文档库 最新最全的文档下载
当前位置:文档库 › 2012三角函数

2012三角函数

专题四 三角函数 使用时间:

编制人: 审核人: 审批人:

【使用说明与学法指导】

1.梳理三角函数有关知识,构建知识树、能力树;

2.限时30分钟,独立规范完成导学案,总结规律方法,找出存在问题,准备合作探究。。 【课程核心】

三角函数的图像和性质、图像变换和解三角型 【学习目标】

1.熟练掌握三角函数的图像性质、三角变换及解三角形,提高推理能力。

2.自主学习、合作探究,学会三角化简的方法。

3.激情投入,缜密思维,享受学习的快乐。

【导学案】

【知识框架】

一、基础训练:

1、设点P 是函数()x x f ωsin =的图像C 的一个对称中心,若点P 到图像C 的对称轴的距离的最小值是4

π

,则()x f 的最小正周期是 ( )

A.π2

B.π

C.2π

D.4

π 2、设y =2cos ()36x π+的图像按向量a =(,2)4π

--平移,则平移后所得图象的解析式为( )

A .2cos()234x y π=+-

B .2cos()234x y π

=-+

C .2cos()2312x y π=--

D .2cos()2312

x y π

=++

3、已知△ABC 中,

12

cot 5A =-

,则cos A =( )

A .1213

B . 513

C . 513-

D . 12

13-

4..在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,

,则( ) A .a >b B .a <b C .a =b D .a 与b 的大小关系不能确定

二、合作探究:

【例1】设函数

2()sin(

)2cos 1468x x

f x ππ

π=--+.(Ⅰ)求()f x 的最小正周期;并画出()f x 在[]

2,6-上的图像。 (Ⅱ)若函数()y g x =与()y f x =的图像关于直线1x =对称,①求当

4

[0,]

3x ∈时()y g x =的最大值.②说明函数()x g y =的图象由函数cos y x =怎样变换得到。

【我的收获】

【例2】(AB 层做)在ABC ?中,角..A B C 所对的边分别为a,b,c .已知()sin sin sin ,A C p B p R +=∈且

214ac b =,(Ⅰ)当5

,1

4p b ==时,求,a c 的值; (Ⅱ)若角B 为锐角,求p 的取值范围;

【我的收获】

三、直击高考(A 层做):

(2011四川理)

已知函数73

()sin()cos(),44f x x x x R

ππ=++-∈

(1)求()f x 的最小正周期和最小值;

(2)已知

44cos(),cos(),(0)552a πββααβ-=

+=-<<≤,求证:2[()]20f β-=

【感悟提升】

专题四 三角函数 使用时间:

【使用说明】限时30分钟,独立规范完成导学案,总结规律方法,找出我的疑惑,准备合作探究. 【学习目标】

1. 熟练掌握三角函数的图像性质和三角公式,提高推理能力。

2.自主学习、合作探究,学会三角化简的方法。

3.激情投入,缜密思维,享受学习的快乐。

【训练学案 】

1.定义在R 上的函数f (x )既是奇函数,又是周期函数.T 是它的一个正周期。若将方程f(x)=0在闭区间[],T T -上的根的个数记为n ,则n 可能为 ( ) A .0

B .1

C .3

D .5

2.已知函数()sin (0)f x x ωωπ?

?

=+

> ?3??

的最小正周期为π,则该函数的图象( ) A .关于点0π

?? ?3??

,对称

B .关于直线x π

=

4对称 C .关于点0π

?? ?4??

,对称

D .关于直线x π

=

3

对称 3.设0ω>,函数sin()23

y x π

ω=++的图像向右平移

43

π

个单位后与原图像重合,则ω的最小值是(

A .

23 B . 43 C . 3

2

D . 3 4.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =

,A =2B ,则cos B = ( ) A .3 B .4

C .5

D .6

5. 若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的最大值为( )

A .12-

B .1

C .2

D .2

6.已知点O 是ABC ?所在平面上一定点,动点M 满足),,0[sin ||sin ||(+∞∈+=x B

CB A

CA x OC OM 则M

点的轨迹一定通过ABC ?的( )

A .垂心

B .重心

C .内心

D . 外心

7.已知1sin cos 2α=+α,且0,2π??

α∈ ???

,则cos 2sin 4πα

?

?α- ??

?的值为__________ 8.已知函数()t a n (f x A x ωφ=

+(0,)2

π

ωφ><

,()y f x =的部分图像如下图,则

=

)24

(

π

f .

9.(AB 层做)已知函数()2sin (sin cos )f x x x x =+ ① 求函数的最小正周期和最大值;

② 在图给出的直角坐标系中,画出函数y=f(x)在区间[,22

ππ

-

]上的图像。

10.(A 层做)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且2

2sin cos 212

A B C ++=,a =1,b =2,

(1)求C 和c ;

(2) P 为△ABC 内任一点(含边界),点P 到三边距离之和为 d ,设P 到AB ,BC 距离分别为x ,y ,用 x ,y 表示d 并求d 的取值范围.

专题四 三角函数 使用时间:

【巩固检测】

45分钟完成共80分

一、(每小题5分,共35

1. 下列终边相同的一组角是( ) A .2

k π

π+与90,()k R Z ??∈

B .(21)k π

+与(41),()k k Z π±∈

C .6

k π

π+

与2,()6

k R Z π

π±∈ D .

3k π与,()3

k R Z π

π+∈ 2.若tan α=3,则2

sin 2cos a α的值等于( )

A .2

B .3

C .4

D .6

3.

已知函数()cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为( )

A .|,3x k x k k Z ππππ??+≤≤+∈????

B .

|22,3x k x k k Z ππππ??

+≤≤+∈??

??

C .5{|,}66x k x k k Z π

πππ+≤≤+∈ D .5{|22,}

66x k x k k Z ππ

ππ+≤≤+∈

4.在?ABC 中.222

sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是( )

A .(0,6π

] B .[ 6π,π) C .(0,3π

] D .[ 3π

,π)

5.已知函数()cos()(0,0,0)f x A x A ω?ω?π=+>><<为奇函数, 该函数的部分图象如图所示,EFG ?是边长为2的等边三角形, 则(1)f 的值为( )

A

. B

C

D

6.已知函数()sin(2)f x x ?=+,其中?为实数,若()()6f x f π

≤对x R ∈恒成立,且 ()()

2f f ππ>,则

()f x 的单调递增区间是( )

A .)](6

,3

[Z k k k ∈+

-

π

ππ

π B .)](2

,[Z k k k ∈+

π

ππ

(C ))](32,6[Z k k k ∈+

+

πππ

π (D ))](,2

[Z k k k ∈-ππ

π

7. 定义在R 上的偶函数()f x ,满足(2)()f x f x +=,且()f x 在[3,2]--上是减函数,又,αβ是锐角三

角形的两个内角,则( )

A .(sin )(sin )f f αβ<

B .(cos )(cos )f f αβ<

C .(sin )(cos )f f αβ> C .(sin )(cos )f f αβ< 二、(每小题5分,共15)

8.已知点)43

cos ,43(sin

ππP 落在角θ的终边上,且)2,0[πθ∈,则tan()3

πθ+的值为 ; 9.在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c ,设S 为ABC ?的面积,满足222

1().4

S b c a <+-

则角A 的范围

10.函数()[]π2,0,sin 2sin ∈+=x x x x f 的图像与直线k y =有且仅有两个不同的交点,则k 的取值范围是 .

三、(每小题15分,共30分 ) 11. (AB 层做)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y

轴交于点(0,且在该点处切线的斜率为2-.(1)求θ和ω的值; (2)已知点π02A ?? ???,,

点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,

当0y =0ππ2x ??

∈????,时,求0x 的值.

12. (A 层做)已知向量

)

4cos ,4(cos ),1,4sin 3(2x x n x m == ,

(1)若,1=?n m 求)

32cos(x -π

的值.

(2)记,)(n m x f

?=在△ABC 中, 角A,B,C,的对边分别是a,b,c,且满足,cos cos )2(C b B c a =-求函数

)(A f 的取值范围。

三角函数恒等变换(整理)

高考数学(文)难题专项训练:三角函数及三角恒等变换 1.已知O 是锐角三角形△ABC 的外接圆的圆心,且θ=∠A 若 AO m AC B C AB C B 2sin cos sin cos =+则=m ( ) A .θsin B. θcos C. θtan D. 不能确定 2.设函数)(x f 的定义域为D ,若存在非零实数l 使得对于任意)(D M M x ?∈,有 D l x ∈+,且)()(x f l x f ≥+,则称)(x f 为M 上的高调函数. 现给出下列命题: ①函数x x f -=2 )(为R 上的1高调函数; ②函数x x f 2sin )(=为R 上的高调函数; ③如果定义域为),1[+∞-的函数2 )(x x f =为),1[+∞-上m 高调函数,那么实数m 的取值范围是),2[+∞; ④函数)12lg()(+-=x x f 为),1[+∞上的2高调函数. 其中真命题的个数为( ) A .0 B .1 C .2 D .3 3. 已知)(x f 是定义在)3,3(-上的奇函数,当30<

4. 在ABC ?中,角C B A ,,所对的边分别为c b a ,,且c b a b 2sin 2sin log log ,22<>, bc a c b 3222+=+,若0

三角函数与解三角形中的高考热点问题

热点探究课(二) 三角函数与解三角 形中的高考热点问题 [命题解读] 从近五年卷高考试题来看,解答题第1题(全国卷T 17)交替考查三角函数、解三角形与数列,本专题的热点题型有:一是三角函数的图象与性质;二是解三角形;三是三角恒等变换与解三角形的综合问题,中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用. 热点1 三角函数的图象与性质(答题模板) 要进行五点法作图、图象变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换. (本小题满分14分)已知函数f (x )=23sin ? ????x 2+π4·cos ? ?? ?? x 2+π4- sin(x +π). (1)求f (x )的最小正周期; (2)若将f (x )的图象向右平移 π 6 个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值. 【导学号:51062131】 [思路点拨] (1)先逆用倍角公式,再利用诱导公式、辅助角公式将f (x )化为正弦型函数,然后求其周期. (2)先利用平移变换求出g (x )的解析式,再求其在给定区间上的最值. [规解答] (1)f (x )=23sin ? ????x 2+π4·cos ? ????x 2+π4-sin(x +π)3分 =3cos x +sin x =2sin ? ????x +π3,5分 于是T = 2π 1 =2π.6分 (2)由已知得g (x )=f ? ????x -π6=2sin ? ?? ??x +π6.8分

历年高考三角函数真题

第三讲 历年高考三角函数真题 典型题型真题突破 【例1】(2007年江西)若πtan 34α?? -= ??? ,则cot α等于( ) A .2- B .1 2 - C . 12 D .2 【例2】(2007年陕西)已知sin 5 α=,则44 sin cos αα-的值为( ) A .15 - B .35 - C . 15 D . 35 【例3】(2005年湖北) 若)2 0(tan cos sin π αααα< <=+,则∈α( ) A .(0, 6π) B .(6π,4π) C .(4π,3π) D .(3π,2 π ) 【例4】(2007年浙江)已知11sin 225θ+=,且324θππ ≤≤,则cos2θ的值是____. 【例5】(2007年江苏)若1cos()5αβ+=,3 cos()5 αβ-=,则tan tan αβ?=_____ 【例6】(2006年重庆)已知()33,,,sin ,45παβπαβ?? ∈+=- ??? 12sin()413πβ-=,则 cos()4 π α+=____. 【例7】(2005年重庆)已知α、β均为锐角,且αβαβαtan ),sin()cos(则-=+= 【例8】(1996年全国)tan 20tan 4020tan 40++?。。。。 的值是_______ 【例9】(2007年四川)已知0,14 13 )cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β. 【例10】(2005年浙江)已知函数f(x)=-3sin 2 x +sinxcosx . (Ⅰ) 求f( 256 π )的 值;(Ⅱ) 设α∈(0,π),f( 2 α)=41 -2,求sin α的值.

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角函数与三角变形

三角函数与三角变形 一. 本周教学内容: 专题复习“三角函数与三角变形” 二. 重点与难点: 1. 三角函数的图象与性质; 2. 同角三角函数的差不多关系式,诱导公式,和、差、倍、半角公式,和积互化公式等三角公式的应用。 三. 要点综述: 1. 三角函数是一类重要的初等函数,因其在复数(如复数的三角形式)解析几何(如直线的倾斜角,参数方程,极坐标),立体几何(如两条异面直线成角,直线与平面的成角,二面角)中有着广泛的应用,因此对三角函数与三角变形要有足够的认识。 2. 三角函数的周期性,以及y=sinx ,y=cosx 的有界性是试题经常考查的重要内容。要把握形如y=Asin(ωx+?)或y=Acos(ωx+?)的函数的周期的求法;灵活应用y=sinx ,y=cosx 的有界性研究某些类型的三角函数的最值(或值域)问题。 3. 三角恒等式的证明因其技巧性较强,一度成为数学的难点,近些年的高考试题对这类题目的考查在减少,要求有所降低,但我们应该充分重视三角变形,因为其中表达了对三角公式的运用能力,专门表达了事物之间互相联系,互相转化的辩证思想。 4. 基于上述几点理由,建议同学们在复习这部分内容时,做到“立足课本,落实三基;重视基础,抓好常规”即复习时以中低档题目为主,注意求值化简题以及求取值范畴的习题,另外,注意充分利用单位圆,三角函数图象研究问题。 【典型例题分析与解答】 例1. 已知,且,则的值为 sin cos cos sin θθπθπ θθ?= <<-1842 分析:联想与的关系式:cos sin sin cos (cos sin )sin cos θθθθθθθθ±±=±2 12 可知,欲求的值,不妨先求的值,另外,应注意到,当 cos sin (cos sin )θθθθ--2π θπ θθθθ4 2 0<< >-<时,,故sin cos cos sin 解:(cos sin )sin cos θθθθ-=-=-?=2 12121834 而 π θπ 42 << ∴-

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案免费)

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案 免费) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan == x x x ,又sin 2x +cos 2x =1, 联立得? ??=+=,1cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 5 2sin ,55cos 552sin ??? ????-=-=?? ?????==x x x x 2.求 ) 330cos()150sin()690tan()480sin()210cos()120tan( ----的值. 解:原式 ) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o --+---++-= .3330 cos )150sin (30tan )120sin )(30cos (60tan -=---= 3.若 ,2cos sin cos sin =+-x x x x ,求sin x cos x 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以sin x -cos x =2(sin x +cos x ), 得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得 ,,??? ??? ?=-=?? ?????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =103 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有?- =10 3cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x . 证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1. 利用两角和与差的正弦、余弦、正切公式进行三角变换;2?利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2?灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键? 知识点回顾 1 ?两角和与差的余弦、正弦、正切公式 cos( a—0)= cos acos0+ sin ocsin0(C a- 0 cos( a+ 0)= cos. acos _ 0— sin__ asin_ 0(C a+ 0 sin( a—0 = sin a cos0- cos ocsin (S a—0 sin( a+ 0 = sin a cos0+ cos ocsin0(S a+ 0 tan a—tan 卩 tan( a—? ;(T a—0 1 + tan atan 卩 tan a+ tan 卩 tan(%+ ? = (T a + 0 1 —tan %tan 0 2 ?二倍角公式 sin 2 a= 2sin : cos:; cos 2 a= cos2a—sin2a= 2cos 2a—1 = 1 —2sin2a; 2ta n a tan 2 a= . 1 —tan a 3 ?在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等?如 T a±0可变形为 tan a± tan 0= tan( a± 0(1? tan_ %tan_ 0, tan a+ tan 0 tan a—tan 0 tan %tan 0= 1 —= —1. tan a+ 0 tan a—0 4 ? 函数f( a= a cos a+ b sin a(a, b 为常数),可以化为f( a = \i a2+ b2sin( a+ 0)或f( %)=':::[a2+

高考专题突破 高考中的三角函数与解三角形问题

高考专题突破 高考中的三角函数与解三角形问题 题型一 三角函数的图像和性质 例1 (2016·山东)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的递增区间; (2)把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移π 3个单位长度,得到函数y =g (x )的图像,求g ????π6的值. 解 (1)由f (x )=23sin(π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ? ???2x -π 3+3-1. 由2k π-π2≤2x -π3≤2k π+π 2(k ∈Z ), 得k π-π12≤x ≤k π+5π 12 (k ∈Z ). 所以f (x )的递增区间是????k π-π12,k π+5π12(k ∈Z )????或????k π-π12,k π+5π 12(k ∈Z ). (2)由(1)知f (x )=2sin ? ???2x -π 3+3-1, 把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到y =2sin ????x -π 3+3-1的图像, 再把得到的图像向左平移π 3个单位长度, 得到y =2sin x +3-1的图像, 即g (x )=2sin x +3-1. 所以g ????π6=2sin π 6 +3-1= 3. 思维升华 三角函数的图像与性质是高考考查的重点,通常先将三角函数化为y =A sin(ωx +φ)+k 的形式,然后将t =ωx +φ视为一个整体,结合y =sin t 的图像求解. 跟踪训练1 已知函数f (x )=5sin x cos x -53cos 2x +532(其中x ∈R ),求: (1)函数f (x )的最小正周期; (2)函数f (x )的单调区间;

三角函数历年高考试题集)

三角函数(1985年——20XX 年高考试题集) 一、选择题 1. t an x =1是x =4 5π 的 。(85(2)3分) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要条件 2. 函数y =2sin2xcos2x 是 。(86(4)3分) A.周期为2 π的奇函数 B.周期为2π 的偶函数 C.周期为4 π 的奇函数 D.周期为4 π 的偶函数 3. 函数y =cosx -sin 2x -cos2x + 4 17 的最小值是 。(86广东) A. 4 7 B.2 C.49 D.4 17 E. 4 19 4. 函数y =cos 4x -sin 4x 的最小正周期是 。(88(6),91(3)3分) A.π B.2π C.2 π D.4π 5. 要得到函数y =sin(2x - 3 π )的图象,只须将函数y =sin2x 的图象 。(87(6)3分) A.向左平移3π B.向右平移3π C.向左平移6π D.向右平移6 π 6. 若α是第四象限的角,则π-α是 。(89上海) A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 7. t an 70°+tan50°-3tan70°tan50°的值是 。(90广东) A.3 B. 3 3 C.- 3 3 D.-3 8. 要得到函数y =cos(2x - 4 π )的图象,只需将函数y =sin2x 的图象 。(89上海) A.向左平移8π个单位 B.向右平移8 π 个单位 C.向左平移4π个单位 D.向右平移4π个单位 9. 函数y = cotx | cotx ||tanx |tanx cosx |cosx ||sinx |sinx +++的值域是 。(90(6)3分) A.{-2,4} B.{-2,0,4} C.{-2,0,2,4} D.{-4,-2,0,4} 10. 若函数y =sin(ωx)cos(ωx)(ω>0)的最小正周期是4π,那么常数ω为 。(92(2)3) A.4 B.2 C.2 1 D. 4 1 注:原考题中无条件“ω>0”,则当ω取负值时也可能满足条件 11. 在直角三角形中两锐角为A 和B ,则sinAsinB 。(93(6)3分) A.有最大值 2 1 和最小值0 B.有最大值 2 1 ,但无最小值 C.既无最大值也无最小值 D.有最大值1,但无最小值 12. 角α属于第二象限,且|cos 2α|=-cos 2α,则2 α 角属于 。(90上海) A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角

高考中有关三角函数问题的研究

一、引言 三角学﹝Trigonometry﹞创始于公元前约150年,早在公元前300年,古代埃及人已有了一定的三角学知识,主要用于测量。例如建筑金字塔、整理尼罗河泛滥后的耕地、通商航海和观测天象等。公元前600年左右古希腊学者泰勒斯(p13)利用相似三角形的原理测出金字塔的高,成为西方三角测量的肇始。我国古代没有出现角的函数概念,只用勾股定理解决了一些三角学范围内的实际问题。据《周髀算经》记载,约与泰勒斯同时代的陈子已利用勾股定理测量太阳的高度,其方法后来称为「重差术」。 现代高考中三角学主要研究角的三角函数的基本性质及实际应用问题,如几何计算、最值、建模等实际问题。 二、高考中三角函数的现状及简单分析 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强. 大致可分为四类问题: (1)与三角函数单调性有关的问题; (2)与三角函数图象有关的问题; (3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题; (4)与周期有关的问题. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化。在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解. (一)三角函数的现状 1.课改后的三角函数 尽管三角函数这部分内容是高中数学的传统内容,但在新教材中,教学内容、教材设计特别是教学要求上都发生了较大的变化。认识这一变化,对于我们领悟课标的理念,控制教学的深度、难度和广度有着至关重要的作用,只有准确地把握考纲要求,才能避免复习中做一些无用功。 (1)进一步加强了几何直观。三角函数的概念、公式的推导及其性质研究都紧密结合单位圆、三角函数线、三角函数的图象;

高考题历年三角函数题型总结

高考题历年三角函数题 型总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高考题历年三角函数题型总结 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠.

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos( a + 3)=cos a ? cos 3 -sin a ?sin 3 cos( a - 3)=cos a ? cos 3 +sin a ?sin 3 sin( a ±3 )=sin a ? cos 3 ±cos a ? sin 3 tan( a + 3)=(tan a +tan 3 )/(1-tan a ? tan 3 ) tan( a - 3)=(tan a -tan 3 )/(1+tan a ? tan 3 ) 三角和的三角函数: sin( a + 3 +Y )=sin a ? cos 3 ? cos 丫+cos a ? sin 3 ? cos 丫+cos a ? cos 3 ? sin 丫-sin a ? sin 3 ? sin 丫cos( a + 3 + Y )=cos a ? cos 3 ? cos 丫-cos a ? sin 3 ? sin Y -sin a ? cos 3 ? sin 丫-sin a ? sin 3 ? cos 丫 tan( a + 3 + Y )=(tan a +tan 3 +tan 丫-tan a ?tan 3 ? tan 丫)/(1-tan a ? tan 3 -tan 3 ? tan 丫-tan 丫? tan a ) 辅助角公式: Asin a +Bcos a =(A2+B2)A( 1/2)sin( a +t),其中 si nt=B/(A2+B2)A(1/2) cost=A/(A2+B2)A(1/2) tan t=B/A As in a -Bcos a =(A2+B2)A(1/2)cos( a -t) , tan t=A/B 倍角公式: sin (2 a )=2sin a? cos a :=2/(tan a +cot a ) cos(2 a )=cos2( a )- sin2( a )=2cos2( a )-仁1- 2sin2( a ) tan (2 a )=2tan a/[1- tan2( a )] 三倍角公式: sin (3 a )=3sin a-4sin3( a )=4sin a-sin(60+ a )sin(60- a ) cos(3 a )=4cos3( a )-3cos a =4cos a-cos(60+ a)cos(60- a ) tan(3 a )=tan a ? tan( n /3+a) ? tan( n /3-a) 半角公式: Sin( a /2)= ±V((1 -cos a )/2) cos( a /2)= ±V ((1+cos a )/2) tan( a /2)= ±V ((1 -cos a )/(1+cos a ))=sin a /(1+cos a )=(1-cos a )/sin a 降幕公式 sin2( a )=(1-cos(2 a ))/2=versin(2 a )/2 cos2( a )=(1+cos(2 a ))/2=covers(2 a )/2 tan2( a )=(1-cos(2 a ))/(1+cos(2 a )) 万能公式: sin a =2tan( a /2)/[1+tan2( a /2)] cos a =[1- tan2( a /2)]/[1+tan2( a /2)] tan a =2tan( a /2)/[1- tan2( a /2)] 积化和差公式:

2014年高考三角函数做题技巧与方法总结

2014年高考三角函数做题技巧与方法总结 知识点梳理 1.正弦函数、余弦函数、正切函数的图像 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x 2、三角函数的单调区间: x y sin =的递增区间是?????? +-2222ππππk k ,)(Z k ∈,递减区间是????? ? ++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是??? ?? +-22ππππk k ,)(Z k ∈, 3、三角函数的诱导公式 sin (2kπ+α)=sinα sin (π+α)=-sinα sin (-α)=-sinα cos (2kπ+α)=cosα cos (π+α)=-cosα cos (-α)=cosα

tan (2kπ+α)=tan α tan (π+α)=tanα tan (-α)=-tanα sin (π-α)=sinα sin (π/2+α)=cosα sin (π/2-α)=cosα cos (π-α)=-cosα cos (π/2+α)=-sinα cos (π/2-α)=sinα tan (π-α)=-tanα tan (π/2+α)=-cotα tan (π/2-α)=cotα sin 2(α)+cos 2(α)=1 4、两角和差公式 5、 二倍角的正弦、余弦和正切公式 sin (α+β)=sinαcosβ+cosαsinβ sin2α=2sinαcosα sin (α-β)=sinαcosβ-cosαsinβ cos2α=cos 2(α)-sin 2(α)=2cos 2(α)-1=1-2sin 2(α) cos (α+β)=cosαcosβ-sinαsinβ tan2α=2tanα/(1-tan 2(α)) cos (α-β)=cosαcosβ+sinαsinβ tan (α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 6、半角公式: 2cos 12 sin αα -± =; 2 cos 12cos α α+±=; α αααααα sin cos 1cos 1sin cos 1cos 12 tan -=+=+-± = 7、函数B x A y ++=)sin(?ω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ω π 2= T ;其图象的对称轴是直线 )( 2 Z k k x ∈+ =+π π?ω, 凡是该图象与直线B y =的交点都是该图象的对称中心 8、由y =sin x 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

三角函数部分高考题(带答案)

3 22.设/XABC的内角A B, C所对的边长分别为q, b, c , ^acosB-bcosA =-c . 5 (I )求tan A cot B 的值; (U)求tan(A-B)的最大值. 3解析:(1)在左ABC中,由正弦定理及acosB-bcosA = -c 5 3 3 3 3 可得sin 人cos B-sinB cos A = -siiiC = - sin(A + B) = $ sin 人cos B + - cos A sin B 即siii A cos B = 4 cos A siii B ,则tail A cot 8 = 4: (II)由taiiAcotB = 4得tanA = 4tanB>0 一_ x tan A - tan B 3 tan B 3 “ 3 tan( A 一B) = -------------- = ---------- -- = ----------------- W - 1+tail A tail B l + 4taii_B cot B + 4 tan B 4 当且仅当4tanB = cotB,tmiB = i,taiiA = 2时,等号成立, 2 1 3 故当tail A = 2, tan ^ =—时,tan( A - B)的最大值为—. 5 4 23. ----------------------------------在△ABC 中,cosB = , cos C =—. 13 5 (I )求sin A的值; 33 (U)设ZVIBC的面积S AABC = —,求BC的长. 解: 512 (I )由cosB = 一一,得sinB = —, 13 13 4 3 由cos C =-,得sin C =-. 55 一33 所以sin A = sin(B + C) = sin B cos C + cos B sill C = —. (5) ................................................................................................................................... 分 33 1 33 (U)由S.ARC = 一得一xABxACxsinA = —, 2 2 2 33 由(I)知sinA =—, 65 故ABxAC = 65, (8) ................................................................................................................................... 分 又AC =竺主=史仙, sinC 13 20 13 故—AB2 =65, AB = — . 13 2 所以此=性叫11 siiiC (I)求刃的值;10分 24.己知函数/(x) = sin2a)x+j3 sin cox sin 尔+习2)(刃>0)的最小正周期为兀.

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β 1+tan αtan β (T α-β) tan(α+β)=tan α+tan β 1-tan αtan β (T α+β) 2. 二倍角公式 sin 2α=ααcos sin 2; cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α 1-tan 2α . 3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如 T α±β可变形为 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-tan α+tan βtan α+β=tan α-tan β tan α-β-1. 4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)= a 2+ b 2sin(α+φ)或f (α)=a 2+b 2cos(α -φ),其中φ可由a ,b 的值唯一确定.

相关文档
相关文档 最新文档