文档库 最新最全的文档下载
当前位置:文档库 › 碳纳米管改性氧化铝载体提高铂催化剂性能

碳纳米管改性氧化铝载体提高铂催化剂性能

碳纳米管改性氧化铝载体提高铂催化剂性能

碳纳米管改性氧化铝载体提高铂催化剂性能

2016-05-29 12:57来源:内江洛伯尔材料科技有限公司作者:研发部

碳纳米管-氧化铝载体铂催化剂催化示意图

NOx储存还原( NOxstorage/reduction,NSR) 技术是一种可在富氧条件下有效除去NOx的新技术,最早由Toyota公司提出。该技术可以在贫燃和富燃两种情况下交替运行。在贫燃阶段(氧过量)NOx以亚硝酸盐/硝酸盐形式储存,在富燃阶段(含过量还原剂)NOx被释放并被还原为氮气。虽然Mg-Al-O复合氧化物作为NOx储存材料的研究已经取得一些进展,但是Pt/BaO/Al2O3是已被广泛研究的NSR 催化体系。其中,Pt具有催化氧化(贫燃阶段)和催化还原(富燃阶段)两种功能,Ba为NOx的储存组分,Al2O3为载体。第一代Pt/BaO/Al2O3 NSR 催化剂具有良好的NOx净化能力,但硫酸钡形成很容易,该硫化物只能在很高温度下还原,需要开发抗硫性能更好的NSR催化剂。

福州大学化肥催化剂国家工程研究中心江莉龙小组通过乙炔在Al2O3上的分解制备碳纳米管-氧化铝(Al2O3-CNTs)载体。采用浸渍法,分别制备了

Pt/Ba/Al2O3-CNTs和Pt/Ba/Al2O3催化剂。利用XRD, SEM, TEM, 低温N2物理吸附, XPS和in-situ DRIFTS等手段对催化剂的物化性质进行了表征。结果表明,在SO2存在下的NOx还原反应中,Pt/Ba/Al2O3-CNTs比Pt/Ba/Al2O3具有更高的抗SO2性能和再生性能。In-situ DRIFTS表明SO2的存在对NOx储存还原的途径没有影响。

硅氢加成反应用铂催化剂的研究进展_管雁

第21卷第2期化学研究中国科技核心期刊2010年3月CH EM ICA L R ESEA RCH hx y j@https://www.wendangku.net/doc/e74300850.html, 硅氢加成反应用铂催化剂的研究进展 管雁1,2,吴清洲1,陈关喜1*,冯建跃1,莫卫民2 (1.浙江大学分析测试中心,浙江杭州310027; 2.浙江工业大学化学工程与材料学院,浙江杭州310014) 摘要:系统综述了铂催化剂体系研究的几个主要发展阶段及目前存在的问题;介绍了铂催化烯烃硅氢加成反 应合成有机硅的机理.指出有机硅产品在我们的生活和生产中越来越重要,是不可或缺的化工材料;不饱和烃 的硅氢加成反应是合成有机硅的重要途径之一,主要利用过渡金属作为催化剂进行加成. 关键词:硅氢加成反应;铂;催化剂;反应机理;研究进展 中图分类号:O643.3文献标识码:A文章编号:1008-1011(2010)02-0100-06 Research Progress of P-t Catalyst for Hydrosilation GU AN Yan1,2,WU Qing-zhou1,CH EN Guan-x i1*,FENG Jian-y ue1,MO We-i min2 (1.Center of A nalysis and Measurement,Zhej iang U niv ersity,H angz hou310027,Zhej iang,China; 2.College of Chemic al Engineering and Material Science,Zhej iang University of Technology,H angz hou310014,Zhej iang,China) Abstract:A rev iew is provided of the r esearch pr ogress of Pt-catalyst fo r hydrosilation.Several important developm ent stag es of Pt-cataly st system are sum marized,and the existing problems in Pt-cataly st sy stem are discussed.M oreover,the mechanism of synthesizing or ganic silicon via hy dro silatio n reactio n of alkene catalyzed w ith Pt-catalysts is intro duced.It is po inted out that o rganic silicon pr oducts,as indispensable chemical raw m aterials,play a more and mo re important r ole in our daily life and production.A nd hydrosilation is one of the m ajo r ro utes to sy nthesizing o rganic silicon compounds,w ith w hich transition m etals are usually used as cata- lysts to pro mote additio n reactio ns. Keywords:hydrosilation;Pt;cataly st;reactio n mechanism;resear ch prog resses 随着有机碳化学的发展,以及SiF4、SiCl4、SiH4的相继出现,极大地激发了人们对与碳处于同一主族的硅进行深入研究的兴趣,以期获得与碳化学相似的新型硅材料.于是,化学家们开始了探索纯硅化学以及硅-碳结合的化学. 现在,有机硅化合物及由其制得的有机硅材料品种众多,性能优异,并已在工农业生产、新兴技术、国防军工、医疗卫生以及人们的日常生活中获得广泛的应用,有机硅产品业已成为化工新材料中发展最快的品种之一,是社会和人们发展生产和改善生活不可或缺的化工材料. 1硅氢加成反应 1.1碳官能有机硅烷及制备方法 碳官能有机硅烷是一类硅原子上连接了含非水解性活性基团)))烃基的有机硅化合物,同时硅原子上还可连接有机基团及可水解基.它具有新的反应活力,并赋予产品优异的物理化学特性,特别是在改善两种 收稿日期:2009-10-29. 作者简介:管雁(1984-),女,硕士生,主要从事有机硅的合成与分析.*通信联系人,E-m ail:gu anx i@https://www.wendangku.net/doc/e74300850.html,.

活性氧化铝

活性氧化铝 活性氧化铝产品简介: 活性氧化铝是用高纯度氧化铝经科学调配,催化精 加工而成。它的吸附性可做干燥剂也可以去除水中 对人体有害的氟,可用于饮用水及工业装置的除 氧、除氟、脱砷、污水脱色、除臭等。 活性氧化铝产品详情: 活性氧化铝具有许多毛细孔道,表面积大,可作为 吸附剂、干燥剂及催化剂使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。活性氧化铝除氟类似于阴离子交换树脂,但对氟离子的选择性阴离子树脂大。活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克。本产品具有强度高、磨损低、水浸不变软、不膨胀、不粉化、不破裂。可广泛用于石油裂解气、乙烯丙烯气的深度干燥和制氢、空分装置、仪表风干机的干燥、双氧水中氟化物处理还可以去除废气中的硫气氢、二氧化硫、氟化氢、烃类等污染物质,特别适应含氟水的除氟处理。 活性氧化铝应用范围: 活性氧化铝是一种多孔性的吸附剂,由于它有很大的比表面积而致使它具有高度的吸附活性,因此被广泛用作高效吸附剂和各种催化剂的载体。活性氧化铝不仅具有很大的比表面积,且具有很大的机械强度,物化稳定性,耐高温及抗腐蚀性,但不宜在强酸,强碱下操作。 1、干燥型:主要用于化工、冶金、电子、石油等工业气体脱水干燥,如空气、氧气、氮气等永久性气体,冶炼气及石油裂解气等。我公司生产的活性氧化铝是具有多细孔的、高强度的x-ρ型氧化铝产品,对水有较强的亲和力,是一种微量水深度干燥用的干燥剂。具有在使用介质中用水浸泡不变软、不膨胀、不粉化等特点,因此被广泛应用于石油化工中气相、液相干燥、纺织工业、制氧工业及自动化仪表风干燥。由于本公司产品强度及耐磨性能好,单分子吸附层的净热时高,所以非常适用于无热再生装置。本产品还可以根据用户要求,用不同的工艺条件。制造出不同球径的高强度球粒。 2、催化剂:为一种白色球状的多孔性物质,微孔分布均匀,容积大,吸水性强,堆密度小,机械强度高,磨耗低,是极其稳定的催化剂载体,也可作催化剂使用。 3、除氟,砷剂:用于食用水的脱氟,脱砷处理,吸氟容量:2.1mg/g。 4、双氧水专用:用于双氧水工作液的净化。 5、净油剂:用于变压器油的脱色净化。

从废三元催化剂中提纯铂族金属的方法

1/2页 一种从废三元催化剂中提纯铂族金属的方法技术领域 [0001] 本发明涉及一种废汽车催化剂的回收利用方法,特别是涉及一种从废三元催化剂中提纯铂族金属的方法,是对现有废汽车催化剂中铂族金属的回收方法的改进,属于废物回收利用和贵金属冶金技术领域。 背景技术 [0002] 目前废汽车催化剂中铂族金属的回收方法主要可以分为火法和湿法。火法提取铂族金属的基本流程是将汽车催化剂加入熔化的金属收集剂中加热熔融、合金相与炉渣相的分离、合金相用强酸溶解使铂族金属进入溶液。但是火法冶金提取铂族金属工艺复杂,能量和原料消耗大,设备要求高,环境污染问题不易解决,不宜推广。 [0003] 湿法处理废催化剂有载体溶解法、全溶解法和活性组分溶解法等工艺。与火法工艺相比,湿法处理废催化剂具有流程短、投资节省等特点,湿法工艺的不足在于铑的提取率低,一般为65—80%左右,回收率偏低。 [0004] 终上所述,现有的由废汽车催化剂提取铂族金属方法中,无论是湿法还是火法工艺,都或存在作业环境差、铂族金属收率低、能量消耗大等问题,还有待于进一步改进和完善。 发明内容 [0005] 本发明的目的就在于克服现有技术存在的不足,针对现有从废汽车催化剂铂族金属回收方法存在的问题,给出了在回收铂族金属流程中加入催化剂预处理和使用不同氧化剂做浸出剂的一种从废三元催化剂中提纯铂族金属的方法,具有作业环境好、铂族金属收率高、能量消耗小的特点。 [0006] 本发明给出的技术解决方案是:这种从废三元催化剂中提纯铂族金属的方法,其特点是:首先对废三元催化剂破碎研磨至少200目,并进行高温焙烧除碳、硫,后经硼氢化钠水溶液还原。并在浸出时加入亚氯酸钠作为氧化剂,具体有以下步骤。 [0007] (1)经破碎研磨、高温焙烧得到的废三元催化剂,加入2~4%质量比的硼氢化钠水溶液煮沸还原,铂族金属活性得到增强。 [0008] (2)将步骤(1)得到的还原液过滤,配入氯化钠和亚氯酸钠的盐酸溶液,混匀后转入浸出装置,然后在85~90℃进行浸出时间至少180min ,过滤得到固体催化剂,再加入10%HCl 酸洗(80℃,20min )和水洗(80℃,20min ),将洗液和浸出液合并,浓缩,化验。 [0009] (3)将步骤(2)得到浓缩后的浸出液,进行铂族金属分离,提纯,得到高纯铂族金属。 [0010] 为更好的实现本发明的目的,步骤(1)中对废三元催化剂破碎研磨至200目,并在600℃下高温焙烧。 [0011] 为更好的实现本发明的目的,步骤(2)中加入10%HCl 酸洗至少两次。 [0012] 与现有技术相比,本发明的有益效果是。说 明 书 CN 103131857 A 3

高分子金属配合物催化剂的合成(合成化学报告)解析

高分子金属配合物催化剂的合成 摘要:催化剂可以分为均相催化剂和多相催化剂。均相催化剂如金属配合物、有机金属配合物在最近几十年内受到催化科学界的广泛关注。新的均相催化体系的应用使得一些新的生产工艺应运而生。这些工艺操作条件温和,选择性高。然而,在大规模生产中均相催化剂存在着难回收、不稳定、有腐蚀性的缺点。大多数的多相催化剂在高温、高压下才能较好地发挥催化作用,并且其选择性、活性较弱。因此,人们开始设想通过高分子负载的方法转化均相催化剂使之兼具二者的优点。本文主要介绍高分子金属催化剂的合成、高分子效应及其应用。 关键词:催化剂;配合物;高分子;合成;高分子效应 1、简介 近几十年来,均相催化剂由于其较高的催化活性受到了科学界和工业界的广泛重视与应用,但均相反应的催化剂一般来说存在价格昂贵、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,又使得反应的催化剂难于回收,导致均相催化剂在有机合成和工业上的应用受到了很大的限制。多相催化剂虽然回收简单,但是,机理研究比价复杂,选择性和活性较低。因此寻找能够重复使用且回收操作简单的催化剂成为有机催化反应领域的研究热点之一。1963年,Merrifield和Letstinger等人[1, 2]首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例。近年来,高分子负载型催化剂得到了迅猛发展。高分子催化剂集合了多相催化剂、均相催化剂的优点[3]。其具有较高的催化活性、立体选择性、较好的稳定性和重复使用性能,并且后处理简单,在反应完成后可方便地借助固-液分离方法将高分子催化剂与反应体系中其他组分分离、再生和重复使用,可降低成本和减少环境污染[4]。杨小暾与江英彦[3]指出,若将多相催化剂、均相催化剂视为第一代、第二代催化剂,那么高分子金属络合物催化剂就是第三代催化剂。 研究表明高分子不仅是负载金属催化剂的惰性载体,而且还可以对催化剂的活性中心进行修饰,并使催化剂的结构发生变化,形成通常在小分子配合物中很难看到的特殊结构,从而影响催化剂的催化反应过程,即同种金属使用不同的载体所得到的化剂其催化活性可能相差很大。此为高分子的基体效应。本文主要介绍高分子金属催化剂的合成、

配位催化剂的应用

配位催化剂的应用前景 某某* (单位名称地址邮编) 摘要;本文介绍了材料的类型和常用的合成方法,综述了近年来材料在催化领域的应用,特别是以材料中骨架金属作为活性中心骨架有机配体作为活性中心和负载催化活性组分的催化反应,以期对材料的催化性能较全面的认识。 关键词; 金属-有机骨架类型合成催化应用;负载型金催化剂;催化性能 1前言 金属-有机骨架材料是由金属离子与有机配体通过自组装过化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。材料的出现可以追溯到1989年为主要代表的工作在硝基甲烷中制备出了具有类似金刚石结构的三维网状配位聚合物同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了材料的研究热潮。但早期合成的材料的骨架和孔结构不够稳定,容易变形。直到1995年等合成出了具有稳定孔结构的,才使其具有了实用由于材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,气体吸附[1]、磁学性能[2]、生物医学[3]以及光电材[4]等领域得到了广泛应用。这些特性貌似与现有的沸石和介孔分子筛很相似,但实际上却有较大的差别,材料还可负载高分散的纳米金属活性组分等,因此材料具有区别于其他催化剂材料的独特结构特征。 2 含钼催化剂的应用 2. 1 钴钼、镍钼催化剂 钴钼、镍钼催化剂主要用于石油加工过程中的加氢精制,如加氢脱硫( HDS)、加氢脱氮、加氢饱和等。其特点是不易中毒,使用寿命长在催化反应过程中具有很高的活性、良好的选择性和机械强度;不仅可处理一般原油,而且对品质低劣的重质油也很有效。制备钴钼催化剂主要有湿混、干混、浸渍等三种方法。湿混法是将硝酸钴和钼酸铵与有机酸配成均匀透明溶液,然后与拟薄水铝石一起经*作者简介:某某,女,(1991—),甘肃酒泉,现为,,,,,,,

活性氧化铝探讨

氧化铝化学式Al2O3,分子量101.96。矾土的主要成分。白色粉末。具有不同晶型,常见的是α-Al2O3和γ-Al2O3。自然界中的刚玉为α-Al2O3,六方紧密堆积晶体,α-Al2O3的熔点2015±15℃,密度3.965g/cm3,硬度8.8,不溶于水、酸或碱。γ-Al2O3属立方紧密堆积晶体,不溶于水,但能溶于酸和碱,是典型的两性氧化物。Al2O3+6H+=2Al3++3H2O Al2O3+2OH-=2AlO2-+H2O 南京活性氧化铝用途南京活性氧化铝厂家 活性氧化铝根据氧化铝的孔径大小大致可分为以下三类:小孔氧化铝、中孔氧化铝和大孔氧化铝。对具体的催化反应,要求氧化铝的孔径大小合适。除孔径大小外,氧化铝的比表面和孔容也是最基本的物性参数,大多数要求尽可能大的比表面和孔容,以及孔分布集中的氧化铝。目前,国内外市场拟薄水铝石的价格从不足万元到3万元左右,制备成特种活性氧化铝的价格更高。 价格决定市场,市场体现价格 目前我国对小孔氧化铝的需求量约5万吨以上。其中仅兰州炼油催化剂厂、山东齐鲁石化和湖南长岭催化剂厂年需求量都在1万吨以上。大孔氧化铝主要用户有抚顺石化催化剂厂、沈阳催化剂厂、温州华华集团、姜堰化工助剂总厂、长岭石油催化剂厂、北京长城、上海石油化工、天津石油化工研究院和其它化肥行业催化剂厂等,总用量也达到3万吨以上。中孔氧化铝主要用户在国外,仅在美国肯塔基州sud-chemie公司每年的用量要超过5000吨,国内目前没有中孔氧化铝生产厂,但也有需求。总之,作为催化剂用的特种活性氧化铝的国内用量应该在10万吨左右。 活性氧化铝具有许多毛细孔道,表面积大,可作为吸附剂、干燥剂及催化剂使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。 福建泉州|活性氧化铝球-活性氧化铝干燥剂|活性氧化铝制造工艺技术配方-温县开碧源净 水材料厂活性氧化铝除氟类似于阴离子交换树脂,但对氟离子的选择性阴离子树脂大。活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克。本产品具有强度高、磨损低、水浸不变软、不膨胀、不粉化、不破裂。可广泛用于石油裂解气、乙烯丙烯气的深度干燥和制氢、空分装置、仪表风干机的干燥、双氧水中氟化物处理还可以去除废气中的硫气氢、二氧化硫、氟化氢、烃类等污染物质,特别适应含氟水的除氟处理 活性氧化铝

器外再生催化剂(氧化铝载体)

器外再生催化剂(氧化铝载体) 1范围 标准规定了器外再生催化剂的质量、检验、包装、运输及贮存的要求。 本标准适用于以下催化剂的器外再生和利用:(1)精炼石油产品制造行业中加氢精制、加氢裂化、催化重整过程产生的废催化剂;(2)基础化学原料制造行业中乙苯脱氢、烷基化反应(歧化)过程产生的废催化剂。 2规范性引用文件 本标准内容引用下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB190危险货物包装标志 GB5085.7危险废物鉴别标准通则 GB34330固体废物鉴别标准通则 GB/T191包装储运图示标志 GB/T9969工业产品使用说明书总则 GB/T27611再生利用品和再制造品通用要求及标识 GB/T6679-2003固体化工产品采样通则 HJ1091固体废物再生利用污染防治技术导则 GB/T5816催化剂和吸附剂表面积测定法 Q/SHFRiPP040023加氢精制催化剂侧压强度测定法 NB/SH/T0656石油产品及润滑剂中碳、氢、氮的测定元素分析仪法 ASTM D5453用紫外荧光法测定轻质烃,发动机燃料和油中总的硫含量标准试验方法3要求 表1器外再生催化剂性能指标 项目指标 碳%≤0.5 硫%

4.2硫 按ASTM D5453的规定进行测定。 4.3比表面积 按GB/T5816的规定进行测定。 4.4孔容 按GB/T5816的规定进行测定。 4.5侧压强度 按Q/SHFRiPP040023的规定进行测定。 5检验规则 5.1出厂检测 5.1.1每批次产品经质检合格(附检测报告)后方可出厂。 5.1.2出厂检验项目为表1中所要求指标。 5.2抽样方法 每批次样品按GB/T6679-2003规定进行产品采集。 5.3型式检验: 产品每年应进行一次型式检验,有下列情况之一时,亦可进行型式检验。 a)产品定型时; b)原料来源或工艺条件改变,可能影响产品质量时; c)停产三个月恢复生产时; d)出厂检验结果与上次型式检验结果有较大差异时: e)国家质量监督部门提出要求时。 5.4判定规则 检验结果中如有一项指标不符合本标准规定,判定该产品不合格。 6标志、包装、运输和贮存 6.1标志 器外再生催化剂说明书、外包装、标识和运输包装图示应符合GB/T9969、GB/T191和GB/T 27611中要求。 6.2包装 包装桶为方桶和圆桶,碳钢材质,内衬聚乙烯塑料袋。 包装袋为吨袋,内衬聚乙烯塑料内衬袋。 6.3运输 3

纳米二氧化钛催化剂载体的种类

纳米二氧化钛催化剂载体的种类 纳米二氧化钛催化剂载体的种类 出处:万景纳米科技报 目前,国内外研究较多的纳米二氧化钛(VK-TA18)催化剂载体有:纳米二氧化硅,纳米三氧化二铝、玻璃纤维网(布)、空心陶瓷球、海砂、层状石墨、空心玻璃珠、石英玻璃管(片)、普通(导电)玻璃片、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、木屑、膨胀珍珠岩、活性炭等。 天然矿物类 天然矿物类物质本身具有一定的吸附性和催化活性,且耐高温,耐酸碱,常被用作催化剂的载体。目前已被用作二氧化钛载体的有硅藻土、高岭土、天然浮石和膨胀珍珠岩等。刘勋等研究了几种不同天然矿物(硅藻土、蛭石、高岭土、膨润土、硅灰石和海泡石)与纳米二氧化钛(VK-TA18)的复合。结果表明,在6种天然矿物所制得的复合材料中,以海泡石光催化降解效率最高,作用6h后,对甲基橙光降解率达到98%。其次是硅藻土和硅灰石,分别达到87%和85%。且光催化降解效率与天然矿物吸附能力呈一一对应关系。陈爱平等以轻质绝热保温建筑材料膨胀珍珠岩作载体,制得了能长时间漂浮于水面的纳米二氧化钛(JR05)负载型光催化剂,用于水面浮油的太阳光光催化降解。周波等采用天然浮石为载体负载纳米二氧化钛作光催化剂,利用高压汞灯为光源对有机磷农药的光催化降解进行了研究。结果表明,浓度为1.2×10-4 mol·L-1的农药光照2h左右可完全被光催化氧化为PO4。

吸附剂类 这类载体为多孔性物质,比表面积较大,是使用最为广泛的一类载体。用作负载纳米二氧化钛(VK-TA18)的吸附剂类载体主要有活性炭、硅胶、多孔分子筛等。吸附剂类载体可以获得较大的负载量,可以将有机物吸附到纳米二氧化钛粒子周围,增加界面浓度,从而加快反应速度。崔鹏等将活性炭负载到纳米二氧化钛膜作为光催化剂对甲基橙水溶液进行了光催 化降解试验。结果表明,与商品化的纳米二氧化钛微粉光催化剂的降解性能相比,其降解速率较高,由于纳米二氧化钛/C光催化剂中活性炭良好的吸附性能,使得光催化反应体系内产生了吸附-反应-分离的一体化行为,提高了光催化速率。国外的V.M.GuNk等研究表明,在不同负载量下,纳米二氧化钛在硅胶表面均没有形成连续涂层;纳米二氧化钛和SiO2之间的作用力包括氢键、静电力和少量的Si-O-Ti键,SiO2抑制了纳米二氧化钛从锐钛型向金红石型的相变。国内的郑光涛等采用溶胶-凝胶法将改性后的高效纳米二氧化钛光催化剂负载于球形硅胶上,得到了具有混晶结构、大比表面积、高活性的纳米纳米二氧化钛光催化剂。负载后的催化剂在紫外区具有强的吸收,比表面积达到379.8m·g-1。郑珊等合成了纳米二氧化钛呈单层分散或双层分散状2态的多孔分子筛MCM-41。结果表明,负载后,MCM-41孔道表面的SiO2以化学键相连生成Si-O -Ti键。 玻璃类 玻璃价廉易得,具有良好的透光性,便于设计成各种形状,引起了研究者的重视。用于纳米二氧化钛光催化剂的载体有玻璃片、玻璃纤维网

关于铂系金属有机催化剂的学习与探讨

关于铂系金属有机催化剂的学习与探讨 发表时间:2018-07-18T16:16:57.313Z 来源:《科技中国》2018年2期作者:杨泽 [导读] 摘要:参与反应的催化剂,就是通过加入某种中间物质,将所要进行的反应引向另一条路径来完成反应,其中新的反应路径所需活化能与原反应不同,催化剂本身通过一系列的反应又回到最初的状态。人们通过向反应加入催化剂改变反应速率,使其向有利的方向进行。 摘要:参与反应的催化剂,就是通过加入某种中间物质,将所要进行的反应引向另一条路径来完成反应,其中新的反应路径所需活化能与原反应不同,催化剂本身通过一系列的反应又回到最初的状态。人们通过向反应加入催化剂改变反应速率,使其向有利的方向进行。 关键词:铂系金属;有机催化剂;学习;探讨 18世纪中叶,铅室法制硫酸中用二氧化氮作催化剂是工业上采用催化剂的开始。催化这个词是1835年J.J.贝采利乌斯引用到化学学科中来的。1902年W.奥斯特瓦尔德将催化定义为:“加速化学反应而不影响化学平衡的作用。”1910年实现合成氨的大规模生产,是催化工艺发展史上的里程碑。 所谓参与反应的催化剂,就是通过加入某种中间物质,将所要进行的反应引向另一条路径来完成反应,其中新的反应路径所需活化能与原反应不同,催化剂本身通过一系列的反应又回到最初的状态。人们通过向反应加入催化剂改变反应速率,使其向有利的方向进行。 一、催化剂的发展历程: 从催化剂到金属催化剂再到有机金属催化剂,催化剂的发展中间经历了漫长的过程,早在公元前,中国已会用酒曲(生物酶催化剂)造酒。回顾其发展,仍可大致分为几个阶段: 1、萌芽时期(20世纪以前) 1740年英国医生J.沃德在伦敦附近建立了一座燃烧硫磺和硝石制硫酸的工厂,接着,1746年英国J.罗巴克建立了铅室反应器,生产过程中由硝石产生的氧化氮实际上是一种气态的催化剂,这是利用催化技术从事工业规模生产的开端。1875年德国人E.雅各布在克罗伊茨纳赫建立了第一座生产发烟硫酸的接触法装置,并制造所需的铂催化剂,这是固体工业催化剂的先驱。铂是第一个工业催化剂,现在铂仍然是许多重要工业催化剂中的催化活性组分。19世纪,催化剂工业的产品品种少,都采用手工作坊的生产方式。由于催化剂在化工生产中的重要作用,自工业催化剂问世以来,其制造方法就被视为秘密。这时的催化剂也没有大致的分类,体系并不完善。 2、奠基时期(20世纪初) 在这一时期内,制成了一系列重要的金属催化剂,催化活性成分由金属扩大到氧化物,液体酸催化剂的使用规模扩大。同时,工业实践的发展推动了催化理论的进展。1925年H.S.泰勒提出活性中心理论,这对以后制造技术的发展起了重要作用。金属催化剂,氧化物催化剂以及液态催化剂便是在这时开始出现。 3、大发展时期(20世纪30~60年代) 此阶段工业催化剂生产规模扩大,品种增多。在第二次世界大战前后,由于对战略物资的需要,燃料工业和化学工业迅速发展而且相互促进,新的催化过程不断出现,相应地催化剂工业也得以迅速发展。随着规模扩大,品种增多,有机金属催化剂,选择性催化剂,加氢精制催化剂,分子筛催化剂以及大型合成氨催化剂系列逐渐系统化,体系化地发展起来。 4、更新换代时期(20世纪70~80年代) 在这一阶段,高效率的络合催化剂相继问世。为了节能而发展了低压作业的催化剂;固体催化剂的造型渐趋多样化;出现了新型分子筛催化剂;开始大规模生产环境保护催化剂;生物催化剂受到重视。 二、关于铂系金属催化性质的介绍 由于金属结构及核外电子排布的特殊性以及在常温下的抗氧化,抗腐蚀性能优异,铂系金属成为了有机金属催化领域的宠儿,从单一的金属催化剂到金属氧化物催化剂,以及如今复杂的有机金属络合的催化剂,时时刻刻都有铂系金属参与。 单是关于铂的催化,诸如铂重整催化剂以及铂重整铂-铼双金属催化剂,氨氧化过程采用铂铑丝网催化剂,低碳烃催化芳构化等至今仍在沿用。 铂系金属优良的吸氢储氢性质也十分受人关注。例如钯吸收和透过氢气的能力极强,常温下能吸收350~850相当于本身体积的氢气。240℃时1mm厚,1cm大的钯片每秒钟可透过42.3mm的氢气。由于金属钯这些特殊的性能,因此非常适用于制造加氢和脱氢反应用催化剂。除了用于加氢脱氢催化,钯作为铂系金属中综合催化性最高的金属,对于偶联反应,交叉偶联反应如Buchwald-Hartwig偶联反应,Larock吲哚合成等反应均有较大贡献。钯催化剂虽然具有活性高、选择性好的性能,但是硫化物、砷化物、一氧化碳、等杂质,以及副反应生成的各种重组分、焦质等会使钯催化剂中毒,且在钯催化剂的使用过程中也会有因催化剂本身颗粒聚集、晶格变化等原因而活性下降,这时就需要通过焙烧使其活化,直到完全失去活性。 继铂和钯之后,大约经历了一个世纪,铑成为用于催化剂工业的又一贵金属元素,在碳一化学发展中,铑催化剂将有重要意义。60年代,曾用钴络合物为催化剂进行甲醇羰基化制醋酸的过程,但操作压力很高,而且选择性不好。1970年左右出现了孟山都公司开发的低压法甲醇羰基化过程,使用选择性很高的铑络合物催化剂。后来又开发了膦配位基改性的铑络合物催化剂,用于从丙烯氢甲酰化制丁醛。这种催化剂与原有的钴络合物催化剂比较,具有很高的正构醛选择性,而且操作压力低,1975年以后美国联合碳化物公司大规模使用。利用铑络合物催化剂从α-氨基丙烯酸加氢制手性氨基酸的过程,在70年代出现。这些催化剂均用于均相催化系统。 除以上几种金属外,以钌为中心进行的钌卡宾配合物催化体系也逐步发展起来。 三、有机金属催化的反应基础及大致类型: 1、偶联反应 有机金属催化反应大致通过以下几个基元反应:氧化加成,还原消除,插入与去插入,配体的官能团化与转金属化来完成。而有机金属催化剂的使用目的之一是催化正常情况下难以进行的碳碳键,碳氧键,碳氮键等的偶联反应。 目前,按照参与催化的金属的不同以及参与反应的两个偶联碳原子的杂化形式的不同,碳碳键的偶联反应可以分为几个经典的反应如Kumada偶联、Heck偶联、 Sonogashira偶联、 Negishi 偶联、 Stille偶联、 Suzuki偶联,等等。(图为一种Heck偶联反应机理)

活性氧化铝规格

活性氧化铝是一种催化剂的载体,它具有耐高温以及抗氧化等特点,从它的问世以来,在很多地方都被做为载体所广泛用,比如说汽车(尾气)催化剂、石油炼制催化剂、加氢和加氢脱硫催化剂等载体。活性氧化铝规格哪家好?您可以选择安徽天普克环保吸附材料有限公司,下面小编为您介绍,希望能给您带来一定程度上的帮助。 活性氧化铝是一种坚硬含水的氧化铝颗粒。含水氧化铝经脱水、活化后成多孔结构的固体颗粒或粉末,可用作空气或气体的干燥,有机碳氢化合物或石油气的浓缩、脱硫,焦炉气或炼厂气的精制等。随着活性氧化铝应用和开发的深入,人们对载体的性能提出了更高的要求,这对增强活性氧化铝载体的市场竞争能力,提高经济效益有着十分重要的作用。

活性氧化铝载体的工艺流程:工业氢氧化铝烘干后粉碎至325目以下,作为快脱原料,经快速脱水得到主相为ρ-氧化铝的快脱粉;合格的快脱粉在成型机中加入添加剂喷淋成型,并在一定的温度下养生;然后经筛分、熟化等工序除去碎球和杂质;最后活化得到孔分布合理的活性氧化铝产品。 活性氧化铝载体的物化指标: 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户

群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。 安徽天普克环保吸附材料有限公司周边交通便利,环境优美,我们热忱欢迎新老客户来厂洽谈业务,我们将以优良的产品、合理的价格,为客户提供批发,零售来料交工等服务。

【有用】催化剂在碳纳米管制备中的影响

3国家自然科学基金资助项目(No.60326037) 耿晓菊:女,1979年生,硕士,主要从事碳纳米管方向的研究 王蜀霞:女,副教授,硕士生导师,主要从事碳纳米管制备和性能研究 E 2mail :wangshuxia @https://www.wendangku.net/doc/e74300850.html, 催化剂在碳纳米管制备中的影响3 耿晓菊,王蜀霞,冯明海 (重庆大学数理学院应用物理系,重庆400044) 摘要 催化裂解法操作简单,便于控制参数,有望成为碳纳米管连续生产的最佳方法。在催化裂解法中最重要 的是催化剂,主要从催化剂的选取、制备、颗粒大小、失活等方面对碳纳米管生长速度、管径、密度、产物含量的影响进行浅析。 关键词 碳纳米管 催化剂 生长速度 制备方法E ffects of C atalysts on Preparation of C arbon N anotubes GEN G Xiaoju ,WAN G Shuxia ,FEN G Minghai (Department of Applied Physics ,Chongqing University ,Chongqing 400044) Abstract Because of its operation and parameter controlling virtures ,catalytic pyrolysis is expected to be 2come the best method of producing carbon nanotubes (CN Ts )continuously.Catalyst is the most important factor in catalytic pyrolysis method.In this paper ,the factors such as selection ,preparation ,grain size ,deactivation of catalyst etc which have effects on the growth rate ,diameter ,density ,content of CN Ts are studied. K ey w ords carbon nanotubes ,catalyst ,growth rate ,preparation 0 前言 自1991年日本科学家Iijima [1]发现具有一维管状分子结构 的新型纳米材料———碳纳米管(CN T )以来,经过十几年的基础和应用研究,科学家们预测碳纳米管的奇特性能被逐一证实。同时,又有许多新发现,如:双层碳纳米管的内外层性能不同,对外层可进行修饰而不影响内层性能等一些独特的性质[2];碳纳米管电极对生物分子有很强的催化作用等。碳纳米管的特殊结构以及优异的物理、电子、光电子特性使它在高强度复合材料、能量的存储和转换元件、传感器、场发射显示器、储氢、纳米电子 器件等领域具有广阔的应用前景[3] 。碳纳米管制备工艺受到了极大的关注,已由最初的石墨电弧法扩展到催化电弧法[4]、激光蒸发法[5]、化学气相沉积法(CVD )等[6]众多生产方法。其中CVD 法具有成本低廉、操作方便等优点,已被广泛应用于CN T 的制备。制备CN T 过程中,如不加入催化剂,产物中只有无定型碳;而只有加入催化剂(铁、钴、镍等过渡金属或其化合物)后,生成物中才含有大量的单、多壁碳纳米管。催化剂是碳纳米管制备不可缺少的因素。 催化剂作为碳源分解活性中心以及石墨碳沉积中心,对裂解产物的形貌和结构起着至关重要的作用。催化剂同时也是碳纳米管生长的成核中心和能量输运者,它的选取、制备、以及载体的选取也将对碳纳米管的成核、生长速率、密度、分离、纯化等有很大影响,将导致碳纳米管具有不同的形貌和结构,是碳纳米管制备中的重要影响因素。 1 催化剂种类 实验表明,过渡金属(Fe 、Co 、Ni 等)在碳纳米管制备过程中 有较强的催化活性,其组分可以是块状的纳米颗粒(典型粒度为100nm ),也可以是负载于一定载体的颗粒(粒度为10~50nm ),还可以是固溶体网筛,关键的是这些金属都能溶解碳或能生成相应的金属碳化物。常用的催化剂种类主要有:金属单质和化合物。 1.1 金属单质 常用的金属单质有:Fe 、Co 、Ni 、Mo 、Cr 、Cu 、Pt 等。碳在催化剂中的溶解度决定了催化剂的催化性能,溶解度越大,催化性能越强。Wei 2Qiao Deng 等[7]对不同碳溶解度的几种催化金属在碳形核(决定生成碳纳米管的密度和数量)阶段和碳管生长阶段的催化性能进行了研究。试验结果表明:在碳形核阶段,金属的催化活性大小依次为Mo 、Cr 、Co 、Pt 、Fe 、Ni 、Cu ;在碳管的生长阶段,催化剂活性大小依次为Fe 、Ni 、Mo 、Co 、Pt 、Cr 、Cu 。对于碳纳米管的生长速率,多金属的组合比单金属作催化剂效果好得多。 目前,大多数科研人员都用双金属、多金属或合金作催化剂。在Zhixin Yu 的实验结果中,Fe 和Mo 的组合是最优化的, Ni 和Mo 次之。J.H.Yen 等[13]最新报道用电镀法制备Fe 、Co 、Ni 纳米线作催化剂,采用CVD 和ICP 2CVD 制备碳纳米管,均 生长出了含有金属纳米线的碳纳米管。金属纳米线的长度为 420±20nm ,金属线与管等长,掺入的金属线还可改变碳纳米管 的电学性质,这为碳纳米管材料的复合提供了强有力的依据。 1.2 化合物 化合物催化剂主要有:三氧化二铁、钙钛矿氧化物、二茂铁、硝酸铁、草酸铁、硝酸钴、酞菁金属和其他的低沸点有机金属。利用Sol 2gel 等技术使金属颗粒均匀地分布于载体中,可很好解 ?211?材料导报 2006年7月第20卷第7期

从废催化剂中回收铂族金属的湿法工艺研究

从废催化剂中回收铂族金属的湿法工艺研究 杜欣张晓文周耀辉杨金辉吕俊文 (南华大学城市建设学院,湖南衡阳421001) 摘要:铂族金属已被广泛地应用于各种催化剂中,废催化剂是再生回收铂族金属的重要原料。本文介绍了近年来采用预处理、溶浸、分离和提取等湿法冶金过程,从废催化剂中回收铂族金属的方法和技术,并对这些方法的优缺点进行了比较。 关键词:废催化剂;回收;铂族金属;湿法冶金 中图分类号: TF111·3文献标识码: B文章编号: 1004-4051 (2009) 04-0082-04 铂族金属在地壳中含量低、储量少,其价格昂贵,具有高熔点、高沸点和低蒸汽压的特性。在所有的金属元素中,它们具有最好的抗氧化性和耐腐蚀性,被广泛地应用于现代工业中。其中,贵金属催化剂是铂族金属的最大用途。而从废催化剂中回收铂族金属的生产成本,比原生金属生产要低好多倍,可减少大量能源消耗和对环境的危害,因此, 从废催化剂中回收铂族金属显得至关重要。回收方法主要有湿法、火法和气相挥发法。本文主要介绍回收铂族金属的湿法工艺,包括预处理、溶浸和提取过程。 1预处理 催化剂主要由载体和活性物质两部分组成,不同工业的催化剂其用途不同,载体亦不相同。例如汽车工业的催化剂载体材料大多为α-Al2O3和陶瓷堇青石;石油工业的催化剂载体一般为氧化铝;比较常用的工业载体还有二氧化硅、活性炭、分子筛等。在催化反应过程中,载体中的铂族金属微粒处于内外移动的动平衡状态,由于热扩散,温度升高,金属微粒周围的γ-Al2O3转变成α-Al2O3。冷却后,铂族金属包裹在难溶的α-Al2O3中。有时催化剂可能会吸附有机物并带入其它杂质,造成催化剂表面积炭。因此,根据不同种类催化剂的物理化学性质,采用相应的预处理措施,如细磨[1]、焙烧[2-4]、溶浸打开包裹[5,6]等,可提高铂族金属的浸出率。 周俊等[7]采用硫酸化焙烧-水浸法,首先将废汽车催化剂中γ-Al2O3转化为可溶性硫酸铝,用水溶解硫酸铝,铝粉置换溶液中铂族金属,再回收渣中铂族金属,最终回收率为: Pt97%~99%、Pd 99%、Rh 96%。一般而言,在溶浸前先用还原剂对废催化剂进行预处理,对铂族金属的浸出有利。日本专利[8]就报道了用硼氢化钠水溶液还原,再用王水或盐酸加氧化剂浸出铂和铑的工艺。另有文献[9]报道,先将废催化剂用2 mol/L的La (NO3)3浸透后,在1200℃空气中烧结,然后用硼氢化钠还原,用盐酸加氧化剂浸出铂族金属,铑和铂的回收率分别为81%和97%。Formanek[10]把废汽车催化剂先氧化焙烧,再用HCl+Cl2在120℃、 1·5MPa加压浸出,铂回收率达97%。 2溶浸 溶浸是使废催化剂中载体与铂族金属分离的重要步骤之一,常用的方法有载体溶解法、活性组分溶解法和全溶法三种。 2·1载体溶解法 由于废催化剂的载体氧化铝是一种两性氧化物,可采取酸溶或碱溶的方法溶解,使其转入溶液与活性组分分离,达到富集铂族金属的目的。 文献[11]报道了将汽车催化剂载体破碎至约 25·4 mm,用稀硫酸溶解γ-A12O3的结果。进入溶液中的铂族金属,用铝粉和二氧化碲(碲作为捕集剂)置换回收。浸出渣中的铂族金属,用盐酸和氯气或王水溶解,氯化液中的铂族金属用二氧化硫和二氧化碲置换沉淀回收。液中的碲,用磷酸三丁脂萃取,用浓盐酸反萃。此法耗酸少,但铑的回收率较低(仅78%~85%)。 刘公召等[12]研究了从失活的Pd-Al2O3催化剂中提取Pd的工艺方法。用15%的硫酸溶液在 100℃、液固比10∶1的条件下, 12h浸出经过预处理的废催化剂。浸取后,用王水溶解钯精渣,过滤、除杂质后,将溶液蒸发结晶即得氯化钯样品。实验结果表明,钯回收率可以达到97%以上,制得的氯化钯纯度可达到99%以上。

不同扩孔方法对催化剂载体氧化铝孔结构的影响

- - 不同扩孔方法对催化剂载体氧化铝孔结构的影响 李广慈,赵会吉,赵瑞玉,刘晨光 (中国石油大学重质油国家重点实验室 CNPC 催化重点实验室, 青岛 266555)收稿日期:2009-05-15;修改稿收到日期:2009-07-30。 作者简介:李广慈,博士生,主要从事重质油加氢催化剂制备的研究工作。基金项目:重质油国家重点实验室应用基础研究资助项目。 1 前 言 加氢精制是石油加工的重要过程之一,利用加氢精制催化剂可以降低原料油中的杂质含量,改善油品质量及减少对环境的污染[1]。活性氧化铝是加氢精制催化剂最常用的载体,它对催化剂的活性、选择性和稳定性有着很重要的影响。它能增加催化剂有效表面并提供适合特定反应的孔结构,从而提高催化剂的活性和选择性。并能使活性组分分散性增加,提高催化剂的稳定性。随着原油重质化的日趋严重[2-3],传统的小孔氧化铝已无法满足生产要求,人们越来越重视介孔和大孔活性氧化铝的生产。大的孔径可以降低有机大分子堵孔和在外表面沉积的可能性[4],使大部分杂质可以进入催化剂内部,从而增强催化剂的催化性能。同时,大的孔体积可以提高杂质在催化剂内部的沉积量,从而延长催化剂的使用寿命。 氧化铝扩孔的方法很多[5],主要有扩孔剂法、助剂(或烧结剂)法、水热处理法等。胡大为等[6]通过在拟薄水铝石中加入不同的烧结剂,制得了可几孔径大于14 nm 、孔体积为0.8~0.9 mL/g 的大孔径氧化铝载体。并且认为,在载体焙烧过程中有杂质离子进入到Al —O 键形成的网络中,打断了Al —O 键,形成断网,从而降低了载体的表面张力,使孔壁塌陷导致孔径增大。康小洪等[7]用炭黑粉作扩孔剂,考察不同的炭黑粉对氧化铝孔分布的影响。结果表明,炭黑粉可以使氧化铝的孔径分布更集中,孔径和孔体积随着炭黑粉用量的 增加而增加。通过调变炭黑粉的用量可以得到具有双孔分布的氧化铝。本课题分别采用扩孔剂法和水热处理法对氧化铝载体进行扩孔改性来增大其孔体积和孔径,通过改变扩孔剂配方、加入量和水热处理时间,详细考察了不同方法对氧化铝孔结构的影响,并制备了具有较大孔径和孔体积的活性氧化铝。2 实 验 2.1 物理扩孔法 采用湿法混捏,将50 g 拟薄水铝石(烟台恒辉化工公司生产)、2 g 田菁粉、一定量的扩孔剂(均为分析纯)和质量分数为20%的乙酸水溶液混合,混捏,挤条成型。自然晾干后,在110 ℃干燥6 h ,然后放入马弗炉中,在空气气氛下保持升温速率5 ℃/min ,800 ℃下焙烧4 h ,得到系列载体。 2.2 NH 4HCO 3法 将5 g 拟薄水铝石置入内衬聚四氟乙烯的高压釜中,加入pH 值为10.5的碳酸氢铵水溶液,控 制n (HCO - )/n (Al 3+)=0.75。 搅拌均匀,在室温下老化48 h ,分别在90 ℃和150 ℃下保持12 h 后取出,110 ℃干燥6 h ,在空气气氛下保持升温速率5 ℃/min ,600 ℃焙烧4 h , 得到活性氧化铝。摘要 分别采用扩孔剂法和水热处理法对氧化铝载体进行处理, 考察不同扩孔方法对氧化铝载体孔结构的影响。结果表明,采用不同的扩孔剂对氧化铝孔结构影响不同。扩孔剂聚丙烯酰胺加入量(w )为15%、800 ℃焙烧后可得到平均孔径为14.3 nm 的氧化铝载体;加入一定量的扩孔 剂NH 4HCO 3,控制n (HCO -)/n (Al 3+ )=0.75, 经高温焙烧后可制得平均孔径为10 nm 的介孔氧化铝;在140 ℃下对氧化铝进行水热处理,发现不同的水热处理时间对氧化铝孔结构有显著影响;同时孔结构随焙烧温度的不同呈规律性的变化。关键词:氧化铝载体 扩孔剂 水热处理 孔结构 33

相关文档