文档库 最新最全的文档下载
当前位置:文档库 › 关于美嘉欣飞机摄像头口原理---加辅助通道方法

关于美嘉欣飞机摄像头口原理---加辅助通道方法

关于美嘉欣飞机摄像头口原理---加辅助通道方法

关于美嘉欣遥控直升机摄像头口的工作原理

见很多机友对摄像口非常好奇希望能开发这个辅助通道使用于是花了点时间琢磨可以肯定的告诉大家这个插口可以作为辅助通道使用对于T40、T29、T45、T49这类稍大点的机可以挂载其他设备实现遥控控制

起初把这个插口想的太过复杂之前成功改造的玩家藏着掖着不愿说美嘉欣技术又不肯透露半点猜测可能是通信协议一类于是就翻出示波器摸索。。

因为之前拆过C4002 确定红黑是电源绿色是控制无疑这样就开交流用探头直接测黑绿两颗线按航拍键屏幕上闪过一个短正向脉冲再按一下是个反向脉冲心中大喜心想只要是电平信号就完全可以使用准备下结论发帖时无意中换了直流档真相出来了按一下按钮绿以红为地输出3.3v高电平再按是关断至此真相大白了!!这里要说明一点美嘉欣用红线做地线很有迷惑性进一步研究发现航拍功能是由主控单片机内置的触发器实现也就是说只要给摄像头黑线供电5V 绿线供电3.3V c4002可以做一个独立的插卡监控探头注:可以用1117-3.3获得3.3v电压

之前用交直流两档测试结果表明这个插口玩法会非常多大家如果有开发此口想法一定有问必答但是强烈不建议用它发射火器害人害己恕不能告知方法

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

飞机总体设计大作业教学提纲

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章 J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2.3.1 零升阻力的估算.......................................12 2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章 J-22飞机部件设计...........................................20

航空发动机原理

航空发动机原理 航空发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,航空发动机已经形成了一个种类繁多,用途各不相同的大家族。 航空发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,航空发动机可分为两类 1、吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 2、火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为 1、直接反作用力发动机 直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 2、间接反作用力发动机两类。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。 附图: 活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。 为航空器提供飞行动力的往复式内燃机。发动机带动空气螺旋桨等推进器旋转产生推进力。 从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。40

发电机原理图解

固定磁场交流发电机原理模型 发电机是根据电磁感应原理来发电的,发电机首先要有磁 场,现在用一对磁铁来产生发电机的磁场,磁力线从北极到南 极。 在磁场内放入矩形线圈,线圈两端通向两个滑环,滑环通过 电刷连接到输出线上,输出线端连有负载电阻。 当线圈旋转时,根据电磁感应原理,线圈两端将会产生感应 电动势,当磁场是均匀的,矩形线圈作匀速旋转时,感应电势 按正弦规律变化,在负载电阻上有正弦交流电通过。动画中绿 色小球运动的方向表示感应电流的方向、运动的速度表示感应 电流的大小。 旋转磁场交流发电机原理模型 在这个模型中磁场是不动的,线圈在磁场中旋转产生感应电 势。在实际发电机中产生感应电势的线圈是不运动的,运动的 是磁场。产生磁场的是一个可旋转的磁铁,也就是转子,线圈 在磁铁外围,与磁铁转轴同一平面。当磁铁旋转时产生旋转磁 场,线圈切割磁力线产生感应电动势。 由于空气的磁导率太低,在旋转磁铁的外围安上环型铁芯, 也就是定子,可大大加强磁铁的磁感应强度。在定子铁芯的内 圆有一对槽,线圈嵌装在槽内。为了看清线圈电流与转子的运 动关系,把定子变成半透明的。当磁铁旋转时,线圈切割磁力 线感生交流电流。 真正发电机的转子是电磁铁,转子上绕有励磁线圈,通过滑 环向励磁线圈供电来产生磁场。把定子与线圈安在转子外围, 一个单相交流发电机原理模型就组成了。 转子作匀速旋转时,线圈就感生交流电流,画面中绿色小球 运动的方向表示感应电流的方向、运动的速度表示感应电流的 大小。 三相交流发电机原理模型

实际应用的都是三相交流发电机,其定子铁芯的内圆均匀分布着6个槽,嵌装着三个相互间隔120度的同样线圈,分别称之为A相线圈、B相线圈、C相线圈。装上转子就组成了一台三相交流发电机原理模型。 画面中的三相交流发电机采用星形接法,三个线圈的公共点引出线是中性线,每个线圈的引出线是相线。 当转子匀速旋转时三个线圈顺序切割磁力线,都会感生交流电动势,其幅度与频率相同。由于三个线圈相互间隔120度,它们感应电势的相位也相差120度。在画面上有每根相线的输出电势波形。 汽轮发电机的构造 这里介绍汽轮发电机的构造,是由蒸汽轮机或燃气轮机推动的发电机。发电机主要由转子与定子组成,由于汽轮机的转速很高,故汽轮发电机的转子是两极的,额定转速每分钟3000转,输出50赫兹的三相交流电。 这是转子铁芯构造示意图,在铁芯圆周上开有一些槽,嵌有励磁绕组,在圆周两侧各有一段槽距大的面称为大齿,就是磁极(图1所示)。励磁绕组两端通过集电环(滑环)接到励磁电源,在转子圆周两侧就形成北极与南极,旋转时就产生旋转磁场。 由于转子圆周上没有凸出的磁极(不像原理模型中的转子),称之为隐极式转子。 图2为嵌有励磁绕组的转子模型,为降低发电机的温度,在转子两端还装有风扇。 定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽(图3所示)。 在槽内嵌放定子的三相绕组。每相绕组由多个线圈组成,按一定规律对称排列。(图4所示)。使定子铁芯透明可看清绕组的分布(图4所示)。 转子插在定子内部,定子与转子的相对位置如图5所示。 定子固定在发电机的机座(外壳)内,转子由机座两端的轴承支撑,可在定子内自由旋转。集电环在机壳外侧,和碳刷架一同装在隔音罩内。在发电机外壳下方有发电机出线盒,发出的三相交流电从这里引出(图6所示)图7是发电机外观图 下载动画可观看发电机结构动画。 多磁极发电机原理模型 多磁极发电机的转子有多对磁极, 图1是有3对磁极的转子模型。由于每个磁极都是从转子上明显凸起,称之为凸极式转子。每个磁极上都 绕有励磁线圈,形成南北相间的6个磁极,励磁电源通过滑环向励磁线圈供电。 该模型的转子有3对磁极,旋转一周磁场将循环3个周期,每旋转120度磁场变化1个周期。定子内园周有 18个槽

飞机总体设计课程设计解析

南京航空航天大学 飞机总体设计报告——150座级客机概念设计 011110XXX XXX

设计要求 一、有效载荷 –二级布置,150座 –每人加行李总重,225 lbs 二、飞行性能指标 –巡航速度:M 0.78 –飞行高度:35000英尺 –航程:2800(nm) –备用油规则:5%任务飞行用油+ 1,500英尺待机30分钟用油+ 200海里备降用油。 –起飞场长:小于2100(m) –着陆场长:小于1650(m) –进场速度:小于250 (km/h)

飞机总体布局 一、尾翼的数目及其与机翼、机身的相对位置 (一)平尾前、后位置与数目的三种形式 1.正常式(Conventional) 优点:技术成熟,所积累的经验和资料丰富,设计容易成功。 缺点:机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大 采用情况:现代民航客机均采用此布局,大部分飞机采用的位移布局形式2.鸭式(Canard) 优点:1.全机升力系数较大;2.L/D可能较大;3.不易失速 缺点:1.为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角; 2.前翼应先失速,否则飞机有可能无法控制 采用情况:轻型亚音速飞机及军机采用 3.无尾式( Tailless ) 优点:1.结构重量较轻:无水平尾翼的重量。 2.气动阻力较小——由于采用大后掠的三角翼,超音速的阻力更小 缺点:1. 具有稳定性的无尾飞机进行配平时,襟副翼的升力方向向下,引起升力损失 2. 起飞着陆性能不容易保证 采用情况:少量军机采用 综上所述,采用正常式尾翼布局 (二)水平尾翼高低位置选择 (a) 上平尾(b) 中平尾(c) 下平尾(d) 高置平尾(e) “T”平尾 选择平尾高低位置的原则 1.避开机翼尾涡的不利干扰:将平尾布置在机翼翼弦平面上下不超过5%平均气动力弦长的位置,有可能满足大迎角时纵向稳定性的要求。 2.避开发动机尾喷流的不利干扰 综合考虑后,选择上平尾 (三)垂尾的位置和数目 位置 - 机身尾部 - 机翼上部

各类飞机引擎原理

各类飞机引擎原理飞机引擎 飞机引擎

飞机引擎的发动原理 前言 汽车在高速公路上定速行驶於平坦路面上所消耗的汽油,主要都是用来克服空气阻力。在空中飞行的飞机同样承受阻力,因此飞机必须有「推进系统」,否则阻力将使飞机愈来愈慢终至坠毁。飞机的推进系统常见的有「往复式内燃机」和「涡轮引擎」二类。 「往复式内燃机」是最传统的飞机动力源,莱特兄弟的第一架飞机就是采用四冲程的内燃机。通常是使用螺旋桨把往复式内燃机的输出马力转变成推进力。「涡轮引擎」可分为:「涡轮喷射」、「涡轮扇喷射」和「涡轮轴引擎」三大类。 往复式内燃机和汽车、机车使用者的原理相同,除了模型飞机之外,绝少使用二冲程引擎者。四冲程引擎分为进气、压缩、爆炸、排气四个冲程,其原理在今日已成常识,不多说明。「涡轮引擎」由前面吸入空气,经由压缩器增压之后,即将油与气混合并於燃烧室引燃。燃烧后的高温排气流经涡轮产生转动的力量,此力量经过传动轴去驱动压缩器。此时排气仍含有甚多热能,即经由喷嘴高速喷出,依反作用定律产生推力。上述为「涡轮喷射引擎」。 扇式喷射是把压缩器或涡轮叶片延长成为类似较短的螺旋桨叶片。压缩器叶片延长者叫作前扇式,涡轮叶片延长者叫作后扇式。

一般活塞式燃油引擎 强劲的动力和雄浑的引擎声,简直魅力没法挡!与实物相同的机构和工作原理造成强劲转动的模型发动机(俗称模型引擎),它本身可以说是模型爱好者梦寐以求的东西。事实上,翻开无线电遥控模型的历史,可知机动模型的出现要早过电动模型,强劲的动力打破了传统模型那种冷漠的面孔,为模型的发展注入新的生命力。再者,燃油之消耗可由目测判断,它与电动模型不同,操纵者能正确估计模型之正确动作时间,燃油用完後只需加油,模型又能重新奔驰或飞翔。总之,机动模型予人明快,爽朗的印象。 如上图所示:无线电遥控模型用的发动机与实物一样,既有2冲程发动机,也有4冲程发动机,甚至还有转子发动机和喷射发动机。因为零件配换等问题,建议采用2冲程或4冲程的电热式发动机(glow engine),电热式发动机不需要复杂的电气机构,具有简单,轻量,易用等优点;而且又能提供强大的动力,所以成为机动模型的最佳动力源。实际上,它的转速超过每分钟30,00转,如其排气量作公升换算,相当於输出200匹马力以上的动力,功率之强劲令人咋舌! 其原因是由於采取电热(glow)方式,仅仅在起动时让电热塞通电以产生最初的

航空发动机原理试题

《气体动力学基础》试卷 一、 填空(30分,每空1分) 1. 气体密度是指_单位容积内气体的质量_。从微观上讲,密度的大小代表了_气体分子的疏密程度_。气体流过航空发动机的喷管时,其密度的变化规律是__减小__。 2.从微观上讲,气体压力是_大量气体分子无规则运动碰撞器壁的总效应_。在比容一定的情况下,气体温度升高,引起气体压力的变化规律是_增大 。 3.定压比热是指_在压力一定的条件下,1kg 气体温度升高或降低1℃,所需吸收或放出的热量_;定压比热与定容比热的关系式可以写成 R c c v p +=。 4.绝热过程是指 气体在和外界没有任何热交换的前提下,所进行的热力过程 ;在该过程中压力和比容的关系式可以写成k v v p p )(2 112=;该过程的外(容积)功的计算式可以写成)(1 11122v p v p k l --=。 5.“一维定常流”中“一维”是指_气流参数是一维坐标的函数_。 6.可压流的连续性方程可以写成 常数=V A ρ ,它说明_在一维定常流的条件下,流过各截面的气体流量相等_。 7. 一维定常流能量(焓)方程的一般形式是 1221222 i i V V l q -+-=±±外 。气体流过发动机的涡轮时,能量方程可以改写成 l V V i i +-=-2 212221 ,此方程表示的能量转换关系是 气体焓的下降,用来对外作功和增加气体的动能 ;气体流过发动机进气道时,能量方程可以改写成常数=+2 2 V i ,此方程表示的能量转换关系是_焓和动能之和保持不变 。 8.滞止压力(总压)是指_理想绝能条件下,将气流滞止到速度为零时的压力_。气体流过发动机的进气道时,在不考虑流动损失的情况下,总压的变化规律是 不变_的。

飞行器设计与工程专业(卓越工程师)培养方案

飞行器设计与工程专业(卓越工程师)2017级本科培养方案一、专业简介 飞行器设计与工程专业依托航空宇航科学与技术学科及力学学科,将无人机、通用航空飞机、民用航空飞机、战斗机等飞行器作为重点对象,具有突出的专业特色。现具有专职教师9名,其中副教授2名,讲师7名,硕士生导师5名。近年来,完成多项省、市、国家级科研课题,完成航天科技集团、航天科工集团、中国商用飞机有限公司等重点专项课题,建立航空航天工程学部“创新飞行器设计实践基地,学生在实践基地完成创新型飞行器设计、制造和控制仿真等实践工作。 本专业注重工程教育与工程训练相结合,注重对学生创新精神和实践能力的培养,特别是在加强学生工程实践能力和综合能力培养方面取得了很好的实效,得到有关用人单位的高度评价。多年来招生和就业情况良好。 二、培养目标及服务面向 培养适应社会主义现代化建设和国家战略性航空航天产业迅猛发展需要的德、智、体、美等全面发展,具备较好的数学、力学基础知识和航空航天工程基本理论,具有较强的工程实践能力、技术创新意识、工程管理能力和综合素质的高级工程技术人员和研究人员。 毕业生应掌握空气动力、飞行器总体设计、强度分析、结构设计和飞行力学等方面的专业知识,熟悉间飞行器设计与制造相关领域的新技术,能够在航空航天企业、民航部门、科研院所、通用航空及相关领域中从事科研、设计、制造和开发等高级工程技术和管理方面的工作。 三、培养要求 1、具有较强的社会责任感、较好的人文素养和良好的职业道德,健全的人格和健康的体魄; 2、具有从事领域工作所需的自然科学知识和社会科学知识; 3、系统地掌握本专业领域宽广的基础知识,掌握飞行器设计基础、力学基础、机械设计、自动控制原理、电工与电子技术等方面的基础理论。 4、掌握本专业领域内所需的飞行器设计的空气动力、强度分析、结构设计和

飞机总体设计大作业

飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速:0.7Ma 最大飞行高度:10000m 航程:2300km 待机时间:45分钟 爬升率:0~10000m<25分钟 起飞距离:1600m 接地速度<220km/h 一、相近飞机资料收集: 二、飞机构型设计 正常式布局:技术成熟,所积累资料丰富 T型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数0.7,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波

阻 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a=576.4kts=296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) –升阻比L/D =14 3.根据Breguet 航程方程: ? ?? ? ? ??? ??= D L M C a R a n g e W W f i n a l i n i t i a l )l n ( 代入数据: Range = 1242nm ; a = 581 Knots (巡航高度35000ft) C = 0.5lb/hr/l b (涵道比为5) L/D = 14 M = 0.7 计算得: 115 .1=f i n a l i n i t i a l W W

2013级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) A.85-90% B.10-15% C.25% D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形10.气流流过亚音速进气道时,( D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由( C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的( C )。 A相对速度增加, 压力下降B绝对速度增加, 压力下降

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

超音速客机概念设计项目组工作报告

超音速客机的概念设计——团队工作报告 专业名称航空学院—飞行器设计与工程 团队成员龚雪淳潘环龚德志李亮 指导教师张科施杨华保李斌宋科范宇 完成时间 2008年6月15日

摘要 本项目是进行一款新型的超音速客机的概念设计,项目团队成员由来自西北工业大学航空学院2004级飞行器设计与工程专业的四名本科生及四名指导教师和一名研究生组成。 该项目完成了一款载客量200人,巡航马赫数2.0,航程10000~12000公里的超音速客机概念设计。项目团队成员分别是龚雪淳(团队组长)、潘环、龚德志、李亮,项目指导教师分别是杨华保、张科施、李斌、宋科、范宇。 21世纪,人类对航空器的研究将更加关注,航空技术将成为世界各个国家经济发展的一个最重要的标志!5年前,“协和”客机最后一次让乘客感受突破音障的激动瞬间,由于事故频发,这种高科技产物被迫退出历史舞台。然而,人类追逐超音速旅行的梦想并没有像流星一样,一闪即逝。现在,包括美国、英国、法国、日本、中国、俄罗斯等在内的多个具有航空研发能力的国家都在积极投入大量经费,来研制自己的超音速客机方案,以求在未来的航空领域中占有一席之地,一场没有硝烟的战争已经打响。 通过该项目的团队合作研究,提高了我们的创新能力和分析问题、解决问题的能力,培养了我们严谨认真的工作态度和团队协作的精神,让我们懂得了团队的重要性,懂得了如何与人沟通,协作。同时,项目的实施也让我们提前适应了将来的工作模式和工作氛围,认识上更进一层。

目录 摘要 (1) 第一章项目简介 (3) 1.1 项目选题背景 (3) 1.2 项目团队成员及指导老师情况 (5) 1.3 项目创新点与特色 (6) 1.4 项目成员工作协调情况介绍 (7) 第二章项目研究成果 (8) 2.1 总体研究成果 (8) 2.2 气动研究成果 (12) 2.3 结构研究成果 (14) 2.4 人机环境与关键技术研究 (18) 2.5 项目成果评价 (20) 总结与体会 (21) 附录Ⅰ项目团队例会记录单 (25) 附录Ⅱ设计参数更改记录单 (34)

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 8.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 9.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 10.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 11.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 12.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 13.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 14.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源; 采用单个燃油喷嘴,燃油—空气匹配不够好; 火焰筒刚性差;

航空发动机原理[1]

1. 涵道比:外涵道与内涵道空气流量的比值 2. 增压比:压气机出口静压与周围大气压力之比 3. 加热比:燃烧室出口温度与外界大气温度之比 4. 热效率:加入每千克空气的热量中所产生的可用功与所加热量之比 5. 比功:单位质量空气所做的功 6. 最佳增压比:使比功达极大值的增压比 7. 最经济增压比:使热效率达极大值的增压比 8. 有效推力:从计算推力中扣除附加阻力,波阻,外表摩擦阻力后得到的发动机实际推力 9. 单位燃油消耗率:每小时产生1N推力所消耗的燃油量 10. 总效率:加入发动机的燃料完全燃烧所放出的热量转变为推进功的量 11. 攻角:流入叶栅的气流方向与叶型中弧线前缘切线之间的夹角 12. 喘振裕度:压气机的工作点与喘振边界线之间的距离值 13. 巡航状态调节规律;在一定的飞行状态下,发动机从最大工作状态减小推力的循环规律 14. 发动机压比:涡轮后压力与压气机进口压力之比 15. 对转涡轮:使高低压涡轮相反旋转而省去低压涡轮导向器 16. 燃气发生器:各类燃气轮机的热机部分,包括压气机,燃烧室,带动压气机的那一部分 涡轮 17. 旋转失速:在地面观察时,失速区附着在压气机工作轮上以较低转速,相同方向旋转运 动 18. 转速悬挂:由于燃油增加过猛使发动机转速停滞在某一转速上无法上升的现象 19. 复燃加力:在涡轮后面再喷入燃油进行燃烧 20. 功分配系数:传给外涵可用功与全部可用功之比 1. 理想燃气轮机循环的3个结论 答:①热效率只与增压比有关,随增压比增大而单调增加 ②在加热比一定的条件下,存在最佳增压比。最佳增压比随加热比的增加而增大③在增压比相同的条件下,比功随加热比增大而增加 2. 实际燃气轮机循环的4个结论 答:①热效率与增压比,加热比都有关 ②存在最经济增压比 ③在加热比一定的条件下,存在最佳增压比。实际循环增压比小于理想循环增压比。各增压比下,实际循环比功都小于理想循环比功 ④加热比越大,热效率越大,最佳增压比和最经济增压比也越高 3.双轴发动机的优点

飞机降落曲线课程设计

中北大学理学院 课 程 设 计 题目:飞机降落曲线绘制 课程:数值分析

成员:1408024133 邢栋 1408024129 肖锦柽 目录 一.飞机降落问题介绍 (3) 二、问题分析 (4) 三.实验方法: (5) 方法一(多项式求解) (5) I思路 (5) II程序 (5) III运行结果 (6) IV图像 (6) 方法二(Hermite差值法) (7) I思路 (7) II程序 (7) III运行结果 (7) IV图像 (8) 四.实际案例: (8) 五.设计总结: (9) 六.心得体会: (10)

二.问题分析: 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线.根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线,已知飞机的飞行高度为1000m,开始降落时距原点的横向距离为12000m飞机的着陆点为原点O,且在整个降落过程中,飞机的水平速度始终保持为常数540km/h. 飞机降落图像有:

由此,我们假定降落曲线方程为:且该曲线方程满足已知条件

三.实验方法: 1.方法一(多项式求解): I思路.运用多项式求解方程组(Gauss),即将四个已知条件代入一般三次曲线方程中,得出关于a,b,c,d的新的方程组: II程序.在MATLAB中编写M文件如下: A=[12000^3,12000^2,12000,1;3*12000^2,2*12000,1,0;0 0 1 0;0 0 0 1]; b=[1000;0;0;0]; x=inv(A)*b y=poly2sym(x') x=0:12000; y=vectorize(y) y=eval(y);

飞机总体设计大报告

目录 一、方案设计思想------------------------------------------------------------------------------------ 6 1.1、设计背景----------------------------------------------------------------------------------- 6 1.2、设计理念----------------------------------------------------------------------------------- 7 1.3、设计要求----------------------------------------------------------------------------------- 8 二、总体布局 ------------------------------------------------------------------------------------------ 8 三、飞机主要总体参数确定--------------------------------------------------------------------- 14 3.1、初始重量估算 -------------------------------------------------------------------------- 14 3.1.1、飞机起飞总重的分类 ------------------------------------------------- 14 3.1.2、估算起飞总重的方法 ------------------------------------------------- 15 3.1.3、起飞总重的详细估算过程------------------------------------------- 16 3.1.3.1、确定任务装载重量W PL和机组人员重量 W-------- 16 crew 3.1.3.2、猜测一个起飞总重 W--------------------------------- 17 TO guess W W -------------------------------------- 17 3.1.3.3、计算燃油系数/F TO W W -------------------------------------- 19 3.1.3.4、计算空重系数/E TO 3.1.3.5、迭代公式 -------------------------------------------------------- 21 3.2、飞机升阻特性估算-------------------------------------------------------------------- 22 3.2.1、确定最大升力系数 ---------------------------------------------------- 22 3.2.2、确定零升阻力系数 ---------------------------------------------------- 23 3.2.3、确定升阻比 -------------------------------------------------------------- 26 3.3、飞机推重比和翼载荷的计算 ------------------------------------------------------- 26 3.3.1、推重比的确定 ----------------------------------------------------------- 27 3.3.1.1、根据统计经验值确定推重比------------------------------- 27 3.3.1.2、根据推重比与最大马赫数关系确定推重比 ----------- 27 3.3.1.3、根据保证平飞状态统计确定推重比 --------------------- 28 3.3.1.4、根据爬升性能确定推重比---------------------------------- 29

150座客机总体设计毕业设计论文

南京航空航天大学课程作业题目150座客机总体设计负责人杨天鹏 负责人学号011110715 学院航空宇航学院 专业飞行器设计与工程 班级0111107 指导教师罗东明讲师 二〇一四年十一月

150座客机总体设计 摘要 本课程作业根据设计要求与适航条例进行了150座客机的总体设计,完成了包括全机布局设计,机身外形初步设计,确定主要参数,发动机选择等工作。实践了飞机总体设计的课程相关内容,为进一步进行飞机总体设计课程设计打下基础。 关键词:150座,客机,总体设计

目录 摘要 (ⅰ) 第一章设计要求 (1) 第二章全机布局设计 (2) 2.1 设计要求 (2) 2.2 飞机布局形式设计 (2) 2.3 飞机平尾设计 (3) 2.4 飞机机翼设计 (3) 2.5 机翼位置设计 (4) 2.6 发动机设计 (4) 2.7 起落架设计 (6) 2.8 小结 (6) 第三章机身外形初步设计 (7) 3.1 机身设计要求 (7) 3.2 中机身设计 (7) 3.3 前机身设计 (9) 3.4 后机身设计 (12) 3.5 小结 (12) 第四章飞机主要参数的确定 (13) 4.1飞机重量的估算 (13) 4.2 翼载荷与推重比设计 (15) 4.3 小结 (16) 第五章发动机设计 (18) 5.1 发动机设计要求 (18) 5.2 发动机类型的选择 (18) 5.3 发动机型号选择 (20) 组内分工 (21)

参考文献 (22) 致谢 (23)

第一章设计要求 要求设计150座民用客机,指标如下: (1)有效载荷:每人重75kg,每人行李总重20kg,机组7人,每人重85kg (2)巡航速度:Ma0.8 (3)飞行高度:35000英尺-41000英尺(10.668 km-12.4968km) (4)航程:5500km (5)备用油规则:5%任务飞行用油+ 1500英尺待机30分钟用油+ 200海里备降用油 (6)起飞场长:小于2200m (7)着陆场长:小于1700m (8)进场速度:70m/s 要求经济性高,安全性高,符合客户需求。

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

相关文档
相关文档 最新文档