文档库 最新最全的文档下载
当前位置:文档库 › 真空容器壁厚计算

真空容器壁厚计算

真空容器壁厚计算
真空容器壁厚计算

真空容器壁厚计算:

内筒壁厚的选取原则:为了降低冷损,在保证足够的强度和较好的工艺条件下,应尽量减少厚度。

内压圆筒壁厚计算公式如下:

[]0)0.2/(C P D P +-???=φσδ

式中:

δ为内壁厚

P 为设计工作压力,取P=4Kgf/cm 2

D 为内筒直径,D=600mm ;

[]σ为材料的许用应力,SUS304的[]σ=1430Kgf/cm 2

φ为焊缝系数,取φ=0.80

0C 为壁厚余度,取0C =0.18mm

经计算δ=1.05+0.18=1.23mm

考虑一定的裕度及焊接工艺性,取δ=1.5mm

外筒壁厚的选取原则:应保证足够的刚度,以免丧失稳定。外压中圆筒壁厚计算公式如下:

04.06

.0)59.2/(C E l p m D i +????=δ

式中: δ为筒体计算壁厚

P 为工作压力,取P=1Kgf/cm 2

i D 为筒体内径,i D =700mm

m 为稳定系数,一般取m=3

L 为计算长度,L=900mm

E 为材料的弹性模数,SUS304的E=20.9×105Kgf/cm 2 0C 为壁厚余度,取0C =0.22mm

经计算δ=2.43+0.22=2.65mm

我们取外筒壁厚为δ=3mm

压力容器强度计算公式及说明

压力容器壁厚计算及说明 一、压力容器的概念 同时满足以下三个条件的为压力容器,否则为常压容器。 1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力; 2、容积V ≥25L ,且P ×V ≥1960×104L Pa; 3、介质:气体,液化气体或最高工作温度高于标准沸点的液体。 二、强度计算公式 1、受内压的薄壁圆筒 当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式, δ理= P PD -σ][2 考虑实际因素, δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜; D — 圆筒内径,㎜; P — 设计压力,㎜; [σ] — 材料的许用拉应力,值为σs /n ,MPa ; φ— 焊缝系数,0.6~1.0; C — 壁厚附加量,㎜。 2、受内压P 的厚壁圆筒 ①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。 径向应力σr =--1(2 22a b Pa 22 r b ) 环向应力σθ=+-1(222a b Pa 22 r b ) 轴向应力σz =2 22 a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜; ②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为: σ1=σθ=P K K 1 122-+ σ2=σz =P K 11 2-

压力容器设计习题答案

“压力容器设计”习题答案 一、选择题: 1.我国钢制压力容器设计规范<>采用的强度理论为: ( A ) (A )Ⅰ; (B )Ⅱ; (C )Ⅲ; (D )Ⅳ。 2.毒性为高度或极度危害介质PV 0.2MPa ·m 3的低压容器应定为几类容器? ( C ) (A )Ⅰ类; (B )Ⅱ类; (C )Ⅲ类; (D )其他。 3.一空气贮罐,操作压力为0.6Mpa ,操作温度为常温,若设计厚度超过10毫米,则下列碳素钢材中不能够使用的钢种为: ( A ) (A )Q235AF (A3F );(B )Q235A (A3);(C )20R 。 4.在弹性力学平面应力问题中,应力和应变分量分别为: ( C ) (A )бZ ≠0、εZ =0;(B )бZ ≠0、εZ ≠0 ;(C )бZ =0、εZ ≠0。 5.受均匀内压作用的球形容器,经向薄膜应力和周向薄膜应力的关系为 ( C ) (A ) < (B ) > (C )==pR/2t (D )==pR/t 6.受均匀内压作用的圆柱形容器,经向薄膜应力和周向薄膜应力的关系为 ( B ) (A )=2=pR/2t ;(B )=2=pR/t ;(C )=2=pR/t ;(D )=2=pR/2t 7.均匀内压作用的椭圆形封头的顶点处,经向薄膜应力和周向薄膜应力的关系为 ( A )。 A 、= B 、 < C 、 > D 、 > 1/2 8.由边缘力和弯矩产生的边缘应力,影响的范围为 (A )Rt ; (B )Rt 2; (C )Rt 2; (D )Rt 9.受均布横向载荷作用的周边简支圆形薄平板,最大径向弯曲应力在: ( A ) (A ) 中央; (B )周边;( C )12半径处; D. 3/8半径处。 10.受均布横向载荷作用的周边固支圆形薄平板,板上最大应力为周边径向弯曲应力,当载荷一定时,降低最大应力的方法有: ( A ) (A ). 增加厚度;(B )采用高强钢;(C )加固周边支撑;(D )增大圆板直径。 11.容器下封头采用圆平板,由于封头与筒体和裙座全部焊牢,其受力状态近似于固支,

压力容器的强度计算]

压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

压力容器强度校核公式

压力容器强度校核 筒体壁厚校核公式 软件模板 计算公式:' 22[]c i t c P D C P δσφ=+-筒校核 备注: c P :校核压力 i D :容器最大内径 []t σ:设计温度下的许用应力 φ :焊缝系数 若双面焊全焊头对接接头 100%无损检测,φ=1.00 局部无损检测, φ=0.85 若为单面焊对接接头 100%无损检测,φ=0.9 局部无损检测, φ=0.8 ' 2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用。 封头壁厚校核公式 1.椭圆形封头软件模板 计算公式:' 22[]0.5c i t c P D C P δσφ=+-封校核 备注:

c P :校核压力 i D :容器最大内径 []t σ:设计温度下的许用应力 φ :焊缝系数: 若双面焊全焊头对接接头 100%无损检测,φ=1.00 局部无损检测, φ=0.85 若为单面焊对接接头 100%无损检测,φ=0.9 局部无损检测, φ=0.8 ' 2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用 2.球形封头软件模板 计算公式:' 24[]c i t c P D C P δσφ=+-封校核 备注: c P :校核压力 i D :容器最大内径 []t σ:设计温度下的许用应力 φ :焊缝系数: 若双面焊全焊头对接接头 100%无损检测,φ=1.00 局部无损检测, φ=0.85 若为单面焊对接接头

100%无损检测,φ=0.9 局部无损检测, φ=0.8 '2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用

压力容器厚度计算 (2)

目前,我国压力容器设计依据GB150-98《钢制压力容器》,是国内普遍遵循的原则。一般情况下,板厚增加,元件强度会提高,但有时板厚增加强度反而降低。如何按照该标准进行厚度的恰当选取,更好地满足强度需求,对压力容器设计具有重要意义。 GB150-98规定,计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。我们这里讨论的厚度是名义厚度。从定义中可以看出,名义厚度不包括加工减薄量,元件的加工减薄量由制造单位根据各自的加工工艺和加工能力自行选取,只要保证产品的实际厚度不小于名义厚度减去钢材厚度负偏差就可以。这样可以使制造单位根据自身条件调节加工减薄量,从而更能主动地保证产品强度所要求的厚度,更切合实际地符合制造要求。 按照GB150-98等国家标准的原则,制造工艺人员要根据图样厚度考虑加工减薄量而增加制造元件的毛坯厚度。在我国材料标准中,钢板厚度范围变化,钢板的σb、σs也有变化,一般是板厚增加,σb、σs有所降低。我国压力容器用钢板许用应力随板厚厚度范围增厚而有所降低,因而可能出现虽然有时板厚增加,强度反而降低的现象,尤其是封头,这种现象更明显。 2 实例 为了证明上述现象存在,举例如下:首先我们给出常用钢板在不同状态下的强度指标,如下表所示:

常用钢板在不同状态下的强度指标表 2.1 例1 某台储气罐,其封头为标准椭圆形,材质15MnVR,设计内径Di=2000mm,腐蚀裕度C2=1mm,焊缝系数φ=1,设计压力P=2.6MPa,设计温度t=20℃,标准椭圆封头形状系数K=1,侧十图样上封头名义厚度δn=16mm.制造厂选用18mm厚度钢板压制封头,该制造厂压制封头时最大成型减薄量为δx10%,即18x10%=1.8(包含钢板厚度负偏差在内)。 (1)选用18mm厚度钢板压制封头,满足GB150-98设计要求。15MnVR钢板厚度负偏差C1=0.25mm,封头成型后最小厚度δmin=18-1.8=16.2mm,图样厚度一钢板厚度负偏差=16-0.25=15.75mm,即满足GB150-98的要求。 (2)16mm图样厚度满足设计强度要求。对图样封头厚度16mm进行强度校核,由 GB150-98(7-1)椭圆封头厚度计算公式(标准椭圆K=1): 式中,由GB150-98表4-1,16mm厚度的15MnVR[σ]=177MP a,则封头计算厚度: 考虑腐蚀裕量C2=1MM,封头设计厚度δa=δ+C2=14.74+1=15.74mm,再考虑钢板厚度负偏差C1=0.25mm,δa+C1=15.74+0.25=15.99mm,现图样厚度B.=

压力容器厚度计算

关于压力容器设计时材料和壁厚的讨论 作者:云天宇 2012年5月

关于压力容器设计时材料和壁厚的讨论 摘要:讨论压力容器设计时材料与壁厚的选取进行讨论,以及厚度的变化对强度的影响。 关键词:压力容器;设计;选材;厚度;强度;标准 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,为了与一般容器(常压容器)相区别,只有同时满足下列三个条件的容器,才称之为压力容器:(1)工作压力(注1)大于或者等于0.1Mpa(工作压力是指压力容器在正常工作情况下,其顶部可能达到的最高压力(表压力)); (不含液体静压力)(2)内直径(非圆形截面指其最大尺寸)大于等于0.15m。且容积(V)大于等于0.025立方米,工作压力与容积的乘积大于或者等于2.5MPa-L(容积,是指压力容器的几何容积); (3)盛装介质为气体、液化气体以及介质最高工作温度高于或者等于其标准沸点的液体。 压力容器中的介质种类繁多,来源广泛,这些介质中具有易燃、易爆、有腐蚀的特性。因此压力容器选材根据介质特性的不同而不同。压力容器钢板有碳素钢板、低合金钢钢板、高合金钢钢板、不锈钢与碳素钢等多种材料,且每种钢板都有它的使用范围。选取时应考虑多方面因素。使设计的压力容器安全又经济合理。 GB150-2011计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。成型后最小厚度,一般指封头压形后会减薄,不同的制造工艺减薄量不同,所以封头都有成型后最小厚度。我们这里主要讨论名义厚度与最小厚度之间关系和选用。

压力容器强度校核公式

压力容器强度校核 筒体壁厚校核公式 软件模板 c P i D []t ' 2 C 筒校核计算公式:' 2 2[]c i t c P D C P 筒校核备注: c P :校核压力i D :容器最大内径[ ]t :设计温度下的许用应力:焊缝系数 若双面焊全焊头对接接头 100%无损检测,=1.00 局部无损检测,=0.85 若为单面焊对接接头 100%无损检测,=0.9 局部无损检测,=0.8 ' 2C :下一周期均匀腐蚀量筒校核:筒体校核壁厚最后判定公式:若筒校核≤筒实测,继续使用,否则停用。封头壁厚校核公式 1.椭圆形封头软件模板 c P i D []t ' 2 C 封校核计算公式:' 2 2[]0.5c i t c P D C P 封校核

备注: c P :校核压力i D :容器最大内径[]t :设计温度下的许用应力:焊缝系数: 若双面焊全焊头对接接头 100%无损检测,=1.00 局部无损检测,=0.85 若为单面焊对接接头 100%无损检测,=0.9 局部无损检测,=0.8 ' 2C :下一周期均匀腐蚀量筒校核:筒体校核壁厚最后判定公式:若筒校核≤筒实测,继续使用,否则停用 2.球形封头软件模板 c P i D []t ' 2 C 封校核 计算公式:' 2 4[]c i t c P D C P 封校核备注: c P :校核压力i D :容器最大内径[]t :设计温度下的许用应力:焊缝系数: 若双面焊全焊头对接接头 100%无损检测,=1.00 局部无损检测,=0.85 若为单面焊对接接头 100%无损检测,=0.9

局部无损检测, =0.8 ' 2C :下一周期均匀腐蚀量筒校核:筒体校核壁厚最后判定公式:若筒校核≤筒实测,继续使用,否则停用

压 力 容 器 的 厚 度 设 计

压力容器的厚度设计 王齐丽窦迎军 (哈尔滨天源石化设计院150086) 摘要:讨论了压力容器厚度的选取,以及厚度变化对强度的影响。阐述了当图样设计厚度处于相应材料厚度范围临界值时,材料许用应力随板厚变化而变化的问题。并举例说明当制造工艺人员考虑加工成型减薄量而增加板厚时,材料强度会降低,设计人员必须增加最小厚度值以保证受压元件成型后的最小厚度仍能满足强度要求。 关键词:压力容器;设计;厚度;强度;标准 1 前言 目前,我国压力容器设计依据GB150-98《钢制压力容器》,是国内普遍遵循的原则。一般情况下,板厚增加,元件强度会提高,但有时板厚增加强度反而降低。如何按照该标准进行厚度的恰当选取,更好地满足强度需求,对压力容器设计具有重要意义。 GB150-98规定,计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。我们这里讨论的厚度是名义厚度。从定义中可以看出,名义厚度不包括加工减薄量,元件的加工减薄量由制造单位根据各自的加工工艺和加工能力自行选取,只要保证产品的实际厚度不小于名义厚度减去钢材厚度负偏差就可以。这样可以使制造单位根据自身条件调节加工减薄量,从而更能主动地保证产品强度所要求的厚度,更切合实际地符

合制造要求。 按照GB150-98等国家标准的原则,制造工艺人员要根据图样厚度考虑加工减薄量而增加制造元件的毛坯厚度。在我国材料标准中,钢板厚度范围变化,钢板有所降低。我国压力容器用钢板许用应力随板厚厚度范围 增厚而有所降低,因而可能出现虽然有时板厚增加,强度反而降低的现象,尤其是封头,这种现象更明显。 2 实例 为了证明上述现象存在,举例如下: 首先我们给出常用钢板在不同状态下的强度指标,如下表所示: 2.1 例1 某台储气罐,其封头为标准椭圆形,材质设计内径D =2000mm, 腐蚀裕度C2=1mm,焊缝系数Φ=1,设计压力P=2.6MPa,设计温度t=20℃,标准椭圆封头形状系数K=1,设计图样上封头名义厚度δn=16mm。制造厂选用18mm 厚度钢板压制封头,该制造厂压制 封头时最大成型减薄量为δ×10%:,即18×10%=1.8mm(包含钢板厚度负偏

压力容器材料厚度计算

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

管道壁厚等级与压力等级计算

管道壁厚等级与压力等级 1) 内压金属直管的壁厚 根据SH 3059-2001《石油化工管道设计器材选用通则》确定: 当S0< Do /6时,直管的计算壁厚为: S0 = P D0/(2[σ]tΦ+2PY) 直管的选用壁厚为: S = S0 + C 式中 S0――直管的计算壁厚, mm; P――设计压力, MPa; D0―直管外径, mm; [σ]t―设计温度下直管材料的许用应力, MPa; Φ―焊缝系数,对无缝钢管,Φ=1; S―包括附加裕量在内的直管壁厚, mm; C―直管壁厚的附加裕量, mm; Y―温度修正系数,按下表选取。 温度修整系数表 材料

温度℃ ≤482 510 538 566 593 ≥621 铁素体钢` 0.4 0.5 0.7 0.7 0.7 0.7 奥氏体钢 0.4 0.4

0.4 0.4 0.5 0.7 当S0≥D0/6或P/[σ]t > 0.385时,直管壁厚应根据断裂理论、疲劳、热应力及材料特性等因素综合考虑确定。 2)对于外压直管的壁厚 应根据GB 150-1998《钢制压力容器》规定的方法确定。 公称直径管子外径设计压力许用应力t 焊缝系数修正系数Y 壁厚So 壁厚负偏差腐蚀裕量选用厚度壁厚减薄量最终壁厚壁厚系列 15 22 1 130 1 0.4 0.084355828 0.5 1.5 2.084355828 4 20 27 1 130 1 0.4 0.103527607 0.5 1.5 2.103527607 4 25 34 1 130 1 0.4 0.130368098 0.5 1.5 2.130368098 4 32 42 6.4 130 1 0.4 1.013880507 0.5 1.5 3.013880507 4 40 48 32 137 1 0.4 5.126835781 0.5 0 5.626835781 4 50 60 6.4 163 1 0.4 1.159700411 0.5 1.5 3.159700411 3.5 65 76 6.4 163 1 0.4 1.468953854 0.5 1.5 3.468953854 4.5 80 89 7.5 163 1 0.4 2.010542169 0.5 1.5 4.010542169 4.5 100 114 32 137 1 0.4 12.17623498 0.6 1.5 14.27623498 5 125 140 6.4 163 1 0.4 2.705967625 0.6 1.5 4.805967625 6 150 159 4 130 1 0.4 2.416413374 0.5 2 4.916413374 7 200 219 7.5 163 1 0.4 4.947289157 0.7 1.5 7.147289157 8 250 273 6.4 130 1 0.4 6.590223295 0.8 1.5 8.890223295 10 300 323.9 6.4 130 1 0.4 7.818949909 0.9 1.5 10.21894991 8 350 355.6 6.4 130 1 0.4 8.584188292 0.5 1.5 10.58418829 8.8 400 406.4 6.4 130 1 0.4 9.810500905 0.5 1.5 11.81050091 10 450 457 7.4 130 1 0.4 12.7173586 0.5 1.5 14.7173586 11 500 508 7.4 130 1 0.4 14.13658243 0.5 1.5 16.13658243 12.5 550 559 7.4 153.3 1 0.4 13.23627288 0.5 2 15.73627288 12.5 600 610 7.4 153.3 1 0.4 14.44387559 0.5 2 16.94387559 14.2

压力容器、常压容器钢板壁厚计算选择和标准公式

压力容器、常压容器钢板壁厚计算选择和标准公式 容器标准: 《GB 150-2011 压力容器》 《NB/T 47003.1-2009 钢制焊接常压容器》 钢材标准: 《GB 713-2008 锅炉和压力容器用钢板》--GB 150碳素钢和低合金钢的钢板标准 牌号Q245R、Q345R、Q370R、18MnMoNbR、13MnNiMoR、15CrMoR、14Cr1MoR、12Cr2Mo1R、12Cr1MoVR 《GB/T 3274-2007 碳素结构钢和低合金结构钢热轧厚钢板和钢带》--GB150 Q235B钢板标准 《GB 24511-2009 承压设备用不锈钢钢板及钢带》--GB150高合金钢的钢板标准 《GB/T 4237-2007 不锈钢热轧钢板和钢带》--NB/T 47003高合金钢板标准,化学成分、力学性能《GB/T 3280-2007 不锈钢冷轧钢板和钢带》 《GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分》 《GB/T 699-1999 优质碳素结构钢》 牌号08F、10F、15F、08、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、15Mn、20Mn、25Mn、30Mn、35Mn、40Mn、45Mn、50Mn、60Mn、65Mn、70Mn 《GB/T 700-2006 碳素结构钢》--牌号Q195、Q215、Q235、Q275 《GB/T 709-2006 热轧钢板和钢带的尺寸、外形、重量级允许偏差》 不锈钢牌号对照表 《GB 150-2011 压力容器》 《GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分》,有详细的不锈钢对照

(整理)压力容器材料壁厚计算与校核计算实例.

第一节输入分析及功能性能描述 1、工作介质:硫酸钴液体 由于硫酸钴液体内杂质成份较复杂,且内部成份容易结晶,所以过滤器及管道、阀门全部选用不锈钢材料。 2、原液固含量:≤5% 和本公司的液体高级工程师莫工和中南大学廖博士联系咨询后,取得硫酸钴溶液中固体的固含量≤5%的范围内 3、设备的最高工作温度不超过70℃ 工艺要求提出设备的最高工作温度不得超过70℃,因此设计时应适当的放大,将设计温度提高到80℃。 4、工作压力 由于中南装置功能及工艺参数中指出,反洗压力0.5Mpa(气源压力),所以在设计装置时按照0.8Mpa进行装置的设计。 5、过滤组件为1个; 经过对工艺条件的提出,过滤组件为2个,1个为多通道滤芯过滤组件,1个双层滤芯过滤组件。 6、滤芯参数 1.1双层滤芯规格:双层管YTT75X200-3-C0.4-D2(外管外径75,内径69;内管外径63,内径57) 1.2滤芯数量:5套 1.3过滤面积: 1.3.1总过滤面积: 1.3.2单管过滤面积: 1.4过流截面面积S:0.00062㎡ 1.5滤芯安装形式:1个过滤器内1只滤芯组件 2.1多通道滤芯规格:多通道滤芯YTT60X200-C0.5-D3 2.2滤芯数量:2套 2.3过滤面积: 2.3.1总过滤面积: 2.3.2单管过滤面积: 2.4过流截面面积S:0.00079㎡ 2.5滤芯安装形式:1个过滤器内1只滤芯组件 7、输送管道为DN40管道; 经工艺计算出循环系统的循环管直径为DN40,补液管道为DN25,回流排气管道为DN25,清液出口管道为DN25,反冲器安装管道为DN25,排渣管道为DN25, 过滤罐体的材质为OCr18Ni9,管道的材质为OCr18Ni9; 8、法兰的公称压力为1.6Mpa; 工艺条件指出,设备管道法兰的公称压力为1.6Mpa,设计时,应按照此标准进行管道法兰的设计与选择。 9、清液储液罐的体积 经过工艺工程师计算得,反冲器内部可用于反冲液的液体体积约为0.8L,因此在设计清液储液罐容积时按照1.2L来进行设计。 第二节内压容器筒体与封头厚度的设计与强度计算

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

相关文档
相关文档 最新文档