文档库 最新最全的文档下载
当前位置:文档库 › 实验一 控制系统的数学模型

实验一 控制系统的数学模型

实验一 控制系统的数学模型
实验一 控制系统的数学模型

实验一 控制系统的数学模型

一 实验目的

1、学习用MATLAB 创建各种控制系统模型。

2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。

二 相关理论

1传递函数描述

(1)连续系统的传递函数模型

连续系统的传递函数如下:

? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。

tf ()函数可以表示传递函数模型:G=tf(num, den)

举例:

num=[12,24,0,20];den=[2 4 6 2 2];

G=tf(num, den)

(2)零极点增益模型

? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点

在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即:

z=[z1,z2,…,zm]

p=[p1,p2,...,pn]

K=[k]

zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k)

(3)部分分式展开

? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控制单元的和的形式。

? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微

1

1

211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G )

)...()(()

)...()(()(2121n m p s p s p s z s z s z s K s G ------=2

2642202412)(23423++++++=s s s s s s s G

分单元的形式。

? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r ,

极点返回到列向量p ,常数项返回到k 。

? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。

举例:

部分分式展开:

》num=[2,0,9,1];

》den=[1,1,4,4]; [r,p,k]=residue(num,den)

》r= 0.0000-0.2500i 0.0000+0.2500i -2.0000 p= 0.0000+2.0000i 0.0000-2.0000i -1.0000 k= 2

结果表达式 2模型的转换与连接

(1)模型的转换

? 在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就

需要进行模型的转换。

? 模型转换的函数包括:

residue :传递函数模型与部分分式模型互换

tf2zp : 传递函数模型转换为零极点增益模型

zp2tf : 零极点增益模型转换为传递函数模型

连续系统转化为离散系统:

相当于在连续系统中加入采样开关,),,(2method

T sys d c dsys = 其中:dsys 表示离散系统;sys 表示连续系统;T 表示采样时间;method

表示逼近方式;

离散系统转化为连续系统:)(2dsys c d sys =

用法举例: 1)系统的零极点增益模型转换为传递函数: 》z=[-3];p=[-1,-2,-5];k=6;

》[num,den]=zp2tf(z,p,k)

》num= 0 0 6 18 den= 1 8 17 10

2)已知部分分式: 转换为传递函数

44192)(233+++++=s s s s s s G 1

2225.0225.02)(+-+++--+=s i s i i s i s G )

5)(2)(1()3(6)(++++=s s s s s G 12225.0225.02)(+-+++--+=s i s i i s i s G

》r=[-0.25i,0.25i,-2];

》p=[2i,-2i,-1];k=2;

》[num,den]=residue(r,p,k)

》num=

2 0 9 1

》den=

1 1 4 4

注意余式一定要与极点相对应。

(2)模型的连接

a并联:parallel

格式:

[num,den]=parallel(num1,den1,num2,den2)

?%将并联连接的传递函数进行相加。

b串联:series

格式:

[num,den]=series(num1,den1,num2,den2)

%将串联连接的传递函数进行相乘。

c反馈:feedback

格式:

[num,den]=feedback(num1,den1,num2,den2,sign)

?%将两个系统按反馈方式连接,一般而言,系统1为对象,系统2为反馈控制器。

sign缺省时,默认为负,即sign= -1,表示负反馈,sign= 1,表示正反馈。

d闭环:cloop(单位反馈)

格式:

[numc,denc]=cloop(num,den,sign)

?%表示由传递函数表示的开环系统构成闭环系统,sign意义与上述相同。

三实验内容

1.系统的传递函数为:()

() ()()()15

5

1

3

15

+

+

+

+

=

s

s

s

s

s

G

1) 写出零极点模型,并转换为多项式传递函数模型;

2) 写出多项式模型。

2.系统结构图如下所示,求其多项式传递函数模型3.系统结构图如下所示,求其多项式传递函数模型

4.系统结构图如下所示,求其多项式传递函数模型

5.假设连续系统的数学模型为s e s s G 23)

2(1)(-+=,选择采样周期为T=0.1秒,用Matlab 产生下列系统的传递函数.(注:延迟用ioDelay ,如系统G 的延迟为2,那么代码为:G.ioDelay=2;)

四 实验报告要求

(1) 完成上述各题

(2) 记录与显示给定系统数学模型

控制数学模型

第二章 控制系统的数学模型 2—1 数字模型 在控制系统的分析和设计中,首先要建立系统的数学模型。 自动控制系统: 相同的数学模型进行描述,研究自动控制系统 其内在共性运动规律。 系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。 常用的数学模型有: 数学模型 的建立方法 一般应尽可能采用线性定常数学模型描述控制系统。 如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。 建立系统数学模型的主要目的,是为了分析系统的性能。由数学模型求取系统性能指标的主要途径如图2—1所示。由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。 电气的、 机械的、 液压的 气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律, 列写出各变量之间的数学关系式 实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应 曲线或频率响应曲线,从而获得系统的传递函数或频率特性。 图2-1 求取性能指标的主要途径

数学模型实验报告

数学模型实验报告 实验内容1. 实验目的:学习使用lingo和MATLAB解决数学模型问题 实验原理: 实验环境:MATLAB7.0 实验结论: 源程序 第4章:实验目的,学会使用lingo解决数学模型中线性规划问题1.习题第一题 实验原理: 源程序: 运行结果: 、 管 路 敷 设 技 术 通 过 管 线 不 仅 可 以 解 决 吊 顶 层 配 置 不 规 范 高 中 资 料 试 卷 问 题 , 而 且 可 保 障 各 类 管 路 习 题 到 位 。 在 管 路 敷 设 过 程 中 , 要 加 强 看 护 关 于 管 路 高 中 资 料 试 卷 连 接 管 口 处 理 高 中 资 料 试 卷 弯 扁 度 固 定 盒 位 置 保 护 层 防 腐 跨 接 地 线 弯 曲 半 径 标 等 , 要 求 技 术 交 底 。 管 线 敷 设 技 术 中 包 含 线 槽 、 管 架 等 多 项 方 式 , 为 解 决 高 中 语 文 电 气 课 件 中 管 壁 薄 、 接 口 不 严 等 问 题 , 合 理 利 用 管 线 敷 设 技 术 。 线 缆 敷 设 原 则 : 在 分 线 盒 处 , 当 不 同 电 压 回 路 交 叉 时 , 应 采 用 金 属 隔 板 进 行 隔 开 处 理 ; 同 一 线 槽 内 强 电 回 路 须 同 时 切 断 习 题 电 源 , 线 缆 敷 设 完 毕 , 要 进 行 检 查 和 检 测 处 理 。 、 电 气 课 件 中 调 试 对 全 部 高 中 资 料 试 卷 电 气 设 备 , 在 安 装 过 程 中 以 及 安 装 结 束 后 进 行 高 中 资 料 试 卷 调 整 试 验 ; 通 电 检 查 所 有 设 备 高 中 资 料 试 卷 相 互 作 用 与 相 互 关 系 , 根 据 生 产 工 艺 高 中 资 料 试 卷 要 求 , 对 电 气 设 备 进 行 空 载 与 带 负 荷 下 高 中 资 料 试 卷 调 控 试 验 ; 对 设 备 进 行 调 整 使 其 在 正 常 工 况 下 与 过 度 工 作 下 都 可 以 正 常 工 作 ; 对 于 继 电 保 护 进 行 整 核 对 定 值 , 审 核 与 校 对 图 纸 , 编 写 复 杂 设 备 与 装 置 高 中 资 料 试 卷 调 试 方 案 , 编 写 重 要 设 备 高 中 资 料 试 卷 试 验 方 案 以 及 系 统 启 动 方 案 ; 对 整 套 启 动 过 程 中 高 中 资 料 试 卷 电 气 设 备 进 行 调 试 工 作 并 且 进 行 过 关 运 行 高 中 资 料 试 卷 技 术 指 导 。 对 于 调 试 过 程 中 高 中 资 料 试 卷 技 术 问 题 , 作 为 调 试 人 员 , 需 要 在 事 前 掌 握 图 纸 资 料 、 设 备 制 造 厂 家 出 具 高 中 资 料 试 卷 试 验 报 告 与 相 关 技 术 资 料 , 并 且 了 解 现 场 设 备 高 中 资 料 试 卷 布 置 情 况 与 有 关 高 中 资 料 试 卷 电 气 系 统 接 线 等 情 况 , 然 后 根 据 规 范 与 规 程 规 定 , 制 定 设 备 调 试 高 中 资 料 试 卷 方 案 。 、 电 气 设 备 调 试 高 中 资 料 试 卷 技 术 电 力 保 护 装 置 调 试 技 术 , 电 力 保 护 高 中 资 料 试 卷 配 置 技 术 是 指 机 组 在 进 行 继 电 保 护 高 中 资 料 试 卷 总 体 配 置 时 , 需 要 在 最 大 限 度 内 来 确 保 机 组 高 中 资 料 试 卷 安 全 , 并 且 尽 可 能 地 缩 小 故 障 高 中 资 料 试 卷 破 坏 范 围 , 或 者 对 某 些 异 常 高 中 资 料 试 卷 工 况 进 行 自 动 处 理 , 尤 其 要 避 免 错 误 高 中 资 料 试 卷 保 护 装 置 动 作 , 并 且 拒 绝 动 作 , 来 避 免 不 必 要 高 中 资 料 试 卷 突 然 停 机 。 因 此 , 电 力 高 中 资 料 试 卷 保 护 装 置 调 试 技 术 , 要 求 电 力 保 护 装 置 做 到 准 确 灵 活 。 对 于 差 动 保 护 装 置 高 中 资 料 试 卷 调 试 技 术 是 指 发 电 机 一 变 压 器 组 在 发 生 内 部 故 障 时 , 需 要 进 行 外 部 电 源 高 中 资 料 试 卷 切 除 从 而 采 用 高 中 资 料 试 卷 主 要 保 护 装 置 。

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学模型与实验报告习题

数学模型与实验报告 姓名:王珂 班级:121111 学号:442 指导老师:沈远彤

数学模型与实验 一、数学规划模型 某企业将铝加工成A,B两种铝型材,每5吨铝原料就能在甲设备上用12小时加工成3吨A型材,每吨A获利2400元,或者在乙设备上用8小时加工成4吨B型材,每吨B获利1600元。现在加工厂每天最多能得到250吨铝原料,每天工人的总工作时间不能超过为480小时,并且甲种设备每天至多能加工100吨A,乙设备的加工能力没有限制。 (1)请为该企业制定一个生产计划,使每天获利最大。 (2)若用1000元可买到1吨铝原料,是否应该做这项投资若投资,每天最多购买多少吨铝原料 (3)如果可以聘用临时工人以增加劳动时间,付给工人的工资最多是每小时几元 (4)如果每吨A型材的获利增加到3000元,应否改变生产计划 题目分析: 每5吨原料可以有如下两种选择: 1、在甲机器上用12小时加工成3吨A每吨盈利2400元 2、在乙机器上用8小时加工成4吨B每吨盈利1600元 限制条件: 原料最多不可超过250吨,产品A不可超过100吨。工作时间不可超过480小时线性规划模型: 设在甲设备上加工的材料为x1吨,在乙设备上加工的原材料为x2吨,获利为z,由题意易得约束条件有: Max z = 7200x1/5 +6400x2/5 x1 + x2 ≦ 250

12x1/5 + 8x2/5 ≦ 480 0≦3x1/5 ≦ 100, x2 ≧ 0 用LINGO求解得: VARIABLE VALUE REDUCED COST X1 X2 ROW SLACK OR SURPLUS DUAI PRICE 1 2 3 4 做敏感性分析为: VARIABLE CURRENT ALLOWABLE ALLOWABLE COFF INCREASE DECREASE X1 X2 ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 3 4 INFINITY 1、可见最优解为x1=100,x2=150,MAXz=336000。因此最优解为在甲设备上用100吨原料生产A产品,在乙设备上用150吨原料生产B产品。最大盈利为336000. 2、由运算结果看约束条件1(原料)的影子价格是960,即每增加1吨原料可收入960,小于1000元,因此不购入。 3、同理可得,每小时的影子价格是40元,因此聘用员工的工资不可超过每小时40元。

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

控制系统的数学模型[]

第二章控制系统的数学模型 2-1 什么是系统的数学模型?大致可以分为哪些类型? 答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。从不同的角度,可以对数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统部状态变量描述的数学模型称为状态空间模型;等等。 2-2 系统数学模型的获取有哪几种方法? 答获取系统数学模型的方法主要有机理分析法和实验测试法。 机理分析法是通过对系统部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。 实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学模型,这样得到的模型可称为实测模型或经验模型。 如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于上述两种方法之间的一种比较切合实际的应用较为普遍的方法。 2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些? 答主要步骤有: ⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。 ⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要因素。 ⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述对象运动规律的原始微分方程式(或方程式组)。 ⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。 ⑸根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得出无因次的、能够描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段线性化处理或直接导出非线性微分方程式)。 2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。 答对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。 如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述: 式中y 为输出变量, x为输入变量,表示y(t) 的n 阶导数,表示x(t) 的 m阶导数。对于一般实际的物理系统,。 假定初始条件为零,对上式的等号两边进行拉氏变换,得 式中Y(s)是y(t) 的拉氏变换, X(s)是x(t) 的拉氏变换,于是可得传递函数:

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

数学模型实验商人过河

《数学模型实验》实验报告 姓名:王佳蕾学院:数学与信息科 学学院 地点:主楼402 学号:055专业:数学类时间:2017年4 月16日 实验名称: 商人和仆人安全渡河问题的matlab实现 实验目的: 1.熟悉matlab基础知识,初步了解matlab程序设计; 2.研究多步决策过程的程序设计方法; 3.(允许)状态集合、(允许)决策集合以及状态转移公式的matlab表示;实验任务: 只有一艘船,三个商人三个仆人过河,每一次船仅且能坐1-2个人,而且任何一边河岸上仆人比商人多的时候,仆人会杀人越货。怎么在保证商人安全的情况下,六个人都到河对岸去,建模并matlab实现。 要求:代码运行流畅,结果正确,为关键语句加详细注释。 实验步骤: 1.模型构成 2.求决策 3.设计程序 4.得出结论(最佳解决方案) 实验内容: (一)构造模型并求决策

设第k次渡河前此岸的商人数为xk,随从数为yk,k=1,2,...,xk,yk=0,1,2,3.将二维向量sk=(xk,yk)定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S,S 对此岸和彼岸都是安全的。 S={(x,y)|x=0,y=0,1,2,3;x=3,y=0,1,2,3;x=y=1,2} 设第k次渡船上的商人数为uk,随从数vk,将二维变量dk=(uk,vk)定义为决策,允许决策集合记为D,由小船的容量可知, D={(u,v)|1<=u+v<=2,u,v=0,1,2} k为奇数时,船从此岸驶向彼岸,k为偶数时,船从彼岸驶向此岸,状态sk随决策变量dk的变化规律为sk+1=sk+(-1)^k*dk(状态转移律) 这样制定安全渡河方案归结为如下的多步决策模型: 求决策dk∈D(k=1,2,...,n),使状态sk∈S,按照转移律,由初始状态s1=(3,3)经有限步n到达状态sn+1=(0,0)。 (二)程序设计

数学建模实验答案_概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少? [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 () ()()n n p r dr p r dr p r dr -∞ -∞ =-??? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l =2.0m 的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差 σ=0.2m ,问这时钢材长度的均值m 应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 ()() m J m P m = 其中, 2()2()(), ()x m l P m p x dx p x σ-- ∞ == ? 求m 使J (m )达到最小。 等价于求方程 () ()z z z λ?Φ=- 的根z *。 其中:

数学模型实验报告

福建农林大学计算机与信息学院 (数学类课程) 实验报告 课程名称:数学模型 姓名: 系:信息与计算科学 专业:信息与计算科学 年级:2007级 学号:071152035 指导教师:姜永 职称:副教授 2009年12月18日

实验项目列表

1.实验项目名称:数学规划模型建立及其软件求解 2.实验目的和要求: 了解数学规划的的基本理论和方法,并用于建立实际问题的数学规划模型;会用LINDO 和LINGO 软件解数学规划问题并对结果加以分析应用。 3.实验使用的主要仪器设备和软件: 惠普微机;1.6LINDO 和0.9LINGO 版本 4.实验的基本理论和方法: 数学规划模型的一般形式为 m i x g t s x f z Min i x ,,2,1,0)(..) ( =≤= 其中)(x f 表示目标函数,),,2,1(0)(m i x g i =≤为约束条件。 LINDO/LINGO 是美国LINDO 系统公司开发的一套专门用于求解最优化问题的软件包。LINDO 用于求解线性规划和二次规划问题,LINGO 除了具有LINDO 的全部功能外,还可以用于求解非线性规划问题,也可以用于一些线性和非线性方程(组)的求解,等等。LINDO/LINGO 软件的最大特色在于可以允许优化模型中的决策变量是整数,而且执行速度很快。 线性优化求解程序通常使用单纯形算法,对LINDO/LINGO 软件,为了能解大规模问题,也可以使用内点算法。非线性优化求解程序采用的是顺序线性规划法,即通过迭代求解一系列线性规划来达到求解非线性规划的目的。 5.实验内容与步骤: 题一: 问题阐述: 某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A ,B ),按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A ,B .已知原料甲,乙,丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/ t ,16千元/ t ,10千元/t ,产品A ,B 的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t ,15千元/t ,根据市场信息,原料甲、乙、丙的供应量都不能超过500t ;产品A ,B 的最大市场需求量分别为100t ,200t . (1) 应如何安排生产? (2) 如果产品A 的最大市场需求量增长为600t ,应如何安排生产? (3) 如果乙的进货价格下降为13千元/t ,应如何安排生产?分别、对(1)、(2)两种情况进行讨论. 建立模型: (1)设A 中含甲乙原料混合物1y 吨,含丙原料1z 吨;B 中含甲乙原料混合物2y 吨,含丙原料2 z 吨;甲乙原料混合物中,甲原料占比例为1x ,乙原料占比例为2x (即121=+x x )。 安排生产应该让公司的利润最高,即销售价格-成本最大,得到目标函数为: 22211121)1015()16615()109()1669(z y x x z y x x Max -+--+-+--= 约束条件: 1)A 的含硫量不能超过2.5%: %5.202.001.003.01 11 1211≤+++z y z y x y x

数学建模实验报告

内江师范学院 中学数学建模 实验报告册 编制数学建模组审定牟廉明 专业: 班级:级班 学号: 姓名: 数学与信息科学学院 2016年3月 说明 1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告; 2.要求学生要认真做实验,主要就是指不得迟到、早退与旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格; 3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求与目的,不得抄袭她人的实验报告; 4.实验成绩评定分为优秀、合格、不合格,实验只就是对学生的动手能力进

行考核,跟据所做的的情况酌情给分。根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。

实验名称:数学规划模型(实验一)指导教师: 实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机 实验日期:年月日实验地点: 实验目的: 掌握优化问题的建模思想与方法,熟悉优化问题的软件实现。 实验准备: 1.在开始本实验之前,请回顾教科书的相关内容; 2.需要一台准备安装Windows XP Professional操作系统与装有数学软件的计算机。 实验内容及要求 原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产与管理成本,规定切割模式不能超过3种,如何下料最节省? 实验过程: 摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。按工艺要求,确定下料方案,使用料最省,或利润最大就是典型的优化问题。以此次钢管下料问题我们采用数学中的线性规划模型、对模型进行了合理的理论证明与推导,然后借助于解决线性规划的专业软件Lingo 11、0对题目所提供的数据进行计算从而得出最优解。 关键词:钢管下料、线性规划、最优解 问题一 一、问题分析: (1)我们要分析应该怎样去切割才能满足客户的需要而且又能使得所用原料比较少; (2)我们要去确定应该怎样去切割才就是比较合理的,我们切割时要保证使用原料的较少 的前提下又能保证浪费得比较少; (3)由题意我们易得一根长为17米的原料钢管可以分别切割成如下6种情况(如表一): 表一:切割模式表 模式 4m钢管根数 6m钢管根数8m钢管根数余料/m 1 4 0 0 1 2 1 2 0 1 3 2 0 1 1 4 2 1 0 3 5 0 1 1 3 6 0 0 2 1

数学建模实验报告

湖南城市学院 数学与计算科学学院《数学建模》实验报告 专业: 学号: 姓名: 指导教师: 成绩: 年月日

实验一 初等模型 实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。 实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。 A 题 飞机的降落曲线 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。 (1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。 y 0x 一、 确定飞机降落曲线的方程

如图所示,我们假设飞机降落的曲线的方程为I d cx bx ax x f +++=23)( 由题设有 h x f f ==)(,0)0(0。 由于曲线是光滑的,所以f(x)还要满足0)(,0)0(0='='x f f ,代入f(x) 可以得到 ?? ? ? ?? ?=++='=+++==='==0 23)()(0)0(0)0(020*******c bx ax x f h d cx bx ax x f c f d f 得 ,0,0,3,22 3 ===- =d c x h b x h a 飞机的降落曲线为 )32()(2 30 2 0x x x x h x f --= 二、 找出最佳着陆点 飞机的垂直速度是关于时间t 的导数,所以 dt dx x x x x h dt dy )66(20 20--= 其中 dt dx 是飞机的水平速度, ,u dt dx = 因此 )(60 2 20x x x x hu dt dy --= 垂直加速度为 )12(6)12(6020 20202 2--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0 2 02-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2 26)(max x hu x a = []0,0x x ∈ 设计要求 1062 2g x hu ≤ ,所以g h u x 600?≥ (允许的最小值)

自动控制1用matlab建立系统数学模型

黄淮学院电子科学与工程系 自动控制原理课程验证性实验报告 实验名称 用MATLAB 建立系统数学模型 实验时间 2012 年10月11日 学生姓名 实验地点 同组人员 专业班级 1、实验目的 1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 3)掌握使用MATLAB 命令化简模型基本连接的方法。 4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 2、实验主要仪器设备和材料: MATLAB 软件 3、实验内容和原理:(1)控制系统模型的建立 控制系统常用的数学模型有四种:传递函数模型(tf 对象)、零极点增益模型(zpk 对象)、结构框图模型和状态空间模型(ss 对象)。经典控制理论中数学模型一般使用前三种模型,状态空间模型属于现代控制理论范畴。 1)传递函数模型(也称为多项式模型)。连续系统的传递函数模型为 101101() ()() m m m n n n b s b s b num s G s n m a s a s a den s --++ += =≥++ +, 在MATLAB 中用分子、分母多项式系数按s 的降幂次序构成两个向量: 0101[] []m n num b b b den a a a ==,,,,,,,。 用函数tf( )来建立控制系统的传递函数模型,用函数printsys( )来输出控制系统的函数,其命令调用格式为 ()int ()sys tf num den pr sys num den =,,, Tips :对于已知的多项式模型传递函数,其分子、分母多项式系数两个向量可分别用 .{1}sys num 与.{1}sys den 命令求出。这在MATLAB 程序设计中非常有用。 2)零极点增益模型。零极点模型是传递函数模型的另一种表现形式,其原理是分别对原传递函数的分子、分母进行因式分解,以获得系统的零点和极点的表示形式。 1212()()() ()()()() m n K s z s z s z G s s p s p s p ---= ---,式中,K 为系统增益;12m z z z , ,为系统零点;12m p p p ,,为系统极点。在MATLAB 中,用向量z p k ,,构成矢量组[]z p k ,,表示系统。

实验数学模型建立与转换

实验四数学模型建立与转换 一、实验目的 1.学会用MATLAB 建立控制系统的数学模型。 2.学会用MATLAB 对控制系统的不同形式的数学模型之间的转换和连接。 二、实验内容 1.建立控制系统的数学模型 用MATLAB 建立下述零极点形式的传递函数类型的数学模型: >>z=-3; p=[-1;-1]; k=1; sys=zpk(z,p,k) Zero/pole/gain: (s+3) ------- (s+1)^2 2.不同形式及不同类型间的数学模型的相互转换 1)用MATLAB 将下列分子、分母多项式形式的传递函数模型转换为零极点形式的传递函数模型: >>num=[1224020]; den=[24622]; G=tf(num,den); [z,p,k]=zpkdata(G,'v'); sys=zpk(z,p,k) Zero/pole/gain: 6(s+(s^+ ------------------------------------------------- (s^2++(s^2++ 2)用MATLAB 将下列零极点形式的传递函数模型转换为分子、分母多项式形式的传递函数模型: >>z=[0;-6;-5]; 2 2642202412)(23423++++++=s s s s s s s G )43)(43)(2)(1() 5)(6()(j s j s s s s s s s G -+++++++=

p=[-1;-2;-3-4*j;-3+4*j]; k=1; [num,den]=zp2tf(z,p,k); G=tf(num,den) Transferfunction: s^3+11s^2+30s -------------------------------- s^4+9s^3+45s^2+87s+50 3.用MATLAB 命令求如下图所示控制系统的闭环传递函数 >>G1=tf(1,[5000]); G2=tf([12],[14]); G3=tf([11],[12]); G4=G1*G2; GP=G4/(1+G3*G4); GP1=minreal(GP) Transferfunction: + --------------------- s^2++ 3.已知系统的状态空间表达式,写出其SS 模型,并求其传递函数矩阵(传递函数模型),若状态空间表达式为???+=+=Du Cx y Bu Ax x &,则传递函数矩阵表达式为:D B A sI C s G +-=-1)()(。 (1)u x x ??????+??????--=113001& (2)u x x ???? ??????+??????????---=1006137100010& >>A=[010;001;-7 -13 -6]; B=[0;0;1]; C=[3 -7 -13(3)u x x ???? ??????+??????????----=100200311450010& >>A=[010;0-54;-1 -1 -3]; B=[00;20;0,1]; C=[100;001];

相关文档