文档库 最新最全的文档下载
当前位置:文档库 › 以二次函数为基架的压轴题解题通法研究及典型题剖析

以二次函数为基架的压轴题解题通法研究及典型题剖析

以二次函数为基架的压轴题解题通法研究及典型题剖析
以二次函数为基架的压轴题解题通法研究及典型题剖析

[转] 以二次函数为基架的压轴题解题通法研究及典型题剖析

二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,在成都,绵阳等地的中考和外地招生考试中都有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。所以二次函数综合题自然就成了相关出题老师和专家的必选内容。我通过近6年的研究,思考和演算了上1000道二次函数大题,总结出了解决二次函数压轴题的通法,供大家参考。

一、常见的类型及破题策略

1.求证“两线段相等”的问题:

2.“平行于y轴的动线段长度的最大值”的问题:

由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的

高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。

3.求一个已知点关于一条已知直线的对称点的坐标问题:

先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。

4.“抛物线上是否存在一点,使之到定直线的距离最大”的问题:

(方法1)先求出定直线的斜率,由此可设出与定直

线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y消掉,得到

一个关于x的的一元二次方程,由题有△=-4ac=0(因为该直线与抛物线相切,只有一个交点,所以-4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。

(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。

(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。

5.常数问题:

(1)点到直线的距离中的常数问题:

“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:

先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。

(2)三角形面积中的常数问题:

“抛物线上是否存在一点,使之与定线段构成

的动三角形的面积等于一个定常数”的问题:

先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。

6.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:

先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。

7.三角形周长的“最值(最大值或最小值)”问题:

“在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题):

由于有两个定点,所以该三角形有一定边(其长度可利用两点间距离公式计算),只需另两边的和最小即可。

8.三角形面积的最大值问题:

①“抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题(简称“一边固定两边动的问题”):

(方法1)先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛

物线上的动点到该定直线的最大距离。最后利用三角形的面积公式底·高。即可求出该

三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点。

(方法2)过动点向y轴作平行线找到与定线段(或所在直线)的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到

,转化为一个开口向下的二次函数问题来求出

最大值。

②“三边均动的动三角形面积最大”的问题(简称“三边均动”的问题):

先把动三角形分割成两个基本模型的三角形(有一边在x轴或y轴上的三角形,或者有一边平行于x轴或y轴的三角形,称为基本模型的三角形)面积之差,设出动点在x轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似(常为图中最大的那一个三角形)。利用相似三角形的性质(对

应边的比等于对应高的比)可表示出分割后的一个三角形的高。从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了。

9.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:

由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同。

10、“定四边形面积的求解”问题:

有两种常见解决的方案:

方案(一):连接一条对角线,分成两个三角形面积之和;

方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)

11.“两个三角形相似”的问题:

12.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:

首先弄清题中是否规定了哪个点为等腰三角形的顶点。(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。

13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:

这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。

进一步有:

①若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否?若相等,则所求动点能构成矩形,否则这样的动点不存在。

②若是否存在这样的动点构成棱形呢?先让动点构成平行四边形,再验证任意一组邻边相等否?若相等,则所求动点能构成棱形,否则这样的动点不存在。

③若是否存在这样的动点构成正方形呢?先让动点构成平行四边形,再验证任意一组邻边是否相等?和两条对角线是否相等?若都相等,则所求动点能构成正方形,否则这样的动点不存在。

14.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:(此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形。)

先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就计算出它的具体面积),然后由题意建立两

个图形面积关系的一个方程,解之即可。(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。

15. “某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:

若夹直角的两边与y轴都不平行:先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。

若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式。补救措施是:过余下的那一个点(没在平行于y轴的那条直线上的点)直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定。

16.“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题。

①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式(如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程),利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否?若等,该交点合题,反之不合题,舍去。

②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1?若为-1,则就说明所求交点合题;反之,舍去。

17.“题中含有两角相等,求相关点的坐标或线段长度”等的问题:

题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口。

二、常用公式或结论———破解函数难题的基石

1.横线段的长= 横标之差的绝对值= =

纵线段的长=纵标之差的绝对值==

(2)点轴距离:

点P(,)到X轴的距离为,到Y轴的距离为。

(3)两点间的距离公式:

若A(),B(),则AB=

(4)点到直线的距离:

点P()到直线Ax+By+C=0 (其中常数A,B,C最好化为整系数,也方便计算)的距

离为:或

(5)中点坐标公式:

若A(),B(),则线段AB的中点坐标为()

(6)直线的斜率公式:

若A(),B(),则直线AB的斜率为:

,(7)两直线平行的结论:

已知直线

①若

②若

(8)两直线垂直的结论:

已知直线

①若

②若

(9)由特殊数据得到或猜想的结论:

①已知点的坐标或线段的长度中若含有、等敏感数字信息,那很可能有特

殊角出现。

②在抛物线的解析式求出后,要高度关注交点三角形和顶点三角形的形状,若有特殊角出现,那很多问题就好解决。

③还要高度关注已知或求出的直线解析式中的斜

率k的值,

若,则直线与X轴的夹角为;

若;则直线与X轴的夹角为;

若,则直线与X轴的夹角为。

这对计算线段长度或或点的坐标或三角形相似等问题创造条件。

三、中考二次函数压轴题分析

例1 如图,抛物线y=x2+bx+c(c<0)与x轴交于A、B两点(点A在点

B的左侧),与y轴交于点C,顶点为D,且OB=OC=3.点E为线段BD上

的一个动点,EF⊥x轴于F.

(1)求抛物线的解析式;

(2)当∠CEF=∠ABD时,求点E的坐标;

(3)是否存在点E,使△ECF为直角三角形?若存在,求点E的坐标;若不存在,请说明理由.

解:(1)∵OB=OC=3,c<0,∴B(3,0),C(0,-3)

∴y=x2+bx-3,把B(3,0)代入得:

0=9+3b-3,∴b=-2

∴抛物线的解析式为y=x2-2x-3

(2)作DG⊥x轴于G,CH⊥EF于H

∵y=x2-2x-3=(x-1)2-4,∴D(1,-4)

∴DG=4,BG=3-1=2

设直线BD的解析式为y=kx+n

∴3k+n=0k+n=-4 解得k=2n=-6

∴直线BD的解析式为y=2x-6

设E(m,2m-6)

∵EF⊥x轴,∴CH=m,EH=-(2m-6)-3

∵∠CEF=∠ABD,∴tan∠CEF=tan∠ABD

∴CH EH =DG BG =4 2 =2,∴m -( 2m-6 )-3 =2

解得m=6 5 ,∴E(6 5 ,-18 5 )

(3)①若∠CEF=90°,则CE∥x轴

∴点E的纵坐标为-3,代入y=2x-6

-3=2x-6,∴x=3 2

∴E1(3 2 ,-3)

②若∠ECF=90°,作CH⊥EF于H

则△CHE∽△FCH,∴CH EH =FH CH

∴m -( 2m-6 )-3 =3 m ,解得m=-3±32

∵1≤m<3,∴m=32-3

∴E2(32-3,62-12)

综上所述,E点坐标为E1(3 2 ,-3),E2(32-3,62-12)

例2 如图,直线l:y=3 4 x+m与x轴、y轴分别交于点A和点B(0,

-1),抛物线y=1 2 x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(Ⅰ)求n的值和抛物线的解析式;

(Ⅱ)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四

边形DFEG为矩形.设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值

(Ⅲ)将△AOB绕平面内某点M逆时针旋转90°得到△A1O1B1(点A1、O1、B1分别与点A、O、B对应),若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.

解:(Ⅰ)∵直线l:y=3 4 x+m经过点B(0,-1),∴m=-1

∴直线l的解析式为y=3 4 x-1

∵直线l:y=3 4 x-1经过点C(4,n)∴n=3 4 ×4-1=2

∵抛物线y=1 2 x2+bx+c经过点B(0,-1)和点C(4,2)

∴1 2 c=-1×4 2+4b+c=2 解得5 4 b=-c=-1 ∴抛物线的解析式为y=1 2 x2-5 4 x-1

(Ⅱ)∵直线l:y=3 4 x-1与x轴交于点A

∴A(4 3 ,0),∴OA=4 3

∵B(0,-1),∴OB=1,AB=OA 2+OB 2 =5 3

∵DE∥y轴,∴∠OBA=∠FED

又∠DFE=∠AOB=90°,∴△OAB∽△FDE

∴OA FD =OB FE =AB DE ,∴4 3 FD =1 FE =5 3 DE ∴FD=4 5 DE,FE =3 5 DE

∴p=2(FD+FE)=2(4 5 DE+3 5 DE)=14 5 DE

∵点D在抛物线上,点D的横坐标为t,∴D(t,1 2 t2-5 4 t-1)

∴E(t,3 4 t-1),且0<t<4

∴DE=3 4 t-1-(1 2 t2-5 4 t-1)=-1 2 t2+2t

∴p=14 5 (-1 2 t2+2t)=-7 5 t2+28 5 t(0<t<4)

∵p=-7 5 t2+28 5 t=-7 5 (t-2)2+28 5

∴当t=2时,p有最大值28 5

(Ⅲ)A1(3 4 ,-31 96 )或A1(-7 12 ,-29 288 )

提示:∵△AOB绕平面内某点M逆时针旋转90°得到△A1O1B1(点A1、O1、B1分别与点A、O、B对应)且△A1O1B1的两个顶点恰好落在抛物线上

∴顶点O1、B1落在抛物线上或顶点A1、B1落在抛物线上

①当O1、B1落在抛物线上时,则A1O1∥y轴,O1B1∥x轴

∴O1、B1关于抛物线的对称轴对称

∵y=1 2 x2-5 4 x-1=1 2 (x-5 4 )2-57 32

∴抛物线的对称轴为直线x=5 4

∵O1B1=OB=1,

∴点O1的横坐标为:5 4 -1 2 =3 4

当x=3 4 时,y=1 2 ×(3 4 )2-5 4 ×3 4 -1=-53 32

∴O1(3 4 ,-53 32 )

∵A1O1=AO=4 3 ,∴点A1的纵坐标为:4 3 -53 32 =-31 96 ∴A1(3 4 ,-31

96 )

②当A1、B1落在抛物线上时

设A1(a,1 2 a2-5 4 a-1),则B1(a+1,1 2 a2-5 4 a-1-4 3 )

∵点B1在抛物线上,∴1 2 a2-5 4 a-1-4 3 =1 2 (a+1)2-5 4 (a+1)-1 解得a=-7 12

∴A1(-7 12 ,-29 288 )

注:文中的数字之间的“空”表示分数线,有些根号不能显示出来。

二次函数典型例题解析与习题训练

又∵y=x 2-x+m=[x 2-x+(12)2]- 14+m=(x -12)2+414 m - ∴对称轴是直线x=12,顶点坐标为(12,41 4 m -). (2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即41 4 m ->0 ∴m> 14 ∴m>1 4 时,顶点在x 轴上方. (3)令x=0,则y=m . 即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴 ∴B 点的纵坐标为m . 当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m ) 在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =1 2 OA ·AB=4. ∴ 1 2 │m │·1=4,∴m=±8 故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8. 【点评】正确理解并掌握二次函数中常数a ,b ,c 的符号与函数性质及位置的关系是解答本题的关键之处. 例2 已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m

为D,试求出点C,D的坐标和△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标. 【分析】(1)解方程求出m,n的值.用待定系数法求出b,c的值. (2)过D作x轴的垂线交x轴于点M,可求出△DMC,梯形BDBO,△BOC的面积,用割补法可求出△BCD的面积. (3)PH与BC的交点设为E点,则点E有两种可能:①EH=3 2EP,②EH=2 3 EP. 【解答】(1)解方程x2-6x+5=0, 得x1=5,x2=1. 由m

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析 知识链接复习: 1、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元 解:设每千克应涨价x 元,读题完成下列填空 问题一:涨价后每千克盈利 元; 问题二:涨价后日销售量减少 千克; 问题三:涨价后每天的销售量是 千克; 问题四:涨价后每天盈利 元 根据题意列方程得: 解方程得: 因为商家涨价的目的是 ;所以 符合题意。 答: 。 2、二次函数y=ax 2 +bx+c 的顶点坐标是x= y= 3、函数y=x 2+2x-3(-2≤x ≤2)的最大值和最小值分别是 新知解析: 例1、某商品现在的售价为每件35元,每天可卖出50件。市场调查发现:如果调整价格,每降价1元,那么每天可多卖出两件。请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少 解:设当降价X 元时销售额为y 元,根据题意得: y=(35-x )(50+2x )=-2x 2+20x+1750 x=-a b 2=-) 2(×220=5 因为0<5<35且a=-2<0 所以y=(35-5)(50+10)=1800 答:当降价5元时 销售额最大为1800元。 此类习题注意要点: 1、根据题意设未知量,一般设增加或者减少量为x 元时相应的收益为y 元,列出函数关系式。 2、判断顶点横坐标是否在取值范围内。因为函数的最值不一定是实际问题的最值 3、根据题意求最值。写出正确答案。 例2、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元租金最高是多少钱 解:设当张价X 元时租金为y 元,根据题意得:y=(100-10 ×2 x )(10+x )=-5x 2+50x+1000 x=-a b 2=-)5_( ×250=5

二次函数知识点总结与典型例题讲解

二次函数知识点总结及典型例题讲解 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1 x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 三、二次函数的性质

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

初中二次函数知识点详解及典型例题

知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程02 =++c bx ax 有 实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数 c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, 知识点三、二次函数的最值

二次函数典型例题50题

选择 1.二次函数y=(x-3)(x+2)的图象的对称轴是 ( ) A.x=3 B.x=-2 C.x=-12 D.x=1 2 2. 抛物线y=2x 2-5x+3与坐标轴的交点共有 ( ) A . 1个 B. 2个 C. 3个 D. 4个 3.二次函数y= a (x+m)2-m (a ≠0) 无论m 为什么实数,图象的顶点必在 ( ) A.直线y=-x 上 B. 直线y=x 上 C.y 轴上 D.x 轴上 4. 如图2,抛物线 ,OA=OC ,下列关系中正确的是 ( ) A .ac+1=b B .ab+1=c C .bc+1=a D .b a +1=c 5.如图6,是二次函数的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,则S 取值最接近( ). A.4 B.16 3 C.2π D.8 6.如图7,记抛物线 2 1y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为1P ,2P ,…1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点 2 y ax bx c =+ +21 2 2y x =- +

1Q ,2Q ,…1n Q -,再记直角三角形11OPQ ,122PP Q 的面积分别为1S ,2S ,这样就有 21312n S n -=,22342n S n -= ,…;记121 n W S S S -=+++… ,当n 越来越大时,你猜想W 最 接近的常数是( ) A. 23 B. 12 C. 1 3 D.14 7.定义[]为函数 的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(,); ② 当m > 0时,函数图象截x 轴所得的线段长度大于; ③ 当m < 0时,函数在x >时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( ) A. ①②③④ B. ①②④ C. ①③④ D. ②④ 8. (2010宿迁改编)如图11,在矩形ABCD 中, AB=4,BC=6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边线段 MP=A , 设直角三角板的另一直角边PN 与CD 相交于点Q .BP=x ,CQ=y ,那么y 与x 之间的函数图象大致是( ) ,,a b c 2 y ax bx c =++3138 23 41 C B A D

二次函数经典测试题附答案

二次函数经典测试题附答案 一、选择题 1.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ). A .①②④ B .②③④ C .③④⑤ D .①③⑤ 【答案】C 【解析】 【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 ①由抛物线交y 轴于负半轴,则c<0,故①错误; ②由抛物线的开口方向向上可推出a>0; ∵对称轴在y 轴右侧,对称轴为x=2b a ->0, 又∵a>0, ∴b<0; 由抛物线与y 轴的交点在y 轴的负半轴上, ∴c<0, 故abc>0,故②错误; ③结合图象得出x=?1时,对应y 的值在x 轴上方,故y>0,即a?b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2?4ac>0,故④正确; ⑤由图象可知:对称轴为x=2b a -=12 则2a=?2b ,故⑤正确; 故正确的有:③④⑤. 故选:C 【点睛】 本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件. 2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +

=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=2 22ax bx +, 且1x ≠2x ,则12x x +=2.其中正确的有( ) A .①②③ B .②④ C .②⑤ D .②③⑤ 【答案】D 【解析】 【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】 解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则- 2b a =1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0; 由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值 ∴+a b >2am bm +(故③正确) :b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误) 由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误) ⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=2 11ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1- x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0 ∵1x ≠2x ∴a(x 1+x 2)+b=0 ∴x 1+x 2=2b a a a -=-=2 (故⑤正确) 故选D . 考点:二次函数图像与系数的关系. 3.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4 C .-12<t ≤4 D .-12<t <3

二次函数的典型例题的解析

研学稿 一、互助释疑,典例分析例:(2014年?齐齐哈尔市)如图,二次函数 2 . _ y=ax+bx+c(0)图象的一部分,对称轴为直线 x = *,且经过点(2,0 ),下列说法: ① abc<0 :② a+b=0 ;③ 4a+2b+c<0 ; ④若(-2 , y i),(- ,y J是抛物线上的两点, 2 法正确的是() A.①②④ B. ③④ C.①③④ D. ①② 下列说法正确吗? 、、1 变式一:(1) b-?c=0 ;(2) 3a+c<0; 变式二:(1) 9a-3b+c<0; (2) a ?b c:0 ; ( 3) 5a+b+2c<0; (4) a:b: c=1:2:1 ; (5) (a c)2 < b2; (6) a-b- 2c<0. 若(X1, yj,(X2, y2)是抛物线上的两点,且X1>X2>1 ,则y1 0,则x的取值范围-1

间,则1

1、( 2016 ?齐齐哈尔)如图,抛物线 y=ax 2+bx+c (a z 0)的对称轴为x=1,与x 轴的一个交点坐标 为(-1,0 ),其部分图象如图所示。下列结论:① 4ac0;④当y>0时,x 的取值范围是-1 < x<3; ⑤当x<0时,y 随x 的增大而增大。其中结论正确的个数是( ) A 4 个; B 、3 个; C 、2 个; D 1 个 2、(2017?齐齐哈尔)如图,抛物线 y=ax 2+bx+c (a z 0)的对称轴 ①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at 2+bt (t 为实数);⑤( -2, yj ,(-号,y 2),(冷,丫」 是该抛物线上的点,则y 1

最新中考二次函数经典题型带解析

1.(2016·山东省滨州市·3分)抛物线y=2x2﹣2x+1与坐标轴的交点个数是() A.0 B.1 C.2 D.3 【解答】解:抛物线y=2x2﹣2x+1,令y=0,得到2x2﹣2x+1=0,即(x﹣1)2=0,解得:x1=x2=,故选C 2、(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()故选C. A.B.C.D. 【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误; B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误; C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确; D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误. 3、2016·四川泸州)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为() A.或1 B.或1 C.或D.或 【解答】解:依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,﹣2<2a﹣2<2,又a﹣b为整数, ∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A. 4、(2016·四川攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是() A.2a﹣b=0 B.a+b+c>0 C.3a﹣c=0 D.当a=时△ABD是等腰直角三角形 【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线 x=1,则﹣=1,即2a+b=0,得出,选项A错误; 当x=1时,y<0,得出a+b+c<0,得出选项B错误; 当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误; 当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2, ∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.

中考二次函数总复习经典例题、习题集

第八篇二次函数的图像及性质 【考纲传真】 1. 理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会根据公式确定图象的顶点、开口方向和对称轴,并能掌握二次函数图象的平移. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题.5.会用二次函数的图象求一元二次方程的近似解. 【复习建议】 二次函数是中考的重点容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查. 【考点梳理】 考点一二次函数的概念 一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数. 注意:(1)二次项系数a≠0;(2)ax2+bx+c必须是整式;(3)一次项可以为零,常数项也可以为零,一次项和常数项可以同时为零;(4)自变量x的取值围是全体实数. 考点二二次函数的图象及性质

考点三二次函数图象的特征与a,b,c及b2-4ac的符号之间的关系 考点四二次函数图象的平移 抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的形状和大小都相同,只是位置的不同.它们之间的平移关系如下表:

考点五二次函数的应用 设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式 y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值. 考点六二次函数与方程不等式之间的关系 1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了ax2+bx+c=0(a≠0). 2.ax2+bx+c=0(a≠0)的解是抛物线与x轴交点的横坐标. 3.当Δ=b2-4ac>0时,抛物线与x轴有两个不同的交点;当Δ=b2-4ac=0时, 抛物线与x轴有一个交点;当Δ=b2-4ac<0时,抛物线与x轴没有交点. 【典例探究】 考点一二次函数的概念 【例1】下列各式中,y是x的二次函数的是()

初中数学二次函数综合题与答案解析(经典题型)

二次函数试题 论:①抛物线1212-- =x y 是由抛物线221 x y -=怎样移动得到的? ②抛物线2 )1(21+-=x y 是由抛物线221x y -=怎样移动得到的? ③抛物线1)1(212 -+-=x y 是由抛物线1212--=x y 怎样移动得到的? ④抛物线1)1(212-+-=x y 是由抛物线2 )1(21+-=x y 怎样移动得到的? ⑤抛物线1)1(212 -+-=x y 是由抛物线22 1x y -=怎样移动得到的? 选择题:1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ② a + c 〈b ③ a+b+c 〉0 ④A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系的大致图象是图中的( )

二次函数的实际应用(典型例题分类)

二次函数与实际问题 1、理论应用(基本性质的考查:解析式、图象、性质等) 2、实际应用(求最值、最大利润、最大面积等) 解决此类问题的基本思路是: (1)理解问题; (2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解; (5)检验结果的合理性,拓展等. 例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值 @ 变式练习1:如图,用50m长的护栏全部用于建造 一块靠墙的长方形花园,写出长方形花园的面积 y(㎡)与它与墙平行的边的长x(m)之间的函数 关系式当x为多长时,花园面积最大 ·

例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多 设销售单价为x元,(0<x≤元,那么 (1)销售量可以表示为____________________; (2)销售额可以表示为____________________; (3)@ (4)所获利润可以表示为__________________; (5)当销售单价是________元时,可以获得最大利润,最大利润是__________。 ~ 变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量其中自变量是_______,因变量是___________. (2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结 _________个橙子. (3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。 (

二次函数最值知识点总结典型例题与习题

二次函数在闭区间上的最值 一、 知识要点: 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: 1.当[]n m a b ,∈-2时,)(x f 的最小值是)(4422x f a b a c a b f ,-=??? ??-的最大值是)()(n f m f 、中的较大者。 2.当[]n m a b ,?-2时 若m a b <-2,由)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f 若a b n 2-<,由)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

例4. 已知12≤x ,且02≥-a ,求函数3)(2 ++=ax x x f 的最值。 例5. (1) 求2 f (x )x 2ax 1=++在区间[-1,2]上的最大值。 (2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。 4. 动轴动区间 例6. 已知24()(0),y a x a a =->,求22(3)u x y =-+的最小值。 (二)、逆向型 例7. 已知函数2 ()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。 例8.已知函数2 ()2 x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。 例9. 已知二次函数2f (x )ax (2a 1)x 1=+-+在区间3,22??- ???? 上的最大值为3,求实数a 的值。

中考二次函数经典例题

中考二次函数经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

已知:抛物线y= -x^2 +2x +8交X轴于A、B两点(A在B左侧),O是坐标原点。 1、动点P在X轴上方的抛物线上(P不与A、B重合),D是OP中点,BD延长线交AP 于E 问:在P点运动过程中,PE:PA是否是定值?是,求出其值;不是,请说明理由。 2、在第1问的条件下,是否存在点P,使△PDE的面积等于1 若存在,求出P点的坐标;若不存在,请说明理由。 解:1.y= -x^2 +2x +8=-(x-4)(x+2) 所以OA=2 OB=4 自己画图,由△面积等于底*高/2. 可以知道PE:EA=S△PDE:S△ADE 由于PD=OD,那么S△PDE=S△ODE 所以PE:EA=S△ODE:S△ADE 由图可知△ODE和△ADE同底,则S△ODE:S△ADE=两三角形高之比OG:AH 显然△BAH和△BOG相似,那么OG:AH=OB:AB=2:3 所以PE:EA=2:3 那么PE:PA=PE:PE+AE=2:5为定值 2.设P点为(X,Y) PE:PA=2:5 所以S△PDE=(2/5)*S△PDA S△AOP=Y*2/2=Y S△AOD=Y/2(因为D是OP中点) 所以S△ADP=S△AOP-S△AOD=Y/2 则S△PDE=(2/5)*(Y/2)=Y/5 当S△PDE=1时 Y=5 对应X=-1或2 则P点坐标为(-1,5)或(2,5) 2.一个横截面为抛物线的隧道底部宽12米,高6米,如图5车辆双向通行。规定车辆必须在中心线右侧,距道路边缘2米这一范围内行驶,并保持车辆顶部与隧道有不少于米的空隙,你能否据这些要求,确定通过隧道车辆的高度限制 解:先建立直角坐标系 设隧道横截面抛物线的解析式为y=ax平方 +6 当x=6时,y=0,a=1/6 解析式是 y=1/6 x的平方+6

二次函数经典例题及答案

二次函数经典例题及答案 1. 已知抛物线的顶点为P (-4,-25 2),与x 轴交于A 、B 两点,与y 轴交于点C ,其 中B 点坐标为(1,0)。 (1)求这条抛物线的函数关系式; (2)若抛物线的对称轴交x 轴于点D ,则在线段AC 上是否存在这样的点Q ,使得△ADQ 为等腰三角形?若存在,请求出符合条件的点Q 的坐标;若不存在,请说明理由. y=12 x 2+4x - 92;存在点Q 1(-1,-4),Q 2(25-9,-5),Q 3(-132,-5 4 ).试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a (x+4)2-25 2 ,然后把点B 的坐 标代入解析式求出a 的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A 、C 的坐标,从而得到OA 、OC 、AD 的长度,根据勾股定理列式求出AC 的长度,然后根据锐角三角形函数求出∠OAC 的正弦值与余弦值,再分①AD=Q 1D 时,过Q 1作Q 1E 1⊥x 轴于点E 1,根据等腰三角形三线合一的性质求出AQ 1,再利用∠OAC 的正弦求出Q 1E 1的长度,根据∠OAC 的余弦求出AE 1的长度,然后求出OE 1,从而得到点Q 1的坐标;②AD=AQ 2时,过Q 2作Q 2E 2⊥x 轴于点E 2,利用∠OAC 的正弦求出Q 2E 2的长度,根据∠OAC 的余弦求出AE 2的长度,然后求出OE 2,从而得到点Q 2的坐标;③AQ 3=DQ 3时,过Q 3作Q 3E 3⊥x 轴于点E 3,根据等腰三角形三线合一的性质求出AE 3的长度,然后求出OE 3,再由相似三角形对应边成比例列式求出Q 3E 3的长度,从而得到点Q 3的坐标. 试题解析:(1)∵抛物线顶点坐标为(-4,-25 2 ),

人教版初中数学二次函数经典测试题及答案解析

人教版初中数学二次函数经典测试题及答案解析 一、选择题 1.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 1 2 > ;④b >1,其中正确的结论个数是( ) A .1个 B .2 个 C .3 个 D .4 个 【答案】C 【解析】 【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决. 【详解】 由图象可得, a >0,b >0,c <0, ∴abc <0,故①错误, 当x =1时,y =a +b +c =2,故②正确, 当x =﹣1时,y =a ﹣b +c <0, 由a +b +c =2得,a +c =2﹣b , 则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确, ∵12b a - >-,a >0,得1 22b a >>,故③正确, 故选C . 【点睛】 本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 2.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )

A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0【答案】A 【解析】 【分析】 【详解】 解:∵二次函数的图象开口向上,∴a>0. ∵对称轴在y轴的左边,∴ b 2a <0.∴b>0. ∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0. ∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2. 把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4, ∵b>0,∴b=2﹣a>0.∴a<2. ∵a>0,∴0<a<2.∴0<2a<4.∴﹣4<2a﹣4<0,即﹣4<P<0. 故选A. 【点睛】 本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键. 3.已知,二次函数y=ax2+bx+a2+b(a≠0)的图象为下列图象之一,则a的值为() A.-1 B.1 C.-3 D.-4 【答案】A 【解析】 【分析】 分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a2=3,由抛物线与x的交点坐标得到x2=-a,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a的值.

二次函数典型例题解析与习题训练

二次函数 一、知识点梳理 1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 二次函数)0,,(2≠++=a c b a c bx ax y 是常数, a>0 a<0 y 0 x y 0 x (1)抛物线开口向上,并向上无限延伸; (2)对称轴是x=a b 2- ,顶点坐标是(a b 2- ,a b a c 442 -); (3)在对称轴的左侧,即当xa b 2- 时,y 随x 的增大而增大 (4)抛物线有最低点,当x=a b 2- 时,y 有最小值,a b a c y 442 -= 最小值 (1)抛物线开口向下,并向下无限延伸; (2)对称轴是x=a b 2- ,顶点坐标是(a b 2- , a b a c 442 -); (3)在对称轴的左侧,即当xa b 2- 时,y 随x 的增大而减小 (4)抛物线有最高点,当x=a b 2- 时,y 有 最大值,a b a c y 442 -= 最大值 3.用待定系数法求二次函数的解析式

(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2 .已知图像的顶点或对称轴以及最值,通常选择顶点式. 求抛物线的顶点、对称轴的方法:a b ac a b x a c bx ax y 4422 2 2 -+ ??? ? ? +=++=, ∴顶点是),(a b ac a b 4422 --,对称轴是直线a b x 2- =. (3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --= 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为 ()()0021,,,x B x A ,由于1x 、2x 是方程02 =++c bx ax 的两个根,故 a c x x a b x x = ?- =+2121,()()a a ac b a c a b x x x x x x x x AB ?= -=- ?? ? ??-= --= -= -=4442 2 212 21221214.抛物线c bx ax y ++=2中,c b a ,,的作用 (1)a 决定开口方向及开口大小: a >0,开口向上;a <0,开口向下;α越大,开口越小 (2) b 和a 决定抛物线对称轴(左同右异) ①0=b 时,对称轴为y 轴; ②0>a b (即a 、b 同号)时,对称轴在y 轴左侧; ③0c ,与y 轴交于正半轴; ③0

相关文档
相关文档 最新文档