取50名参加活动,若采用下面的方法选取:选用简单随机抽样从1004人中剔除4

人,剩下的1000人再按系统抽样的方法进行抽样,则每人入选的概率( )

A .不全相等

B .均不相等

C .都相等且为50225

D .都相等且为20

1 2. 已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,

至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:

5727 0293 7140 9857 0347 4373 8636 9647 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 6710 4281

据此估计,该射击运动员射击4次至少击中3次的概率为

A .0.85

B .0.8192

C .0.8

D . 0.75

3. 在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数22()2π=+-+f x x ax b 有零点的概

率为

(A )78 (B )34 (C )12 (D )14

4. 一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6

个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是

(A ) 18 (B ) 116 (C ) 127 (D ) 38

5. 从足够多的四种颜色的灯泡中任选六个安置在如右图的6个顶点处,则相邻顶点处灯泡颜色不同的概

率为 ( )

A .

64228 B .64240 C .64264 D .64288 6. 连续投掷两次骰子得到的点数分别为m 、n ,作向量a =(m,n).则向量a 与向量b=(1,-1)的夹角成

为直角三角形内角的概率是( )

A .712

B .512

C .12 34

7. 将一枚骰子抛掷两次,若先后出现的点数分别为c b ,,则方程 02=++c bx x 有实根的概率为( )

A .1736

B .12

C .1936

D .59

8. 三个学校分别有1名、2名、3名学生获奖,这6名学生要排成一排合影,则同校学生相邻排列的概

率是( )

A .130

B .115

C .110

D .15

9. 已知函数()f x 、()g x 都是定义在R 上的函数,且()()x f x a g x =(0a >且1a ≠),2(1)(1)1(1)(1)f f g g --=--,在有穷数列(){}()f n g n (1,2,3,,10n =???)中,任意取正整数(110)k k 剟,则其前k 项和大于

1516的概率是( ) A.15 B.25 C.35 D.45

10. 随机地向半圆0y <<(a 为正常数)内掷一点,点落在该半圆内任何区域的概率与此区

域的面积成正比,求原点与该点的连线与x 轴的夹角小于4

π的概率 。 11. 已知{(,)6,0,0},x y x y x y Ω=+≤≥≥{(,)4,0,20}A x y x y x y =≤≥-≥。若向区域Ω上随机投

一点P,则点P 落入区域A 的概率是 。

12. 一幅扑克牌除去大、小王共52张,洗好后,四个人顺次每人抓13张,则两个红A (即红桃A 、方块A )

在同一个人手中的概率为

13. 已知函数122)(+-=bx ax x f ,若a 是从区间[],2,0任取的一个数,b 是从区间[]2,0任取的一个数,则此

函数在[)+∞,1递增的概率 .

14. 设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b 组成数对

(,)a b ,并构成函数.14)(2+-=bx ax x f

(Ⅰ)写出所有可能的数对(,)a b ,并计算2a ≥,且3b ≤的概率;

(Ⅱ)求函数()f x 在区间[),1+∞上是增函数的概率.

15. 某班50 名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试的结果按如下方式分成

五组:第一组[13,14),第二组[14,15),…,第五组[17,18].下图是按上述分组方法得到的频率分布直方图.

⑴若成绩大于或等于14秒且小于16秒,认为良好,求该班在这次百米测试中成绩良好的人数;

⑵若在第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于3秒的概率.

16. 袋子中装有编号为a ,b 的2个黑球和编号为c ,d ,e 的3个红球,从中任意摸出2个球. (Ⅰ)写出所有不同的结果;

(Ⅱ)求恰好摸出1个黑球和1个红球的概率;

(Ⅲ) 求至少摸出1个黑球的概率.

17、已知向量,(1,2),(,)a b x y ==-

(Ⅰ)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6) 先后抛掷两次时第一次、第二次出现的点数,求满足1a b ?=- 的概率;

(Ⅱ)若,x y ∈[]1,6,求满足0a b ?>

的概率.

18.袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n 的球重2612n n -+克,这些球等可能地从袋里取出(不受重量、号码的影响)。

(1)如果任意取出1球,求其重量大于号码数的概率;

(2)如果不放回地任意取出2球,求它们重量相等的概率。

高二数学几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 几何概型和古典概型是随机概率中两类主要模型,是概率考查中的重点,下面就几何概型的知识与常见题型做一梳理,以期能使读者对于这一知识点做到脉络清晰,条理分明。 一 基本知识剖析 1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。 2.几何概型的概率公式: P (A )= 积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A ; 3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。 通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。 二 常见题型梳理 1.长度之比类型 例1. 小赵欲在国庆六十周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 例2 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面 积介于36cm 2 与81cm 2 之间的概率. 2.面积、体积之比类型 例3. (08江苏高考6).在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。

古典概型练习题(有详细答案).

古典概型练习题 1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是 A.3个都是正品 B.至少有一个是次品 ( ) C.3个都是次品 D.至少有一个是正品 2.给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x 为某一实数时可使20x <”是不可能事件 ③“明天要下雨”是必然事件 ④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( ) A. 0 B. 1 C.2 D.3 3.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为 A. 15 B. 25 C. 35 D. 45 ( ) 4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为 A. 37 B. 710 C. 110 D. 310 ( ) 5.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这 2 张纸片数字之积为偶数的概率为 ( ) A. 12 B. 718 C. 1318 D. 1118 6.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( ) A. 715 B. 815 C. 35 D. 1 7.下列对古典概型的说法中正确的个数是 ( ) ①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等; ③基本事件的总数为n,随机事件A 包含k 个基本事件,则()k P A n =; ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4 8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( ) ⑴至少有一个白球,都是白球; ⑵至少有一个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球; ⑷至少有一个白球,都是红球. A.0 B.1 C.2 D.3 9.下列各组事件中,不是互斥事件的是 ( ) A.一个射手进行一次射击,命中环数大于8与命中环数小于6 B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分 C.播种菜籽100粒,发芽90粒与发芽80粒 D.检查某种产品,合格率高于70%与合格率为70% 10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次, 设事件A 表示向上的一面出现奇数点,事件B 表示向上的一面出现的点数不超过3,事件C 表示 向上的一面出现的点数不小于4,则 ( ) A .A 与 B 是互斥而非对立事件 B .A 与B 是对立事件 C .B 与C 是互斥而非对立事件 D .B 与C 是对立事件 11.下列说法中正确的是 ( )

几何概型的常见题型

几 何 概 型 的 常 见 题 型 李凌奇2017-06-26 1.与长度有关的几何概型 例1.在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π2 C.21 D.3 2 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于0到 2 1 之间, 需使2 23x π ππ - ≤ ≤- 或 322x π ππ ≤ ≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 2.与面积有关的几何概型 例2.ABCD 为长方形,1,2==BC AB ,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A . 4 π B.14 π - C. 8 π D.18π - 分析:由于是随机的取点,点落在长方形内每一个点的机会是等可能的,基本事件是无限多个,所以符合几何概型. 解:长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为 2 π 因此取到的点到O 的距离大于1的面积为2 2π -, 则取到的点到O 的距离大于1的概率为 A O D C B 1 图

高二数学古典概型知识点

2019学年高二数学古典概型知识点 古典概型是一种概率模型,是概率论中最直观和最简单的模型,小编准备了高二数学古典概型知识点,具体请看以下内容。 知识点总结 本节主要包括古典概型的特征、古典概型的概率计算公式等主要知识点。其中主要是理解和掌握古典概型的概率计算公式,这个并不难。 1、古典概型 (1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。 (2)特点:①试验结果的有限性②所有结果的等可能性 (3)古典概型的解题步骤; ①求出试验的总的基本事件数 ; ②求出事件A所包含的基本事件数 ; 2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能 事件除外)。 常见考法 本节在段考中,一般以选择题、填空题和解答题的形式考查

古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。 误区提醒 在求试验的基本事件时,有时容易计算出错。基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。 【典型例题】 例1 如图,四边形ABCD被两条对角线分成四个小三角形,若每个小三角形用4种不同颜色中的任一种涂染,求出现相邻三角形均不同色的概率. 解:若不考虑相邻三角形不同色的要求,则有44=256(种)涂法,下面求相邻三角形不同色的涂法种数:①若△AOB与△COD同色,它们共有4种涂法,对每一种涂法,△BOC与△AOD各有3种涂法,所以此时共有433=36(种)涂法.②若△AOB与△COD不同色,它们共有43=12(种)涂法,对每一种涂法△BOC与△AOD各有2种涂法,所以此时有4322=48(种)涂法.故相邻三角形均不同色的概率 例2 盒中有6只灯泡,其中2只次品,4只正品,有放回地

《古典概型》练习题(有祥细解答)

《古典概型》练习题(有祥细解答) 重庆南川中学罗光军 2016.5.30 一、选择题 1.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( ) A.1 2 B. 1 3 C. 1 4 D.无法确定 解析:我们将两个房间分为A和B, (甲住A、乙住B)、(甲住B,乙住A)、(甲、乙都住A)、(甲、乙都住B)共四种情况,其中甲、乙各住一间房的情况有两种,所以选A.答案:A 2.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.1 2 B. 1 3 C. 1 4 D. 1 6 解析:从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种 不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为1 3 ,故选B.答案:B 3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则满足log2x y=1的概率为( ) A.1 6 B. 5 36 C. 1 12 D. 1 2 解析:由log 2x y=1得2x=y.又x∈{1,2,3,4,5,6},y∈{1,2,3,4,5,6},所以满足题意的有x= 1,y=2或x=2,y=4或x=3,y=6,共3种情况.所以所求的概率为 3 36 = 1 12 ,故选C.答案:C 4.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为( ) A.1 8 B. 3 16 C. 1 4 D. 1 2 解析:由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4), (2,4),(3,4),共4个,所以所求概率为1 4 .答案:C 5.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.2 3 B. 2 5 C. 3 5 D. 9 10

最新古典概型练习题

古典概型练习题 2.有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学在同一个兴趣小组的概率为( ) A .31 B .21 C .32 D .4 3 3.“序数”指每个数字比其左边的数字大的自然数(如1258),在两位的“序数”中任取一个数比56大的概率是( ) A . 1 B . 2 C .4 3 D .54 个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取 ) 6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队则需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为 ( ) A 7.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于9的概率为 A . 31 B .185 C .92 D .3611 8.将一根绳子对折,然后用剪刀在对折过的绳子上任意一处剪断,则得到的三条绳子的长度可以作为三角形的三边形的概率为( ) A .16 B .14 C .13 D .12 9.把一枚硬币连续抛掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,则()|P B A =( ) A .12 B .14 C .16 D .18 10.4张卡片上分别有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .1 3 B .12 C .23 D .34 11.已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为( ) A .1 B .116 C .14 D .12 12.据人口普查统计,育龄妇女生男女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是( )

古典概型,几何概型深刻复习知识点和综合知识题

知识点一:变量间的相关系数 1.两变量之间的关系 (1)相关关系——非确定性关系 (2)函数关系——确定性关系 2.回归直线方程:∧ ∧ ∧ +=a x b y ?? ??????? -=--=---=∧∧====∧∑∑∑∑x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ,)())((1 2 21 121 例题分析 例1:某种产品的广告费x (单位:百万元)与销售额y (单位:百万元)之间有一组对应数据如下表所示,变量y 和x 具有线性相关关系: x (百万元) 2 4 5 6 8 y (百万元) 30 40 6 50 70 (1)画出销售额与广告费之间的散点图;(2)求出回归直线方程。 针对练习 1、对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图左;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图右. 由这两个散点图可以判断( )

(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 2.在下列各图中,每个图的两个变量具有相关关系的图是( ) (1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 3. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 气温/℃ 18 13 10 4 -1 杯数 24 34 39 51 63 若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( ) A. 6y x =+ B. 42y x =+ C. 260y x =-+ D. 378y x =-+ 知识点二:概率 一、随机事件概率: 事件:随机事件:可能发生也可能不发生的事件。 确定性事件: 必然事件(概率为1)和不可能事件(概率为0) (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈

高考数学(人教a版,理科)题库:古典概型(含答案)

第4讲 古典概型 一、选择题 1.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次5点向上的概率是( ) A.5216 B.25216 C.31216 D.91216 解析 抛掷3次,共有6×6×6=216个事件.一次也不出现5,则每次抛掷都有5种可能,故一次也未出现5的事件总数为5×5×5=125.于是没有出现一次5点向上的概率P =125216,所求的概率为1-125216=91216 . 答案 D 2.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是 ( ). A.15 B.3 10 C.2 5 D.12 解析 基本事件有C 25=10个,其中为同色球的有C 23+C 2 2=4个,故所求概率 为410=25. 答案 C 3.甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是 ( ). A.12 B.1 3 C.1 4 D.15 解析 (甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以P =24=12. 答案 A 4.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )

A.3 18 B. 418 C. 5 18 D. 618 解析 正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个等可能的基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线),包括10个基本事件,所以概率等于518. 答案 C 5.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( ). A.112 B.110 C.325 D.1125 解析 小正方体三面涂有油漆的有8种情况,故所求其概率为:81 000=1125. 答案 D 6.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a ,放回后,乙从此口袋中再摸出一个小球,其号码为b ,则使不等式a -2b +4<0成立的事件发生的概率为 ( ). A.18 B.3 16 C.1 4 D.12 解析 由题意知(a ,b )的所有可能结果有4×4=16个.其中满足a -2b +4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为1 4. 答案 C 二、填空题 7.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________. 解析 由题意得到的P (m ,n )有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=1 3.

古典概型和几何概型专题训练[答案解析版]

古典概型与几何概型专题训练 1.在集合{} 04M x x =<≤中随机取一个元素,恰使函数2log y x =大于1的概率为( ) A .1 B. 14 C. 12 D. 34 答案及解析:1.C 2.考虑一元二次方程2 0x mx n ++=,其中,m n 的取值分别等于将一枚骰子连掷两次先后出现的点数,则方程有实根的概率为( ) A. 3619 B.187 C.94 D.36 17 答案及解析:2.A 3.如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形, 直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则 小花朵落在小正方形内的概率为 A . 117 B .217 C .317 D .4 17 答案及解析:3.B . 因为大正方形的面积是34,所以大正方形的边长是34,由直角三角形的较短边长为 3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4.所以 小花朵落在小正方形内的概率为42 3417 P = =.故选B . 【解题探究】本题考查几何概型的计算. 几何概型的解题关键是求出两个区间的长度(面积或体积),然后再利用几何概型的概率计算公式 ()= A P A 构成事件的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) 求解.所以本题求小花朵落在小正 方形内的概率,关键是求出小正方形的面积和大正方形的面积. 4.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )

古典概型练习题(有详细标准答案)

古典概型练习题(有详细答案)

————————————————————————————————作者:————————————————————————————————日期:

古典概型练习题 1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是 A.3个都是正品 B.至少有一个是次品 ( ) C.3个都是次品 D.至少有一个是正品 2.给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x为某一实数时可使20 x<”是不可能事件 ③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( ) A. 0 B. 1 C.2 D.3 3.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为 A. 1 5 B. 2 5 C. 3 5 D. 4 5 ( ) 4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为 A. 3 7 B. 7 10 C. 1 10 D. 3 10 ( ) 5.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概 率为( ) A. 1 2 B. 7 18 C. 13 18 D. 11 18 6.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( ) A. 7 15 B. 8 15 C. 3 5 D. 1 7.下列对古典概型的说法中正确的个数是 ( ) ①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等; ③基本事件的总数为n,随机事件A包含k个基本事件,则()k P A n =; ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4 8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( ) ⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球. A.0 B.1 C.2 D.3 9.下列各组事件中,不是互斥事件的是 ( ) A.一个射手进行一次射击,命中环数大于8与命中环数小于6 B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分 C.播种菜籽100粒,发芽90粒与发芽80粒 D.检查某种产品,合格率高于70%与合格率为70% 10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A.A与B是互斥而非对立事件B.A与B是对立事件 C.B与C是互斥而非对立事件D.B与C是对立事件

几何概型的五类重要题型

剖析几何概型的五类重要题型 解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A 的概率计算公 式:积等) 的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件)(A A P = .其次要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 1.几何概型的两个特征: (1)试验结果有无限多; (2)每个结果的出现是等可能的. 事件A 可以理解为区域Ω的某一子区域,事件A 的概率只与区域A 的度量(长度、面积或体积)成正比,而与A 的位置和形状无关. 2..解决几何概型的求概率问题 关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 3.用几何概型解简单试验问题的方法 (1)适当选择观察角度,把问题转化为几何概型求解. (2)把基本事件转化为与之对应的总体区域D. (3)把随机事件A 转化为与之对应的子区域d. (4)利用几何概型概率公式计算. 4.均匀随机数 在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a ~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a ,b]上的均匀随机数,试验的结果是产生a ~b 之间的任何一个实数,每一个实数都是等可能的. 5.均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积. 下面举几个常见的几何概型问题. 一.与长度有关的几何概型 例1 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30× 31=10米, ∴3 13010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 二.与面积有关的几何概型 例2 如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少? 思路点拨 此为几何概型,只与面积有关.

几何概型的经典题型及标准答案

几何概型的经典题型及答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

4 区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于 0到21之间,需使 223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三 等分,由于中间长度为30×3 1 =10米, ∴3 1 3010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空 间(即直线)上的线段MN ,而有利场合所对 应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 [解法1].设EF 与E 1F 1是长度等于R 的两条弦, K K K1图1-2图1-1 O O M N E F M N E F E1F1

几何概型的经典题型与答案

几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限 多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应 的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无 限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2cos x π的值介于0到2 1之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是 区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的 发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

区间长度有关,符合几何概型的条件. 解:在区间]1,1 [-上随机取一个数x,即[1,1] x∈-时,要使cos 2 x π 的值介于 0到 2 1 之间,需使 223 x πππ -≤≤-或 322 x πππ ≤≤ ∴ 2 1 3 x -≤≤-或 2 1 3 x ≤≤,区间长度为 3 2 , 由几何概型知使cos 2 x π 的值介于0到 2 1 之间的概率为 3 1 2 3 2 = = = 度 所有结果构成的区间长 符合条件的区间长度 P. 故选A. 例2、如图,A,B两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A与C,B与D之间的距离都不小于10米的 概率是多少? 思路点拨从每一个位置安装都是一个基本事件,基本事件有无限 多个,但在每一处安装的可能性相等,故是几何概型. 解记 E:“A与C,B与D之间的距离都不小于10米”,把AB三 等分,由于中间长度为30× 3 1 =10米, ∴ 3 1 30 10 ) (= = E P. 方法技巧我们将每个事件理解为从某个特定的几何区域内随机地 取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生 则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型 就可以用几何概型来求解. 例3、在半径为R的圆内画平行弦,如果这些弦与垂直于弦的直径的交 点在该直径上的位置是等可能的,求任意画的弦的长度不小于R的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以, 题中的等可能参数是平行弦的中点,它等可能 地分布在于平行弦垂直的直径上(如图1-1)。 也就是说,样本空间所对应的区域G是一维空 间(即直线)上的线段MN,而有利场合所对 应的区域G A 是长度不小于R的平行弦的中点K 所在的区间。 [解法1].设EF与E 1 F 1 是长度等于R的两条弦, K K K1 图1-2 图1-1 O O E F E F E1F1

古典概型练习题(有详细答案)

古典概型练习题(有详细答案)

古典概型练习题 1.从12个同类产品(其中10个正品,2个次品) A.3个都是正品 B. 至少有一个是

次品() C.3个都是次品 D. 至少有一个是 正品 2.给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球"是必然事件 ②“当X为某一实数时可使x2 < 0 ”是不可能事件 ③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是() A.0 B. 1 C.2 D.3 3.从数字1,2,3,4,5 中任取两个不同的数字构

A. B. i C. D. () 4.袋中有3个白球和2个黑球,从中任意摸出2 个 球,则至少摸出1个黑球的概率为 A.3 B. 7 C.丄 D. ? 7 10 10 10 () 5.从标有 1,2,345,6,7,8,9 的9张纸片中任取

A. 2 B. 13 D. 11 18 18 2张,那么这2张纸片数字之积为偶数的概 率为 () 6. 某小组共有10名学生,其中女生3名,现选举

A. B. 15 C. 5 D. 1 7.下列对古典概型的说法中正确的个数是() ①试验中所有可能出现的基本事件只有有限个; ②每个事件出现的可能性相等; ③基本事件的总数为n,随机事件A包含k个基本 事件,则P A ; n 7 ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4 8.从装有2个红球和2个白球的口袋中任取两球 那么下列事件中互斥事件的个数是() ⑴至少有一个白球,都是白球;⑵至少有一 个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球;⑷至少有一个 白球,都是红球. A.0 B.1 C.2 D.3 9.下列各组事件中,不是互斥事件的是() A. 一个射手进行一次射击,命中环数大于8与命中环数小于6 B.统计一个班数学期中考试成绩,平均分数不低

高中数学必修三:3.2.1《古典概型》习题

《古典概型》习题 1.从一副扑克牌(54张)中抽一张牌,抽到牌“K ”的概率是 . 2.将一枚硬币抛两次,恰好出现一次正面的概率是 . 3.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为 . 4.同时掷两枚骰子,所得点数之和为5的概率为 ; 点数之和大于9的概率为 . 5.一个口袋里装有2个白球和2个黑球,这4 个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是 . 6.先后抛3枚均匀的硬币,至少出现一次正面的概率为 . 7.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是 . 8.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________. 9.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率. 10.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同; (3)三次抽取的球中红色球出现的次数多于白色球出现的次数. 11.已知集合{0,1,2,3,4}A =,,a A b A ∈∈; (1)求21y ax bx =++为一次函数的概率;(2)求21y ax bx =++为二次函数的概率. 12.连续掷两次骰子,以先后得到的点数,m n 为点(,)P m n 的坐标,设圆Q 的方程为 2217x y +=; (1)求点P 在圆Q 上的概率;(2)求点P 在圆Q 外的概率. 13.设有一批产品共100件,现从中依次随机取2件进行检验,得出这两件产品均为次品的概率不超过1%,问这批产品中次品最多有多少件?

人教版高中数学必修三 第三章 概率几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 基本知识 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的概率公式 P(A)=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 3.几何概型的特点 (1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较 一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的.这是两者的不同之处.另一方面,古典概型与几何概型的试验结果都具有等可能性,这是两者的共性. 通过以上对几何概型的基本知识点的梳理,我们不难看出其要点是:要抓住几何概型具有无限性和等可能性这两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提.因此,用几何概型求解的概率问题跟古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示. 常见题型 1.长度之比类型 例1 小赵欲在国庆60周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 分析 因为客车每小时一班,而小赵在0~60分钟之间任何一个时刻到车站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,且属于几何概型中的长度类型. 解 设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,而事件的总体是整个一小时,即60分钟.因此,由几何概型的概率公式,得P(A)= 605060-=61,即小赵等车时间不多于10分钟的概率为6 1. 例2 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方 形的面积介于36 cm 2 与81 cm 2之间的概率. 分析 正方形的面积只与边长有关,因此,此题可以转化为在12 cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率. 解 记“面积介于36 cm 2 与81 cm 2之间”为事件A ,事件A 的概率等价于“长度介于 6cm 与9 cm 之间”的概率,所以有P(A)= 9612-=14. 小结 本题的难点不在于几何概型与古典概型的区别,而是将正方形的面积关系转化为边长的关系,从而将问题归为几何概型中的长度类型,这是本题的关键所在.同时,本题也体现了数学上的化归思想的作用. 2.面积、体积之比类型 例3 在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成

高中数学必修三《古典概型》课后练习(含答案)

古典概型课后练习 题一:一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球. (1)列举出所有可能结果. (2)设第一次取出的球号码为x,第二次取出的球号码为y,写出B=“点(x,y)落在直线y=x+1 上方”这一事件包含的基本事件. 题二:一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为X,将球放回袋中,然后再从袋中随机取一个球,该球的编号为Y. (1)列出所有可能结果. (2)写出A=“取出球的号码之和小于4”这一事件包含的基本事件. (3)写出B=“编号X<Y”这一事件包含的基本事件. 题三:从1、2、3、4中任取两个不同的数字构成一个两位数,则这个两位数大于20的概率为. 题四:一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同. (1)从中任意抽取一张卡片,求该卡片上写有数字1的概率; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. 求:(1) 题七:在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.求取出的两个球上标号为相邻整数的概率. 题八:在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.求事件“取出的两个球上标号之和能被3整除”的概率. 题九:从1,3,5,7这四个数中随机地取两个数组成一个两位数,则组成的两位数是5的倍数的概率为.

高考知识点古典概型

第5节古典概型 最新考纲 1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率. 知识梳理 1.基本事件的特点 (1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特征的概率模型称为古典的概率模型,简称古典概型. (1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果. (2)每一个试验结果出现的可能性相同. 3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等, 那么每一个基本事件的概率都是1 n;如果某个事件A包括的结果有m个,那么事 件A的概率P(A)=m n. 4.古典概型的概率公式 P(A)事件A包含的可能结果数试验的所有可能结果数 . [常用结论与微点提醒] 1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法. 2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B =?,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0. 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()

(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( ) (3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( ) (4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( ) 解析 对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),应利用几何概型求概率,所以(4)不正确. 答案 (1)× (2)× (3)√ (4)× 2.(必修3P127例3改编)掷两颗均匀的骰子,则点数之和为5的概率等于( ) A.118 B.19 C.16 D.112 解析 所有基本事件的个数为6×6=36,点数之和为5的基本事件有(1,4),(2, 3),(3,2),(4,1)共4个. 故所求概率为P =436=19. 答案 B 3.(2016·北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925 解析 甲被选中的概率为P =C 11C 14C 25 =410=25. 答案 B 4.(2018·长沙模拟)在装有相等数量的白球和黑球的口袋中放进一个白球,此时由 这个口袋中取出一个白球的概率比原来由此口袋中取出一个白球的概率大122,则 口袋中原有小球的个数为( ) A.5 B.6 C.10 D.11

相关文档
相关文档 最新文档