文档库 最新最全的文档下载
当前位置:文档库 › 材料制备与合成

材料制备与合成

材料制备与合成
材料制备与合成

化学气相沉积

简介:

化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。

化学气相沉积的英文词愿意是化学蒸汽沉积(Chemical Vapor Deposition,CVD),因为很多反应物质在通常条件下是液态或固态,需将他们经过汽化成蒸汽后再参与反应。这一名称是在20世纪60年代初期由美国Blocher等人在Vapor Deposition一书中首先提出的。Blocher还由于他对CVD国际学术交流的积极推动被称为“CVD先生(Sir CVD)”在20世纪60年代前后对这一项技术还有另一名称,即蒸气镀(Vapor plating),而Vapor Deposition 一词后来被广泛地接受。根据沉积过程中主要依靠物理过程或化学过程被划分为物理气相沉积(Physical Vapor Deposition,PVD)和化学气相沉积两大类。例如,把真空蒸发、溅射、离子镀等通常归属于PVD;而直接依靠气体反应或依靠等离子体放电增强气体反应的称为CVD或等离子体增强化学沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD或PCVD)。实际上,随着科学技术的发展,也出现了不少交叉现象。例如,利用溅射或离子轰击使金属汽化再通过气相反应生成氧化物或氮化物等就是物理过程和化学过程相结合的产物,相应地,就称为反应溅射、反应离子镀或化学离子镀。

化学气相沉积(CVD)技术是一种新型的材料制备方法,它可以用于制各各种粉体材料、块体材料、新晶体材料、陶瓷纤维、半导体及金刚石薄膜等多种类型的材料,广泛应用于宇航工业上的特殊复合材科、原子反应堆材料、刀具材料、耐热耐磨耐腐蚀及生物医用材料等领域.同传统材料制各技术相比,CVD)技术具有以下优点:(1)可以在远低于材科熔点的温度进行材料合成:(2)可以控制合成材料的元素组成、晶体结构、微观形貌(粉末状、纤维状、技状、管状、块状等):(3)不需要烧结助剂,可以高纯度合成高密度材料;(4) 可以实现材料结构微米级、亚微米级甚至纳米级控制:(5) 能够进行复杂形状结构件及图层的制备;(6)能够制备梯度复合材料及梯度涂层和多层涂层:(7)能够进行亚稳态物质及新材料的合成。目前,CVD己成为大规模集成电路的铁电材料、绝缘材料、磁性材料、光电子材料、高温热结构陶瓷基复合材料及纳米粉体材料不可或缺的制备技术。

CVD技术常常通过反应类型或者压力来分类,包括低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD)。然后,还有金属有机物CVD(MOCVD),根据金属源的自特性来保证它的分类,这些金属的典型状态是液态,在导入容器之前必须先将它气化。不过,容易引起混淆的是,有些人会把MOCVD认为是有机金属CVD(OMCVD)。过去,对LPCVD和APCVD最常使用的反应室是一个简单的管式炉结构,即使在今天,管式炉也还被广泛地应用于沉积诸如Si3N4 和二氧化硅之类的基础薄膜(氧气中有硅元素存在将会最终形成为高质量的SiO2,但这会大量消耗硅元素;通过硅烷和氧气反应也可能沉积出SiO2 -两种方法均可以在管式炉中进行)。而且,最近,单片淀积工艺推动并导致产生了新的CVD反应室结构。这些新的结构中绝大多数都使用了等离子体,其中一部分是为了加快反应过程,也有一些系统外加一个按钮,以控制淀积膜的质量。

在PECVD和HDPCVD系统中有些方面还特别令人感兴趣是通过调节能量,偏压以及其它参数,可以同时有沉积和蚀刻反应的功能。通过调整淀积:蚀刻比率,有可能得到一个很好的缝隙填充工艺。

现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺入某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相淀积已成为无机合成化学的一个新领域。

应用举例:制备石墨烯

自从1985 年富勒烯和1991年碳纳米管被发现以来,碳纳米材料的研究一直是材料研究领域的热点,引起了世界各国研究人员的极大兴趣。虽然碳的三维(石墨和金刚石)、零维(富勒烯)和一维(碳纳米管)同素异形体都相继被发现,但作为二维同素异形体的石墨烯长期以来被认为由于热力学上的不稳定性而难以独立存在,在实验上难以获得足够大的高质量样品,因此石墨烯的研究一直处于理论探索阶段。直到2004 年,英国曼彻斯特大学的科学家利用胶带剥离高定向热解石墨(HOPG)获得了独立存在的高质量石墨烯,并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。石墨烯是由单层碳原子紧密堆积成的二维蜂窝状结构,是构成其他维数碳材料的基本结构单元。石墨烯可以包覆成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨[4]。由于独特的二维结构特征和极佳的晶体学质量,石墨烯的载流子表现出类似于光子的行为,为研究相对论量子力学现象提供了理想的实验平台,此外石墨烯还具有优异的电学、光学、热学、力学等特性,因此在场效应晶体管、集成电路、单分子探测器、透明导电薄膜、功能复合材料、储能材料、催化剂载体等方面有广阔的应用前景。

CVD 法制备石墨烯早在20 世纪70 年代就有报道,当时主要采用单晶Ni 作为基体,但所制备出的石墨烯主要采用表面科学的方法表征,其质量和连续性等都不清楚。随后,人们采用单晶Co、Pt、Pd、Ir、Ru 等基体在低压和超高真空中也实现了石墨烯的制备。但直到2009 年初,麻省理工学院的J. Kong 研究组与韩国成均馆大学的B. H.Hong 研究组才利用沉积有多晶Ni 膜的硅片作为基体制备出大面积少层石墨烯,并将石墨烯成功地从基体上完整地转移下来,从而掀起了CVD法制备石墨烯的热潮。

石墨烯的CVD 生长主要涉及三个方面:碳源、生长基体和生长条件(气压、载气、温度等)。碳源:目前生长石墨烯的碳源主要是烃类气体,如甲烷(CH4 )、乙烯(C2 H4 )、乙炔(C2 H2 )等。最近,也有报道使用固体碳源SiC 生长石墨烯。选择碳源需要考虑的因素主要有烃类气体的分解温度、分解速度和分解产物等。碳源的选择在很大程度上决定了生长温度,采用等离子体辅助等方法也可降低石墨烯的生长温度。生长基体:目前使用的生长基体主要包括

金属箔或特定基体上的金属薄膜。金属主要有Ni、Cu、Ru以及合金等,选择的主要依据有金属的熔点、溶碳量以及是否有稳定的金属碳化物等。这些因素决定了石墨烯的生长温度、生长机制和使用的载气类型。另外,金属的晶体类型和晶体取向也会影响石墨烯的生长质量。除金属基体外,MgO等金属氧化物最近也被用来生长石墨烯,但所得石墨烯尺寸较小(纳米级),难以实际应用。

生长条件:从气压的角度可分为常压、低压(105Pa ~ 10-3Pa)和超低压(<10-3Pa);据载气类型不同可分为还原性气体(H2 )、惰性气体(Ar、He)以及二者的混合气体;据生长温度不同可分为高温(>800℃)、中温(600℃ ~ 800℃) 和低温(<600℃),主要取决于碳源的分解温度。

下面就上述三个方面着重分析一下目前CVD法制备石墨烯的主要进展。

石墨烯的CVD 法制备最早采用多晶Ni 膜作为生长基体。麻省理工学院的J. Kong 研究组通过电子束沉积的方法,在硅片表面沉积500 nm 的多晶Ni 膜作为生长基体,利用CH4为碳源、H2为载气的CVD 法生长石墨烯, 生长温度为900℃ ~1000℃。韩国成均馆大学的B. H. Hong 研究组采用类似的CVD 法生长石墨烯:生长基体为电子束沉积的300 nm 的Ni 膜,碳源为CH4,生长温度为1000℃,载气为H2和Ar 的混合气,降温速度为10℃ / s。由于Ni 生长石墨烯遵循渗碳析碳生长机制,因此所得石墨烯的层数分布很大程度上取决于降温速率。采用Ni 膜作为基体生长石墨烯具有以下特点:石墨烯的晶粒尺寸较小,层数不均一且难以控制,在晶界处往往存在较厚的石墨烯,少层石墨烯呈无序堆叠。此外,由于Ni 与石墨烯的热膨胀率相差较大,因此降温造成石墨烯的表面含有大量褶皱。

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

(完整word版)材料合成与制备_复习资料(有答案)

第一章溶胶-凝胶法 名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。 4. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 一、填空题 1.溶胶通常分为亲液型和憎液型型两类。 2.材料制备方法主要有物理方法和化学方法。 3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定 体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状 态。 5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。

6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 8.搅拌器的种类有电力搅拌器和磁力搅拌器。 9.溶胶凝胶法中固化处理分为干燥和热处理。 10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 二、简答题 溶胶-凝胶制备陶瓷粉体材料的优点? 制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。 第二章水热溶剂热法 名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度或临界压力之上的流

《材料合成与制备方法》教学大纲

《无机材料合成》实验教学大纲 课程名称:无机材料合成 课程编号:0 总学时:36 适用对象:材料化学本科专业 一、教学目的和任务: 《无机材料合成》是材料化学专业的一门必修课。本课程的任务是通过各种教学环节,使学生掌握单晶材料的制备、薄膜的制备、非晶态材料制备、复合材料的制备、功能陶瓷的合成与制备、结构陶瓷的制备、功能高分子的制备、催化材料制备、低维材料制备等,使学生获得先进材料合成与制备的基础知识,毕业后可适应化工材料的科学研究与技术开发工作。 二、教学基本要求: 在全部教学过程中,应始终坚持对学生进行实验室安全和爱护公物的教育;简单介绍有效数字和误差理论;介绍正确书写实验记录和实验报告的方法以及基本操作和常规仪器的使用方法。无机材料的制备方法、薄膜制备的溶胶-凝胶法、纳米晶的水热合成法、纳米管的气相沉积法的原理和基本操作方法,材料结构表征和性能测试的结果的正确分析,并在此基础上研究材料结构和性能的关系。培养学生的实际动手操作能力;深刻领会课本所学的理论知识,具有将理论知识应用于实践中的能力。 三、教学内容及要求 实验一无机材料合成(制备)方法与途径 实验仪器:计算机 实验内容:认识无机材料合成中的各种元素、化学反应;相关中外文摘、期刊的查阅方法。 实验要求:了解无机材料合成的基本方法、途径与制约条件 实验二晶体合成 实验仪器:磁力搅拌器、烧杯 实验内容:晶体的生长 实验要求:了解晶体的基本分类与应用;熟悉晶体生长的基本原理;重点掌握晶体合成的技术与方法。 实验三薄膜制备 实验仪器:压电驱动器、磁力搅拌器、烧杯 实验内容:薄膜材料的制备 实验要求:掌握薄膜材料的分类与应用;薄膜与基材的复合方法、途径以及制约条件; 实验四胶凝材料的制备

材料合成与制备

作业习题: 一、名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的重量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸在1~100nm之间,这些固体颗粒一般由103~109个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般在1%~3%之间。 4. 溶胶-凝胶法(Sol-gel):是采用具有高化学活性的含材料成分的液体化合物为前驱体(通常是金属有机醇盐或无机化合物),在液相下将这些原料均匀混合,并进行一系列的水解、缩聚化学反应,通过抑制各种反应条件,在溶液中形成稳定的透明溶胶体系,溶胶经过陈化,胶粒间缓慢聚合,形成了三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成了凝胶。凝胶再经过低温干燥,脱去其间溶剂而成为一种多孔空间结构的干凝胶或气凝胶,最后,经过烧结固化制备出分子乃至纳米亚结构的材料。 5. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 6. 水解度R:是水和金属醇盐物质的量比,即溶胶-凝胶反应过程中加水的量的多少。 二、填空题 1.溶胶通常分为亲液型和憎液型两类。 2. 材料制备方法主要有物理方法和化学方法。 3. 化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4. 由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状态。 5. 溶胶稳定机制为胶体稳定的DLVO理论。 6. 计算颗粒间范德华力通常用的两种模型为平板粒子模型、球型粒子模型。 7. 溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。 8. 溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 9. 溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 10. 搅拌器的种类有电力搅拌器和磁力搅拌器。 11. 溶胶凝胶法中固化处理分为干燥和热处理。 12. 对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 课后习题 一、名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度和临界压力之上的流体。在超临界状态下,物质有近于液体的溶解特性以及气体的传递特性:粘度约为普通液体的0.1~0.01;扩散系

材料合成与制备方法(金属篇) 复习总结

材料合成与制备方法(金属篇) 第一章单晶材料的制备 1.单晶体经常表现出电、磁、光、热等方面的优异性能,广泛用于现在工业的诸多领域。 2.固—固生长法即是结晶生长法。其主要优点是,能在较低的温度下生长;生长晶体的形状是预先固定的。缺点是难以控制成核以形成大晶粒。 3.结晶通常是放热过程的证明:对任何过程有△G=△H-T△S,在平衡态时△G=0,即 △H=T△S。这里△H是热焓的变化,△S是熵变,T是绝对温度。由于在晶体生长过程中,产物的有序度要比反应物的有序度要高,所以△S<0,△H<0,故结晶通常是放热过程。 4.应变是自发过程,而退火是非自发过程的证明:对于未应变到应变过程,有△E1-2=W-q,这里W是应变给予材料的功,q是释放的热,且W>q。△H1-2=△E1-2+△(pv),由于△(pv)很小,近似得△H1-2=△E1-2。而△G1-2=△H1-2-T△S=W-q-T△S,在低温下T△S可忽略,故△G1-2=W-q>0。因此使结晶产生应变不是一个自发过程,而退火是自发过程。(在退火过程中提高温度只是为了提高速度) 5.再结晶驱动力:经过=塑性变形后,材料承受了大量的应变,因而储存大量的应变能。在产生应变时,发生的自由能变化近似等于做功减去释放的热量。该热量通常就是应变退火再结晶的主要推动力。应变退火再结晶推动力可以由下式给出:△=W-q+G S+△G0。这里W是产生应变或加工时所做的功,q是作为热而释放的能量,G S是晶粒的表面自由能,△G0是试样中不同晶粒取向之间的自由能差。 6.晶粒长大的过程是:形核—焊接—并吞。其推动力是储存在晶粒间界的过剩自由能的减少,因此晶界间的运动起着缩短晶界的作用,晶界能可以看做晶界之间的一种界面张力,而晶粒的并吞使这种张力减小。 7.若有一个晶粒很细微的强烈的织构包含着几个取向稍微不同的较大的晶体,则有利于二次再结晶。再结晶的驱动力是由应变消除的大小差异和欲生长晶体的取向差异共同提供的。 8.在应变退火中,通常在一系列试样上改变应变量,以便找到退火期间引起一个或多个晶粒生长所必须的最佳应变量或临界应变。一般而言,1%~10%的应变足够满足要求,相应的临界应变控制精度不高于0.25%. 9.均匀形核:形成临界晶核时,液、固相之间的自由能差能供给所需要的表面能的三分之二,另三分之一则需由液体中的能量起伏提供。△G*=1/3A**σ。

材料加工新技术与新工艺重点资料

一、绪论 1)材料与新材料的概念,生产特点及分类 材料:人类用以制造用于生活和生产的物品、器件、构件、机器以及其他产品的物质,也可简单定义为:材料是可以制造有用器件的物质。 新材料:新出现或正在发展之中的具有优异性能或特定功能的材料,或在传统材料基础上通过新技术处理获得性能明显提高或产生了新功能的材料。 2)材料的作用与地位 1,自20世纪70年代,人们就把信息、能源和材料誉为人类文明的三大支柱,把材料的重要性提高到一个前所未有的高度。2,20世纪80年代又把新材料技术与信息技术、生物技术一起列为高新技术革命的重要标志;事实上,新材料的研究、开发与应用反映着一个国家的科学技术与工业化水平。3,几乎所有的高新技术的发展与进步,都以新材料和新材料技术的发展和突破为前提。 3)材料技术的概念及其分类 材料技术:可以理解为是关于材料的制备、成形与加工、表征与评价,以及材料的使用和保护的知识、经验和诀窍;从学科的观点来考虑,将材料科学和其他相关学科(如计算机、机械、自动控制)的知识应

用于材料(制备)生产和使用的实际,以获得所需的材料产品、提高材料的使用效能的技艺。分类:(1)制备技术;(2)成形与加工技术;(3)改质改性技术;(4)防护技术;(5)评价表征技术;(6)模拟仿真技术;(7)检测与监控技术。 4)材料加工技术的分类及材料科学与工程要素 按照传统的三级学科进行分类,材料加工技术(方法)包括机加工(车钻刨铣磨等)、凝固加工(铸造)、粉末冶金、塑性加工(压力加工)、焊接(连接)、热处理等。 按照被加工材料在加工时所处的相态不同进行分类,材料加工技术包括气态加工、液态加工(凝固成形)、半固态加工、固态加工。 一般认为,现代材料科学与工程由四个基本要素组成:即材料的成分与结构、性质、制备与加工工艺、使用性能,它们之间形成所谓的四面体关系;材料的制备与加工与材料的成分和结构、材料的性质一起,构成决定材料使用性能的最基本的一大要素,也充分反映了材料制备与加工技术的重要作用和地位 发展趋势:过程综台、技术综合、学科综台。 主要特征:(1)性能设计与工艺设计的一体化;(2)在材料设计、制备、成形与加工处理的全过程中对材料的组织性能和形状尺寸进行精确控制 发展方向:(1)常规材料加工工艺的短流程化和高效化;(2)发展先进

材料制备与合成

《材料制备与合成[料]》课程简介 课程编号:02034916 课程名称:材料制备与合成/Preparation and Synthesis of Materials 学分: 2.5 学时:40 (课内实验(践):0 上机:0 课外实践:0 ) 适用专业:材料科学与工程 建议修读学期:6 开课单位:材料科学与工程学院材料物理与化学系 课程负责人:方道来 先修课程:材料化学基础、物理化学、材料科学基础、金属材料学 考核方式与成绩评定标准:期末开卷考试成绩(占80%)与平时考核成绩(占20%)相结合。 教材与主要参考书目: 教材:《材料合成与制备》. 乔英杰主编.国防工业出版社,2010年. 主要参考书目:1. 《新型功能材料制备工艺》, 李垚主编. 化学工业出版社,2011年. 2. 《新型功能复合材料制备新技术》.童忠良主编. 化学工业出版社,2010年. 3. 《无机合成与制备化学》. 徐如人编著. 高等教育出版社, 2009年. 4. 《材料合成与制备方法》. 曹茂盛主编. 哈尔滨工业大学出版社,2008年. 内容概述: 本课程是材料科学与工程专业本科生最重要的专业选修课之一。其主要内容包括:溶胶-凝胶合成法、水热与溶剂热合成法、化学气相沉积法、定向凝固技术、低热固相合成法、热压烧结技术、自蔓延高温合成法和等离子体烧结技术等。其目的是使学生掌握材料制备与合成的基本原理与方法,熟悉材料制备的新技术、新工艺和新设备,理解材料的合成、结构与性能、材料应用之间的相互关系,为将来研发新材料以及材料制备新工艺奠定坚实的理论基础。 The course of preparation and synthesis of materials is one of the most important specialized elective courses for the undergraduate students majoring in materials science and engineering. It includes the following parts: sol-gel method, hydrothermal/solvothermal reaction method, CVD method, directional solidification technique, low-heating solid-state reaction method, hot-pressing sintering technique, self-propagating high-temperature synthesis, and SPS technique. Its purpose is to enable students to master the basic principles and methods of preparation and synthesis of materials, and grasp the new techniques, new processes and new equipments, and further understand the relationship among the synthesis, structure, properties and the applications of materials. The course can lay a firm theoretical foundation for the research and development of new materials and new processes in the future for students.

材料合成与制备

材料合成与制备 《材料合成与制备》课程教学大纲一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料的合成与制备 所属专业:材料化学 课程性质:专业必修课 学分:2学分(36学时) (二)课程简介、目标与任务、先修课与后续相关课程; 课程简介: 材料的合成与制备课程是介绍现代材料制备技术的原理、方法与技能的课程,是材料化学专业一门重要的专业必修课程。 目标与任务:通过本课程的学习,使学生掌握材料制备过程中涉及的材料显微组织演化的基本概念和基本规律;掌握材料合成与制备的基本途径、方法和技能;掌握目前几种常见新材料制备方法的发展、原理、及制备工艺;培养学生树立以获取特定材料组成与结构为目的材料科学研究核心思想,培养学生发现、分析和解决问题的基本能力,培养创新意识,为今后的材料科学相关生产实践和科学研究打下坚实的基础。 先修相关课程: 无机化学、有机化学、物理化学、材料科学基础 (三)教材与主要参考书 教材:自编讲义 主要参考书: 1. 朱世富,材料制备科学与技术,高等教育出版社,2006

2. 许春香,材料制备新技术,化学工业出版社,2010 3. 李爱东,先进材料合成与制备技术,科学出版社,2013 1 二、课程内容与安排 第一章引言 1.1 材料科学的内涵 1.2 材料科学各组元的关系 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【掌握】:材料科学学科的内涵、材料科学学科的四组元、四组元间的相互关系。 【了解】:几个材料合成与制备导致不同组成与结构并最终决定性质与性能的科研实例。 【难点】:树立以获取特定材料组成与结构为核心的学科思想。第二章材料合成与制备主要途径概述 2.1 基于液相-固相转变的材料制备 2.3 基于固相-固相转变的材料制备 2.4 基于气相-固相转变的材料制备 (一)教学方法与学时分配 讲授,2学时。

最新材料制备新技术复习题

第一章 1.实现快速凝固的途径有哪些? 答:a.动力学急冷法 b.热力学深过冷法 c.快速定向凝固法 2.用单辊法制备金属带材的快速凝固工艺特点是什么? 答:答:①单辊需要以2000~10000r∕min的高速度旋转,同时要保证单辊的转速均匀性很高,径向跳动非常小,以控制薄膜的均匀性②为了防止合金溶液的氧化,整个快速凝固过程要在真空或保护性气氛下进行③为了获得较宽并且均匀的非晶合金带材,液流必须在单上均匀成膜,液流出口的设计及流速的控制精度要求很高。 3.常用金属线材的快速凝固方法有哪些?它们的工艺特点是什么? 答:a.玻璃包覆熔融的线法。特点:容易成型、连续等径、表面质量好的线材。但生产效率低,不适合生产大批量工业用线材。 b.合金熔液注入快冷法。特点:装置简单,但液流稳定性差,流速较低、难控制速率,不能连续生产。 c.旋转水纺线法。特点:原理和装置简单、操作方便、可实现连续生产。 d.传送带法。特点:综合了b、c法,可实现连续生产,但装置较复杂,工艺参数调控较难,传送速率不快。 第二章 1喷射成形的基本原理是什么?其基本特点有哪些? 答:原理:在高速惰性气体的作用下,将熔融金属或合金液流雾化成弥散的液态颗粒,并将其喷射到水冷的金属沉积器上,迅速形成高度致密的预成形毛坯。 特点:高度致密,低含氧量,快速凝固的显微组织特征,合金性能高,工艺流程短,成本低,高沉积效率,灵活的柔性制造系统,近终形成形,可制备高性能金属基复合材料。 2.喷射成形关键装置指的是什么?雾化喷嘴系统 3.用喷射成形技术制备复合材料时有什么优势?是否任何复合材料都能用该方法来制备?说明理由。 答:主要优势:在于快速凝固的特性、高温暴露时间短、简化工艺过程。 否;因为有的复合材料容易发生界面反应,且高含氧量、气体含量和夹杂含量,工艺复杂和成本偏高等问题。 4.气体雾化法是利用气体的冲击力作用于熔融液流,使气体的动能转化为熔体的表面,从而形成细小的液滴并凝固成粉末颗粒。 5.喷射成形又称喷射雾化沉积或喷射铸造等是用快速凝固方法制备大块,致密材料的高新技术,它把液态金属的雾化(快速凝固)和雾化熔滴的沉积(熔滴动态致密化)自然结合起来。 6.喷射成型的四个阶段:雾化阶段,喷射阶段,沉积阶段,沉积提凝固阶段。 7.雾化喷射成形工艺一般采用惰性气体。 8.喷射成形装置的技术关键主要包括装置总体布局,雾化喷嘴,沉积器结构,和运动方式。 9.装置结构布局:倾斜布局,垂直布局,水平布局。 10.喷射成形装置应包括:含熔炼部分,金属导流系统,雾化喷嘴,雾化气体控制系统,沉积器及其传动系统,收粉及排气系统。 第三章 1.机械合金化的定义及球磨机理是什么? 答:(MA)是指金属或合金粉末在高能球磨机中通过粉末颗粒与球磨之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备方法。 球磨机理:取决于粉末组分的力学性能,它们之间的相平衡和在球磨过程中的应力状态。

无机材料合成与制备复习纲要

材料合成与制备复习纲要 我们不是抄答案,我们只做知识的搬运工。 ——无机复习提纲编辑协会宣言试卷构成:填空:15 分 选择:7*2=14 分(共7 题,一题2 分) 名词解释:5*3=15 分(共5 题,一题3分) 问答题:8+12*4=56(第一题8 分,其余四道题每题12 分)注:划线知识点为李老师审阅后所加,疑为重点,望各位复习时多加注意第1 章:经典合成方法 1实验室常用的加热炉为:高温电阻炉 2电炉分为:电阻炉,感应炉,电弧炉,电子束炉 3电阻发热材料的最高工作温度:硅碳棒1400C、硅化钼棒1700C、钨丝1700C 真空、 5氧化物发热体:在氧化气氛中,氧化物发热体是最为理想的加热材料。 6影响固相反应的因素: (1)反应物化学组成与结构,反应物结构状态(2)反应物颗粒尺寸及分布影响。 7化学转移反应:把所需要的沉积物质作为反应源物质,用适当的气体介质与之反应,形成一种气态化合物,这种气态化合物通过载气输运到与源区温度不同的沉积区,再发生逆反应,使反应源物质重新沉积出来,这样的反应过程称为化学转移反应。 8化学转移反应条件源区温度为T2,沉积区温度为T1:如果反应是吸热反应,则 r H m为正,当T2>T1时,温度越高,平衡常数越大,即从左往右反应的平衡常数增大,反应容易进行,物质由热端向冷端转移,即源区温度应大于沉积区温度,物质由源区转移至沉积区。如果反应为放热反应,r H m为负,则应控制源区温度T2 小于沉积区温度T1,这样才能实现物质由源区向沉积区得转移。如果r H m近似为0, 则不能用改变温度的方法来进行化学转移。 9低温合成中,低温的控制主要有两种方法:①恒温冷浴②低温恒温器 10高压合成:就是利用外加的高压力,使物质产生多型相转变或发生不同物质间的化合,从而得到新相,新化合物或新材料。 种类:①静态高温高压合成方法②动态高温高压合成方法 第2 章:软化学合成方法 1软化学合成方法: 通过化学反应克服固相反应过程中的反应势垒,在温和的反应条件下和缓慢的反应进程中,以可控制的步骤逐步地进行化学反应,实现制备新材料的方法。2软化学法分类:溶胶——凝胶法,前驱物法,水热/ 非水溶剂热合成法,沉淀法,支撑接枝工艺法,微乳液法,微波辐射法,超声波法,淬火法,自组装技术,电化 3绿色化学:主要特点是“原子经济性” ,即在获取新物质的转换过程中充分利用原料中的每个原子,实现化学反应中废物的“零排放” 。因此,既可充分利用资源又不污染环境。 4软化学与绿色化学的关系:两者关系密切,但又有区别。软化学强调的是反应条件的温

新材料合成制备技术知识点

第一部分无机合成的基础知识 知识点:溶剂的作用与分类 例如:根据溶剂分子中所含的化学基团,溶剂可以分为水系溶剂和氨系溶剂根据溶剂亲质子性能的不同,可将溶剂分为碱性溶剂、酸性溶剂、两性溶剂和质子惰性溶剂。 例如:丙酮属于()溶剂:A 氨系溶剂 B 水系溶剂 C 酸性溶剂 D 无机溶剂 进行无机合成,选择溶剂应遵循的原则: (1)使反应物在溶剂中充分溶解,形成均相溶液。 (2)反应产物不能同溶剂作用 (3)使副反应最少 (4)溶剂与产物易于分离 (5)溶剂的纯度要高、粘度要小、挥发要低、易于回收、价廉、安全等 试剂的等级及危险品的管理方法 例如酒精属于() A 一级易燃液体试剂B二级易燃液体试剂C三级易燃液体试剂D四级易燃液体试剂 真空的基本概念和获得真空的方法

低温的获得及测量 高温的获得及测量 第二部分溶胶-凝胶合成 溶胶-凝胶法:用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解/醇解、缩聚化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了

失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 金属醇盐是介于无机化合物和有机化合物之间的金属有机化合物的一部分,可用通式M(OR)n来表示。M是价态为n的金属,R代表烷基。 *金属醇盐可看作是醇ROH中羟基的H被金属M置换而形成的一种诱导体 *金属氢氧化物M(OH)n中羟基的H被烷基R置换而成的一种诱导体。 *金属醇盐具有很强的反应活性,能与众多试剂发生化学反应,尤其是含有羟基的试剂。 例如:关于溶胶-凝胶合成法中常用的金属醇盐,以下说法错误的是(D ) A金属醇盐可看作是醇ROH中羟基的H被金属M置换而形成的一种诱导体 B金属醇盐可看作是金属氢氧化物M(OH)n中羟基的H被烷基R置换而成的一种诱导体。 C金属醇盐具有很强的反应活性,能与众多试剂发生化学反应,尤其是含有羟基的试剂。 D 异丙醇铝不属于金属醇盐 溶胶-凝胶合成法的应用 溶胶一凝胶法作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中占有重要地位。在制备玻璃、陶瓷、薄膜、纤维、复合材料等方面获得重要应用,更广泛用于制备纳米粒子。 溶胶与凝胶结构的主要区别: 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,粒子自由运动,分散的粒子大小在1~1000nm之间,,具有流动性、无固定形状。凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,无流动性,有固定形状。 溶胶-凝胶合成法的特点: (1)能与许多无机试剂及有机试剂兼容,通过各种反应物溶液的混合,很容易获得需要的均相多组分体系。反应过程及凝胶的微观结构都较易控制,大大减少了副反应,从而提高了转化率,即提高了生产效率。 (2)对材料制备所需温度可大幅降低,形成的凝胶均匀、稳定、分散性好,从

材料合成与制备

仅供参考, 1.单晶:即结晶体内部的微粒在三维空间呈有规律地、周期性地排列。或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。 2.非晶:组成物质的原子、分子的空间排列不呈周期性和平移对称性,晶态的长程有序受到破坏,仍然保持形貌和组分的某些有序特征而具有短程有序,这样一类特殊的物质状态统称为非晶态。 3.真空蒸镀:真空蒸镀是将待成膜的物质置于真空中进行蒸发或升华,使之在工件或基片表面析出的过程。 4.溅射成膜:溅射是指荷能离子轰击靶材,使靶材表面原子或原子团逸出的现象。逸出的原子在工件表面形成与靶材表面成分相同的薄膜。这种制备薄膜的方法称为溅射成膜。 5.化学气相沉积:当形成的薄膜在基片表面与其他组分发生化学反应,获得与原成分不同的薄膜材料,这种存在化学反应的气相沉积称为化学气相沉积。 6.三温度法:在制备薄膜时,必须同时控制基片和两个蒸发源的温度,所以也称三温度法。 7.超晶格薄膜:超晶格的概念始于半导体超晶格,半导体超晶格是将两种或两种以上组分不同或导电类型不同的极薄半导体单晶薄膜交替地外延生长在一起形成的周期性结构材料。8.热等静压:热等静压是用惰性气体作为传递压力的介质,将原料粉末压坯或将装入包套的粉料放入高压容器中,降低烧结温度,避免晶粒长大,获得高密度、高强度的陶瓷材料。9.原位凝固:原位凝固就是指颗粒在悬浮液中的位置不变,靠颗粒之间的作用力或者悬浮体内部的一些载体性质的变化,从而使悬浮体的液态转变为固态。 10.巨磁阻薄膜:材料的电阻率将受材料磁化状态的变化而呈现显著的变化。 11.溶胶-凝胶法:是指有机或无机化合物经过溶液、溶胶、凝胶而固化,在经过高温热处理而制成氧化物或其他化合物固体的方法。 12.LB薄膜:是一种超薄有机薄膜,即在水-气界面上将不溶解有机分子或生物分子加以紧密有序排列,形成单分子膜,然后再转移到固体表面上。 1.试说明再结晶驱动力。 答:用应变退火方法生长单晶,通常是通过塑性变形,然后在适当的条件下加热等温退火,温度变化不能剧烈,结果使晶粒尺寸增大。 对于未应变到应变,根据热力学第一定律,有: △E1-2=W—q;△H1-2=△E1-2+△(pV)由于△(pV)很小,近似得:△H1-2=△E1-2 △G1-2= =W—q—T△S 低温下T△S可忽略,故△G1-2≈W—q 即产生应变时,发生的自由能变化近似等于做功减去释放的热量。该热量通常就是应变退火再结晶的主要推动力。 应变退火再结晶的推动力公式为:△G=W—q+Gs+△G0 2.简述Walff定理的基本内容。 答:在恒温恒压下,一定体积的晶体处于平衡态时,其总界面自由能为最小,也就是说,趋

材料合成与制备期末复习题

第零章绪论 1.材料合成:材料合成是指促使原子或分子构成材料的化学或物理过 程; 2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的 材料,但材料制备还包括在更为宏观的尺度上控制材料的 结构,使其具备所需的性能和使用效能。 3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满 足各种构件、物品或仪器等物件的日益发展的需求。 4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、 低维化、低成本化、绿色化; 5.影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的 混乱度因素; 6.隔离系统总是自发的向着熵值增加的方向进行。 7.论述反应速率的影响因素: (1)浓度对反应速率的影响: 对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比; (2)温度对反应速率的影响: 对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热,则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热

反应;对于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。实际生产中,要综合考虑单位实际内的产量和转化率同时进行; (3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。溶剂最重要的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物,不论它是否稳定,都会使反应速率加快。 第一章溶胶-凝胶法 1.溶胶(Sol)是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。 2.凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体。 3.溶胶-凝胶法:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,通过抑制各种化学反应条件,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 4.粒子间的两个力:(1)颗粒间的范德华力;(2)双电层静电排斥能 5.增加粒子间能垒通常有三个基本途径:(1)使胶粒带表面电荷;(2) 利用空间位阻效应;(3)利用溶剂化效应。 6.由溶胶制备凝胶的具体方法:

新材料合成与制备

新材料合成与制备

1 前沿 纳米材料和纳米科技被广泛认为是二十一世纪最重要新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《 Nanostructured Materials 》正式出版, 标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima 首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991 年开始把纳米技术列入“政府关键技术”, 我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目[1]。所以,纳米材料的制备在当前材料科学研究中占据极为重要的位置,新的材料制备工艺和过程的研究对纳米材料的微观结构和性能具有重要的影响。制备出清洁、成分可控、高密度( 不含微孔隙) 的粒度均匀的纳米材料是制备合成工艺研究的目标。因此,如何控制及减少纳米材料尤其是界面的化学成分及均匀性、以及如何控制晶粒尺寸分布是制备工艺研究的主要课题[2]。 2 纳米材料的特性及其特性[3] “纳米材料”的命名出现在20世纪80年代,它是指三维空间中至少有一维处于1nm -100nm 或由它们作为基体单元构成的材料。 2.1 纳米材料的分类 纳米材料按维数可分为三类: (1)零维,如纳米尺度颗粒、原子团簇等;(2)一维,如纳米丝、纳米棒、纳米管等;(3)二维,如超薄膜、多层膜、超晶格等。按照形态一般分为四类:(1)纳米颗粒型材料;(2) 纳米固体材料;(3) 颗粒膜材料;(4) 纳米磁性液体材料。 2.2 纳米材料的特性 纳米材料具有普通材料所不具备的三大效应: (1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或

无机材料合成与制备复习纲要

料合成与制 备复习纲要 我们不是抄答案,我们只做知识的搬运工。 ——无机复习提纲编辑协会宣言 试卷构成: 填空:15 分 选择:7*2=14 分(共7 题,一题2 分)名词解释:5*3=15 分(共5 题,一题3 分)问答题:8+12*4=56(第一题8 分,其余四道题每题12 分)注:划线知识点为李老师审阅后所加,疑为重点,望各位复习时多加注意第1 章:经典合成方法 1实验室常用的加热炉为:高温电阻炉 2电炉分为:电阻炉,感应炉,电弧炉,电子束炉 3电阻发热材料的最高工作温度:硅碳棒1400C、硅化钼棒1700 C、钨丝1700C 真空、 5氧化物发热体:在氧化气氛中,氧化物发热体是最为理想的加热材料。 6影响固相反应的因素: (1)反应物化学组成与结构,反应物结构状态物颗粒尺 2)反应寸及分布影响。 7化学转移反应:把所需要的沉积物质作为反应源物质,用适当的气体介质与之反应,形成一种气态化合物,这种气态化合物通过载气输运到与源区温度不同的沉积区,再发生逆反应,使反应源物质重新沉积出来,这样的反应过程称为化学转移反应。 8化学转移反应条件源区温度为T2,沉积区温度为T1 :如果反应是吸热反应, 则r H m为正,当T2> T1时,温度越高,平衡常数越大,即从左往右反应的平衡常数增大,反应容易进行,物质由热端向冷端转移,即源区温度应大于沉积区温度,物质由源区转移至沉积区。如果反应为放热反应,r H m为负,则应控制源 区温度T2小于沉积区温度T1,这样才能实现物质由源区向沉积区得转移。如果r H m近似为0,则不能用改变温度的方法来进行化学转移。 9低温合成中,低温的控制主要有两种方法:①恒温冷浴②低温恒温器 10高压合成:就是利用外加的高压力,使物质产生多型相转变或发生不同物质间的化合,从而得到新相,新化合物或新材料。 种类:①静态高温高压合成方法②动态高温高压合成方法第2章:软化学合成方法 1软化学合成方法: 通过化学反应克服固相反应过程中的反应势垒,在温和的反应条件下和缓慢的反应进程中,以可控制的步骤逐步地进行化学反应,实现制备新材料的方法。 2软化学法分类:溶胶——凝胶法,前驱物法,水热/ 非水溶剂热合成法,沉淀

材料合成与制备

第1章溶胶-凝胶法(Sol-gel method) ?胶体:分散相粒径很小的胶体体系,分散相质量忽略不计, 分子间作用力主要为短程作用力. ?溶胶(Sol)是具有液体特征的胶体体系,分散的粒子 是固体或者大分子,分散的粒子大小在1~100nm之间。 ?凝胶(Gel)是具有固体特征的胶体体系,被分散的物 质形成连续的网状骨架,骨架空隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间。 ?溶胶-凝胶法:就是用含高化学活性组分的化合物作前 驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 ?水解度:是水和金属醇盐的物质的量之比。 ?老化时间:从凝胶开始到凝胶干燥前的时间称为老化时 间 ?利用溶胶凝胶法制备陶瓷粉体材料所具有的优点? 1.工艺简单,无需昂贵设备; 2.对于多组元系统,该法可以大大增加化学均匀性; 3.易于控制,凝胶微观结构可调控; 4.掺

杂范围广,化学计量准确,易于改性;5产物纯度高,烧结温度低. 第二章水热与溶剂热合成 ?水热法(Hydrothermal Synthesis),是指在特制的密闭反 应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 ?溶剂热法(Solvothermal Synthesis):将水热法中的水 换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 ?原为结晶:当选用常温常压下不可溶的固体粉末、凝胶 或沉淀为前驱物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变为结晶态。 ? 一。溶剂热合成的优点: 1.在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水中氧的污染; 2.非水溶剂的采用使得溶剂热法可选择原料范围大大扩

材料制备新技术考试复习重点说课讲解

⑴实现快速凝固的途径有哪些? 答:动力学急冷法,热力学深过冷法,快速定向凝固法。 ⑵简述金属粉末的快速凝固方法及工艺特点? 答:方法:利用雾化制粉方法实现金属粉体的快速凝固,工艺特点:①水雾化法:水雾化法粉末的形状不太规则②气雾化法:粉末细小,均匀,形状相对规整,近视球形,粉末收得率高③喷雾沉积法:除具有快速凝固的一般特征外,还具有把雾化制粉过程和金属成形结合起来,简化生产工艺,降低生产成本,解决了RS∕PM法中粉末表面氧化的问题,消除了原始颗粒界面对合金能的不利影响。 ⑶用单辊法制备金属带材的快速凝固工艺特点是什么? 答:①单辊需要以2000~10000r∕min的高速度旋转,同时要保证单辊的转速均匀性很高,径向跳动非常小,以控制薄膜的均匀性②为了防止合金溶液的氧化,整个快速凝固过程要在真空或保护性气氛吓死进行③为了获得较宽并且均匀的非晶合金带材,液流必须在单上均匀成膜,液流出口的设计及流速的控制精度要求很高。 ⑷常用金属线材的快速凝固方法有哪些?他们的工艺特点是什么? 答:玻璃包覆熔融纺线法:容易成型连续等径,表面质量改的线材。合金溶液注入快冷法:装置简单。旋转水纺线法:原理和装置简单,操作方便,可实现连续生产。传送带法:综合了合金注入液体冷却法和旋转液体法,可实现连续生产。 ⑸喷射成型的基本原理是什么?其基本特点是什么? 基本原理:在高速惰性气体(氩气和氦气)的作用下,将熔融的金属盒合金液流雾化成弥散的液态颗粒,并将其喷射到水冷的金属沉积器上,迅速形成高度致密的预成形毛坯。 特点:高度致密,低含氧量,快速凝固的显微组织特征,合金性能搞,工艺流程短,高沉积效率,灵活的柔性制造系统,近终形成形,可制备高性能金属基复合材料。 ⑹气体雾化法是利用气体的冲击力作用于熔融液流,使气体的动能转化为熔体的表面,从而形成细小的液滴并凝固成粉末颗粒。 ⑻ ⑺喷射成形又称喷射雾化沉积或喷射铸造等是用快速凝固方法制备大块,致密材料的高新技术,它把液态金属的雾化(快速凝固)和雾化熔滴的沉积(熔滴动态致密化)自然结合起来。 ⑺喷射成型的四个阶段:雾化阶段,喷射阶段,沉积阶段,沉积提凝固阶段。 ⑻雾化喷射成形工艺一般采用惰性气体。 ⑼喷射成形装置的技术关键主要包括装置总体布局,雾化喷嘴,沉积器结构,和运动方式。⑽装置结构布局:倾斜布局,垂直布局,水平布局。 ⑾喷射成形关键装置时什么?雾化喷嘴系统 ⑿喷射成形装置应包括:含熔炼部分,金属导流系统,雾化喷嘴,雾化气体控制系统,沉积器及其传动系统,收粉及排气系统。 共喷射成形的技术特点和工艺? 答:技术特点:共喷射沉积技术是在基体材料合金液喷射沉积工艺的基础上,将增强颗粒加入到雾化的合金液流中,使两者同时沉积,获得复合材料的技术。 工艺:在合金液雾化喷嘴附近将增强颗粒引入合金雾化中并沉积成锭。未被沉积的雾化合金液在飞行中凝固,并与偏离沉积方向的增强颗粒一起被循环气流带人收集室获得混合的粉末回收料。 ⒀机械合金化的定义和球磨机理是什么? 答:①是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈冲击,碰撞,使粉末颗粒反复产生冷焊,断裂,导致粉末颗粒中原子扩散,从而获得合金粉末的一种粉末制备技术。②金属粉末在长时间的球磨过程中,颗粒的破碎和团聚贯穿于整个过程,在这一

相关文档