文档库 最新最全的文档下载
当前位置:文档库 › 北理工_数据分析_实验4_熟悉.net csharp可视化快速编程

北理工_数据分析_实验4_熟悉.net csharp可视化快速编程

北理工_数据分析_实验4_熟悉.net csharp可视化快速编程
北理工_数据分析_实验4_熟悉.net csharp可视化快速编程

北京理工大学

现代数据分析

实验4实验报告

主讲:李明

学生:李经

2012/10/31

实验4数据拟合 (1)

4.1实验目的 (1)

4.1.1初步熟悉.net csharp可视化快速编程。 (1)

4.2实验内容 (1)

4.2.1使用CSharp进行简单的界面编程,实现简单的数据操作 (1)

4.3实验代码及结果 (1)

4.3.1计算a+b^c的值 (1)

4.3.2实现阶乘操作 (3)

(图表页)

图1.初始界面 (2)

图2.进行计算,标题栏和最底部文字框中均显示答案 (2)

图3.菜单栏中含“Run”,单击效果同工具栏“Run”按钮,同“计算”按钮3

图4.初始界面 (4)

图5.进行计算,弹出对话框,显示答案 (4)

图6.点击确定后,标题栏也会显示答案 (5)

图7.工具栏按钮“Run”,单击效果同单击“计算”,同菜单栏中“Task”

中的“Run” (6)

实验4数据拟合

4.1 实验目的

4.1.1初步熟悉.net csharp可视化快速编程。

4.2 实验内容

4.2.1使用CSharp进行简单的界面编程,实现简单的数据操作

1) 设计一个窗体,实现:输入a、b、c,弹出提示为a+b^c的值。Math.Pow

2) 设计一个窗体,实现:输入数字a,弹出提示为a!。

2) 具有菜单、工具条和状态栏。

4.3 实验代码及结果

4.3.1计算a+b^c的值

代码:

namespace WindowsApplication1

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

private void button1_Click(object sender, EventArgs e)

{

int a,b,c;

int result;

a = int.Parse(textBox1.Text);

b = int.Parse(textBox2.Text);

c = int.Parse(textBox3.Text);

result = a + (int)(Math.Pow(b,c));

textBox4.Text = result.ToString();

this.Text = "计算结果为:" + a.ToString() + "+" + b.ToString() + "^" + c.ToString() + "=" + result.ToString();

}

}

}

结果:

图1.初始界面

图2.进行计算,标题栏和最底部文字框中均显示答案

图3.菜单栏中含“Run”,单击效果同工具栏“Run”按钮,同“计算”按钮

4.3.2实现阶乘操作

代码:

namespace WindowsApplication1

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

private void button1_Click(object sender, EventArgs e)

{

int i, j;

j = 1;

for (i = 1; i <= int.Parse(textBox1.Text); i++)

{

j = j * i;

}

MessageBox.Show(j.ToString());

this.Text = "计算结果为:" + int.Parse(textBox1.Text) + "!=" + j.ToString(); }

private void Form1_Resize(object sender, EventArgs e)

{

if (this.Width >= 250 && this.Height >= 150)

{

北京理工大学《数据结构与算法设计》实验报告实验四

《数据结构与算法设计》 实验报告 ——实验四 学院: 班级: 学号: 姓名:

一、实验目的 1. 通过实验实践、巩固线性表的相关操作; 2. 熟悉VC 环境,加强编程、调试的练习; 3. 用C 语言实现线性表的抽象数据类型,实现线性表构造、插入、取数据等基本操作; 4. 理论知识与实际问题相结合,利用上述基本操作实现三种排序并输出。 二、实验内容 从键盘输入10个数,编程实现分别用插入排序、交换排序、选择排序算法进行排序,输出排序后的序列。 三、程序设计 1、概要设计 为了实现排序的功能,需要将输入的数字放入线性表中,进行进一步的排序操作。 (1)抽象数据类型: ADT SqList{ 数据对象:D={|,1,2,,,0}i i a a ElemSet i n n ∈=≥ 数据关系:R1=11{,|,,1,2,,}i i i i a a a a D i n --<>∈= 基本操作: InPut(SqList &L) 操作结果:构造一个线性表L 。 OutPut(SqList L) 初始条件:线性表L 已存在。 操作结果:按顺序在屏幕上输出L 的数据元素。 InsertSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行插入排序。 QuickSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行快速排序。 SelectSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行选择排序。 }ADT SqList ⑵主程序流程 由主程序首先调用InPut(L)函数创建顺序表,调用InsertSort(L)函数进行插入排序, 调用OutPut(L)函数显示排序结果。调用QuickSort(L)函数进行交换排序,调用OutPut(L) 函数显示排序结果。调用SelectSort(L)函数进行选择排序,调用OutPut(L)函数显示排序 结果。 ⑶模块调用关系 由主函数模块调用创建顺序表模块,排序模块与显示输出模块。

数据结构实验4

(一)题目 1. 按下述原则编写快排的非递归算法: (1) 一趟排序之后,若子序列已有序(无交换),则不参加排序,否则先对长度较短的子序列进行排序,且将另一子序列的上、下界入栈保存; (2) 若待排记录数<=3,则不再进行分割,而是直接进行比较排序。 测试实例:{49 38 65 97 76 13 27 49 88 21 105} (二)算法思路 (1) 建立存储序列上下界的栈序列。 (2) 对栈顶作如下判断: A. 若栈顶中记录的头与尾相距小于3,对对应的子序列进行排序,然后出栈,进入(3); B. 若栈顶中记录的头与尾相距大于等于3,则进行分块,判断分块是否有序, a.若两分块都有序,则出栈,进入(3); b.若只有一分块有序,则改变栈顶内容为无序分块内容,进入(3); c.若两分块都无序,则改变栈顶内容为较长的无序块,然后把较短的无序块 压进栈。进入(3) (3)重复(2)的操作,直至栈空,得到最终结果。 (三)程序结构 定义的结构体及声明 (四)源码

using namespace std; typedef struct _stack{ int left; //lowerbound int right; //upperbound struct _stack *next; }qstack; //to store the child sequence's left and right void sort(int *arr, int left, int right){ //sort child sequence less than 3 for(int i = left; i <= right; i++){ int k = i; for(int j = i+1; j <= right; j++){ if(arr[k] > arr[j]) k = j; } if(k != i){ int t; t = arr[k]; arr[k] = arr[i]; arr[i] = t; } } } bool sorted(int *arr, int left, int right){ for(int i = left; i < right; i++){ if(arr[i] > arr[i+1]) return false; } return true; } void qsort(int *arr, int left, int right){ qstack *head; head = new qstack; head->left = left; head->right = right; head->next = NULL; qstack *p; while(head != NULL){ if(head->right - head->left < 3){ //if less than 3, sort and pop sort(arr, head->left, head->right);

数据结构实验三(顺序栈的基本操作)

#include<> #include<> #include<> #define MAXSIZE 100 typedef int DataType; typedef struct stack { DataType data[MAXSIZE]; int top; }sqstack; sqstack *InitStack(sqstack *S)出* 1.顺序栈的初始化*┃\n"); printf("\t┃* * *┃\n"); printf("\t┃************************************************************┃\n"); printf("\t┃* * *┃\n"); printf("\t┃* 2.元素的入栈* 3.元素的出栈*┃\n"); printf("\t┃* * *┃\n"); printf("\t┃************************************************************┃\n"); printf("\t┃* * *┃\n"); printf("\t┃* 4.取栈顶元素* 5.判空*┃\n"); printf("\t┃* * *┃\n"); printf("\t┃************************************************************┃\n"); printf("\t┃* *┃\n"); printf("\t┃* 6.将十进制数转换为其他进制数*┃\n"); printf("\t┃* *┃\n"); printf("\t┃************************************************************┃\n"); printf("\t┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛\n"); while ((m='0')&&(m='1')&&(m='2')&&(m='3')&&(m='4')&&(m='5')&&(m='6')&&(m='7')) { printf("\n请选择你需要操作的步骤(0至7):"); fflush(stdin); scanf("%c",&m); switch(m) { case '0': { exit(0); break; }

数据结构实验

实验2 查找算法的实现和应用?实验目的 1. 熟练掌握静态查找表的查找方法; 2. 熟练掌握动态查找表的查找方法; 3. 掌握hash表的技术. ?实验内容 1.用二分查找法对查找表进行查找; 2.建立二叉排序树并对该树进行查找; 3.确定hash函数及冲突处理方法,建立一个hash表并实现查找。 程序代码 #include using namespace std; int main() { int arraay[10]={1,2,3,4,5,6,7,8,9,10}; int binary_search(int a[10],int t); cout<<"Enter the target:"; int target; cin>>target; binary_search(arraay,target); return 0; } int binary_search(int a[10],int t) { int bottom=0,top=9; while(bottom

cout<<"Not present!"; } return 0; } 结果 二叉排序树 #include #include #include using namespace std; typedef int keyType; typedef struct Node { keyType key; struct Node* left; struct Node* right; struct Node* parent; }Node,*PNode; void inseart(PNode* root, keyType key) { PNode p = (PNode)malloc(sizeof(Node)); p -> key = key;

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 6.0上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>//头文件 #include//库头文件-----动态分配内存空间 typedef int elemtype;//定义数据域的类型 typedef struct linknode//定义结点类型 { elemtype data;//定义数据域 struct linknode *next;//定义结点指针 }nodetype; 2)创建单链表

nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束 { elemtype d;//定义数据元素d nodetype *h=NULL,*s,*t;//定义结点指针 int i=1; cout<<"建立一个单链表"<> d; if(d==0) break;//以0表示输入结束 if(i==1)//建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));//表示指针h h->data=d;h->next=NULL;t=h;//h是头指针 } else//建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t始终指向生成的单链表的最后一个节点

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

北京理工大学数据结构编程练习答案

1.一元多项式相加(10分) 成绩: 10 / 折扣: 0.8 题目说明: 编写一元多项式加法运算程序。要求用线性链表存储一元多项式(参照 课本)。该程序有以下几个功能: 1. 多项式求和 输入:输入三个多项式,建立三个多项式链表Pa、Pb、Pc (提示:调用CreatePolyn(polynomial &P,int m)。 输出:显示三个输入多项式Pa、Pb、Pc、和多项式Pa+Pb、多项式Pa+Pb+Pc (提示:调用AddPolyn(polynomial &Pa, polynomial Pb), 调用 PrintPolyn(polynomial P))。 0. 退出 输入: 根据所选功能的不同,输入格式要求如下所示(第一个数据是功能选择编号,参见测试 用例): ? 1 多项式A包含的项数,以指数递增的顺序输入多项式A各项的系数(整数)、指数(整数) 多项式B包含的项数,以指数递增的顺序输入多项式B各项的系数(整数)、指数(整数) 多项式C包含的项数,以指数递增的顺序输入多项式C各项的系数(整数)、指数(整数) ?0 ---操作终止,退出。 输出: 对应一组输入,输出一次操作的结果(参见测试用例)。 ? 1 多项式输出格式:以指数递增的顺序输出: <系数,指数>,<系数,指数>,<系数,指数>,参见测试用例。零多项式的输出格式为<0,0> ?0 无输出 1.

#include #include using std::cin; using std::cout; using std::endl; struct date { int a; int b; struct date* pnext; }; typedef struct date DATE; typedef struct date* PDATE; void output(PDATE p) { int f=0; p=p->pnext; while(p!=NULL) { if(p->a!=0) { f=1; cout<<"<"<a<<","<b<<">"; if(p->pnext==NULL) cout<pnext; } if(f==0) cout<<"<0,0>"<

数据结构实验报告(四)

《数据结构》实验报告 班级: 学号: 姓名:

实验四二叉树的基本操作实验环境:Visual C++ 实验目的: 1、掌握二叉树的二叉链式存储结构; 2、掌握二叉树的建立,遍历等操作。 实验内容: 通过完全前序序列创建一棵二叉树,完成如下功能: 1)输出二叉树的前序遍历序列; 2)输出二叉树的中序遍历序列; 3)输出二叉树的后序遍历序列; 4)统计二叉树的结点总数; 5)统计二叉树中叶子结点的个数; 实验提示: //二叉树的二叉链式存储表示 typedef char TElemType; typedef struct BiTNode{ TElemType data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree;

一、程序源代码 #include #include #define MAXSIZE 30 typedef char ElemType; typedef struct TNode *BiTree; struct TNode { char data; BiTree lchild; BiTree rchild; }; int IsEmpty_BiTree(BiTree *T) { if(*T == NULL) return 1; else return 0;

} void Create_BiTree(BiTree *T){ char ch; ch = getchar(); //当输入的是"#"时,认为该子树为空 if(ch == '#') *T = NULL; //创建树结点 else{ *T = (BiTree)malloc(sizeof(struct TNode)); (*T)->data = ch; //生成树结点 //生成左子树 Create_BiTree(&(*T)->lchild); //生成右子树 Create_BiTree(&(*T)->rchild); } } void TraverseBiTree(BiTree T) { //先序遍历 if(T == NULL) return;

数据结构 实验报告三

实验三的实验报告 学期: 2010 至_2011 第 2 学期 2011年 3月 27日课程名称: 数据结构专业:信息与计算科学 09 级5班实验编号: 03 实验项目:栈和队列实验指导教师 _冯山_姓名:朱群学号: 2009060548 实验成绩: 一实验目的: (1)熟练掌握栈和队列的抽象数据类型及其结构特点; (2)实现基本的栈和队列的基本操作算法程序。 二实验内容:(类C算法的程序实现,任选其一) (1) 设计与实现基本的堆栈和队列结构下的各种操作(如堆栈的PUSH、POP 等操作)(必做); (2)以表达式计算为例,完成一个可以进行算术表达式计算功能的算法设计 与实现(选做); (3)以迷宫问题为例,以堆栈结构完成迷宫问题的求解算法和程序(选做)。三实验准备: 1) 计算机设备;2)程序调试环境的准备,如TC环境;3)实验内容的算法分 析与代码设计与分析准备。 四实验步骤: 1.录入程序代码并进行调试和算法分析; 2.编写实验报告。 五实验过程 一设计与实现基本的堆栈结构下的各种操作(如堆栈的PUSH、POP等操作)(1)问题描述 实现堆栈各种基本操作,如Pop,Push,GetTop等操作,即输入数据,通过Push入栈,再通过Pop操作输出出栈的元素,即入栈a,b,c,d,出栈d,c,b,a (2)算法实现及基本思想 堆栈是后进先出的线性表,由Push输入元素,Pop输出元素,堆栈的Push 操作思想,即插入元素e为新的的栈顶元素,先判断栈满与否,追加存储空间,然后将e值赋给栈顶指针Top。输入数据时用for循环 堆栈的Pop操作思想,先判断栈是否为空,若栈不空,则删除栈的栈顶元素,用e返回其值, (3)数据结构 栈的顺序存储结构 Typedef struct {

数据结构实验一 实验报告

班级::学号: 实验一线性表的基本操作 一、实验目的 1、掌握线性表的定义; 2、掌握线性表的基本操作,如建立、查找、插入和删除等。 二、实验容 定义一个包含学生信息(学号,,成绩)的顺序表和链表(二选一),使其具有如下功能: (1) 根据指定学生个数,逐个输入学生信息; (2) 逐个显示学生表中所有学生的相关信息; (3) 根据进行查找,返回此学生的学号和成绩; (4) 根据指定的位置可返回相应的学生信息(学号,,成绩); (5) 给定一个学生信息,插入到表中指定的位置; (6) 删除指定位置的学生记录; (7) 统计表中学生个数。 三、实验环境 Visual C++ 四、程序分析与实验结果 #include #include #include #include #define OK 1 #define ERROR 0 #define OVERFLOW -2

typedef int Status; // 定义函数返回值类型 typedef struct { char num[10]; // 学号 char name[20]; // double grade; // 成绩 }student; typedef student ElemType; typedef struct LNode { ElemType data; // 数据域 struct LNode *next; //指针域 }LNode,*LinkList; Status InitList(LinkList &L) // 构造空链表L { L=(struct LNode*)malloc(sizeof(struct LNode)); L->next=NULL; return OK;

北理工889数据结构考纲

889数据结构 考试内容: 数据结构主要考查考生以下几个方面: 1.理解数据结构的基本概念;掌握数据的逻辑结构、存储结构及其差异,以及各种基本操作的实现。 2.掌握基本的数据处理原理和方法的基础上,能够对算法进行设计与分析。 3.能够选择合适的数据结构和方法进行问题求解。 应掌握的具体内容为: 一、线性表 (一)线性表的定义和基本操作 (二)线性表的实现 1.顺序存储结构 2.链式存储结构 3.线性表的应用 二、栈、队列和数组 (一)栈和队列的基本概念 (二)栈和队列的顺序存储结构 (三)栈和队列的链式存储结构 (四)栈和队列的应用 (五)特殊矩阵的压缩存储 三、树与二叉树 (一)树的概念 (二)二叉树 1.二叉树的定义及其主要特征 2.二叉树的顺序存储结构和链式存储结构 3.二叉树的遍历 4.线索二叉树的基本概念和构造 5.二叉排序树 6.平衡二叉树 (三)树、森林 1.书的存储结构 2.森林与二叉树的转换 3.树和森林的遍历 (四)树的应用 1.等价类问题 2.哈夫曼(Huffman)树和哈夫曼编码 四、图 (一)图的概念 (二)图的存储及基本操作 1.邻接矩阵法

2.邻接表法 (三)图的遍历 1.深度优先搜索 2.广度优先搜索 (四)图的基本应用及其复杂度分析 1.最小(代价)生成树 2.最短路径 3.拓扑排序 4.关键路径 五、查找 (一)查找的基本概念 (二)顺序查找法 (三)折半查找法 (四)B-树 (五)散列(Hash)表及其查找 (六)查找算法的分析及应用 六、内部排序 (一)排序的基本概念 (二)插入排序 1.直接插入排序 2.折半插入排序 (三)起泡排序(bubble sort) (四)简单选择排序 (五)希尔排序(shell sort) (六)快速排序 (七)堆排序 (八)二路归并排序(merge sort) (九)基数排序 (十)各种内部排序算法的比较 (十一)内部排序算法的应用 题型和分值 填空题20分、选择题30分、问答题70分、算法题30分 参考书目 数据结构(C语言版)严蔚敏吴伟民清华大学出版社

数据结构实验

长春大学计算机学院网络工程专业 数据结构实验报告 实验名称:实验二栈和队列的操作与应用 班级:网络14406 姓名:李奎学号:041440624 实验地点:日期: 一、实验目的: 1.熟练掌握栈和队列的特点。 2.掌握栈的定义和基本操作,熟练掌握顺序栈的操作及应用。 3.掌握链队的入队和出队等基本操作。 4.加深对栈结构和队列结构的理解,逐步培养解决实际问题的编程能力。 二、实验内容、要求和环境: 注:将完成的实验报告重命名为:班级+学号+姓名+(实验二),(如:041340538张三(实验二)),发邮件到:ccujsjzl@https://www.wendangku.net/doc/e04610278.html,。提交时限:本次实验后24小时之内。 阅读程序,完成填空,并上机运行调试。 1、顺序栈,对于输入的任意一个非负十进制整数,打印输出与其等值的八进制数 (1)文件SqStackDef. h 中实现了栈的顺序存储表示 #define STACK_INIT_SIZE 10 /* 存储空间初始分配量*/ #define STACKINCREMENT 2 /* 存储空间分配增量*/ typedef struct SqStack { SElemType *base; /* 在栈构造之前和销毁之后,base 的值为NULL */ SElemType *top; /* 栈顶指针*/ int stacksize; /* 当前已分配的存储空间,以元素为单位*/ }SqStack; /* 顺序栈*/ (2)文件SqStackAlgo.h 中实现顺序栈的基本操作(存储结构由SqStackDef.h 定义) Status InitStack(SqStack &S) { /* 构造一个空栈S */ S.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if(!S.base) exit(OVERFLOW); /* 存储分配失败*/ S.top=S.base; S.stacksize=STACK_INIT_SIZE; return OK; } int StackLength(SqStack S) { // 返回S 的元素个数,即栈的长度, 编写此函数

北京理工大学2013级数据结构B试题(A卷)-答案

一、选择题 1、从逻辑结构上可以把数据结构分为【 C 】。 A、动态结构和静态结构 B、紧凑结构和非紧凑结构 C、线性结构和非线性结构 D、内部结构和外部结构 2、在一个长度为n的顺序存储的线性表中,向第i个元素(1≤i≤n+1)之前插入一个新元素时,需要从后向前依次后移【 B 】个元素。 A、n-i B、n-i+1 C、n-i-1 D、i 3、链表结构不具有下列【 B 】特点。 A、插入和删除无需移动元素 B、可随机访问链表中的任意元素 C、无需实现分配存储空间 D、所需空间与结点个数成正比。 4、在一个单链表中,已知q所指结点是p所指结点的前驱结点,若在q和p之间插入s结点,则执行【 C 】。 A、s->next = p->next; p->next = s; B、p->next = s->next; s->next = p; C、q->next = s; s->next = p; D、p->next = s; s->next = q; 5、一个栈的入栈序列是1,2,3,4,5,则栈不可能输出的序列是【C 】。 A、54321 B、45321 C、43512 D、12345 6、判断一个队列Q(元素最多为M个)为空的条件是【 C 】。 A、Q->rear – Q->front = M B、Q->rear – Q->front -1 ==M C、Q->rear == Q->front D、Q->rear + 1 == Q->front 7、在一个链队列中,假设f和r分别指向队首和队尾,则插入s所指结点的运算是【A 】。 A、r->next = s; r=s; B、f->next = s; f=s; C、s->next = r; r=s; D、s->next = f; f=s; 8、深度为5的二叉树至多有【 A 】个结点。 A、31 B、32 C、16 D、10 9、在一非空二叉树的中序遍历序列中,根结点的右边【A 】。

数据结构实验4_99XXX

《数据结构》实验报告 实验序号:4 实验项目名称:栈的操作

附源程序清单: 1. #include #define MaxSize 100 using namespace std; typedef char ElemType; typedef struct { ElemType data[MaxSize]; int top; }SqStack; void InitStack(SqStack *st) //初始化栈 { st->top=-1; } int StackEmpty(SqStack *st) //判断栈为空{ if(st->top == -1) return 0;//为空 else return -1;//不为空 } void Push(SqStack *st,ElemType x) //元素进栈{ if(st->top==MaxSize-1)

{ printf("栈上溢出!\n"); } else { st->top++; //移动栈顶位置 st->data[st->top]=x; //元素进栈 } } void Pop(SqStack *st,ElemType &e) //出栈 { if(st->top==-1) { printf("栈下溢出\n"); } else { e=st->data[st->top]; //元素出栈 st->top--; //移动栈顶位置} } int main() { SqStack L; SqStack *st=&L; ElemType c; int i; InitStack(st); printf("输入回车结束入栈"); while((c=getchar())!='\n') { if(c=='(') Push(st,c); if((i=StackEmpty(st))==-1) { if(c==')') Pop(st,c); } if(c==')' && (i=StackEmpty(st))==0) { printf("右括号多出,配对失败"); goto loop;

数据结构实验三

实验报告 学院(系)名称:计算机科学与工程学院 姓名赵振宇学号20175302 专业 计算机科学与技术 班级 2017级4班实验项目 实验三:图的遍历与应用 课程名称 数据结构与算法 课程代码 0661913 实验时间 2019年5月27日 第3、4节 实验地点 7-219 考核标准实验过程25分 程序运行20分 回答问题15分 实验报告30分 特色功能5分 考勤违纪情况5分 成绩 成绩栏 其它批改意见: 教师签字: 考核内容 评价在实验课堂中的表现,包括实验态度、编写程序过程等内容等。 □功能完善,□功能不全□有小错□无法运行 ○正确○基本正确○有提示○无法回答 ○完整○较完整 ○一般 ○内容极少○无报告 ○有 ○无 ○有 ○无一、实验目的 1、实验目的:通过实验使学生理解图的主要存储结构,掌握图的构造算法、图的深度优先和广度优先遍历算法,能运用图解决具体应用问题。 二、实验题目与要求 要求:第1题为必做题,2,3,4至少选一 1.输入指定的边数和顶点数建立图,并输出深度优先遍历和广度优先遍历的结果。 1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…图的建立2…深度优先遍历图3…广度优先遍历图0…结束

2)实验要求:在程序中定义下述函数,并实现要求的函数功能:CreateGraph():按从键盘的数据建立图 DFSGrahp():深度优先遍历图 BFSGrahp():广度优先遍历图 3)实验提示: 图的存储可采用邻接表或邻接矩阵; 图存储数据类型定义(邻接表存储) #define MAX_VERTEX_NUM8//顶点最大个数 typedef struct ArcNode {int adjvex; struct ArcNode*nextarc; int weight;//边的权 }ArcNode;//表结点 #define VertexType int//顶点元素类型 typedef struct VNode {int degree,indegree;//顶点的度,入度 VertexType data; ArcNode*firstarc; }Vnode/*头结点*/,AdjList[MAX_VERTEX_NUM]; typedef struct{ AdjList vertices; int vexnum,arcnum;//顶点的实际数,边的实际数}ALGraph; 4)注意问题: 注意理解各算法实现时所采用的存储结构。 注意区别正、逆邻接。 2.教学计划编制问题

北理工《实用数据结构与算法》在线作业

北理工《实用数据结构与算法》在线作业 一、单选题: 1.(单选题)当两个元素比较出现反序时就相互交换位置的排序方法称为()。 (满分 A归并排序 B选择排序 C交换排序 D插入排序 正确:C 2.(单选题)设数组Data[0..m]作为循环队列SQ的存储空间,front为队头指针,rear为队尾指针,则执行出队操作的语句为() (满分 Afront=front+1 Bfront=(front+1)%m Crear=(rear+1)%m Dfront=(front+1)%(m+1) 正确:D 3.(单选题)快速排序方法在()情况下最不利于发挥其长处。 (满分 A被排序的数据量太大 B被排序数据中含有多个相同值 C被排序数据已基本有序 D被排序数据数目为奇数 正确:C 4.(单选题)具有65个结点的完全二叉树其深度为(根的层次号为1)()。 (满分 A8 B7 C6 D5 正确: 5.(单选题)稀疏矩阵一般的压缩存储方法有两种,即()。 (满分 A二维数组和三维数组 B三元组表和散列表 C三元组表和十字链表 D散列表和十字链表 正确: 6.(单选题)从未排序序列中依次取出一个元素与已排序序列中的元素依次进行比较,然后将其放在已排序序列的合适位置,该排序方法称为()排序法。 (满分:) A插入 B选择 C交换 D二路归并 正确: 7.(单选题)下列排序方法中效率最高的排序方法是()。 (满分:) A起泡排序 B堆排序 C快速排序 D直接插入排序 正确: 8.(单选题)栈与一般的线性表的区别在于()。 (满分:) A数据元素的类型不同 B运算是否受限制 C数据元素的个数不同

数据结构(第4版)习题及实验参考答案数据结构复习资料完整版(c语言版)

数据结构基础及深入及考试 复习资料 习题及实验参考答案见附录 结论 1、数据的逻辑结构是指数据元素之间的逻辑关系。即从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。 2、数据的物理结构亦称存储结构,是数据的逻辑结构在计算机存储器内的表示(或映像)。它依赖于计算机。存储结构可分为4大类:顺序、链式、索引、散列 3、抽象数据类型:由用户定义,用以表示应用问题的数据模型。它由基本的数据类型构成,并包括一组相关的服务(或称操作)。它与数据类型实质上是一个概念,但其特征是使用与实现分离,实行封装和信息隐蔽(独立于计算机)。 4、算法:是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。 5、在数据结构中,从逻辑上可以把数据结构分成( C ) A、动态结构和表态结构 B、紧凑结构和非紧凑结构 C、线性结构和非线性结构 D、内部结构和外部结构 6、算法的时间复杂度取决于( A ) A、问题的规模 B、待处理数据的初态 C、问题的规模和待处理数据的初态 线性表 1、线性表的存储结构包括顺序存储结构和链式存储结构两种。 2、表长为n的顺序存储的线性表,当在任何位置上插入或删除一个元素的概率相等时,插入一个元素所需移动元素的平均次数为( E ),删除一个元素需要移动的元素的个数为( A )。 A、(n-1)/2 B、n C、n+1 D、n-1 E、n/2 F、(n+1)/2 G、(n-2)/2 3、“线性表的逻辑顺序与存储顺序总是一致的。”这个结论是( B ) A、正确的 B、错误的 C、不一定,与具体的结构有关 4、线性表采用链式存储结构时,要求内存中可用存储单元的地址( D ) A、必须是连续的 B、部分地址必须是连续的C一定是不连续的D连续或不连续都可以 5、带头结点的单链表为空的判定条件是( B ) A、head==NULL B、head->next==NULL C、head->next=head D、head!=NULL 6、不带头结点的单链表head为空的判定条件是( A ) A、head==NULL B、head->next==NULL C、head->next=head D、head!=NULL 7、非空的循环单链表head的尾结点P满足( C ) A、p->next==NULL B、p==NULL C、p->next==head D、p==head 8、在一个具有n个结点的有序单链表中插入一个新结点并仍然有序的时间复杂度是( B ) A、O(1) B、O(n) C、O(n2) D、O(nlog2n) 9、在一个单链表中,若删除p所指结点的后继结点,则执行( A )

数据结构实验1

《数据结构》实验报告 实验序号:1 实验项目名称:概论

附源程序清单: 1. #include void main() { int i; int num[10]; int *p; for(i=0;i<=9;i++) num[i]=i+1; for(p=(num+9);p>=(num+0);p--) printf("%d ",*p); printf("\n"); }

2. #include void main() { void swap(int *a,int *b); int i; int a[10]; int *p,*max,*min; for(i=0;i<10;i++) scanf("%d",&a[i]); max=min=a; for(i=0;i<10;i++) { if(*maxa[i]) min=&a[i]; } p=a; swap(p,max); swap((p+9),min); for(p=a;p<=(a+9);p++) printf("%d ",*p); printf("\n"); } void swap(int *a,int *b) { int temp; temp=*a; *a=*b; *b=temp; } 3. #include #include #include #include typedef struct { char num[5]; char name[20]; float score1; float score2; float score3; float average;

2019 北京理工大学 889《数据结构》 考试大纲

2019年北京理工大学889《数据结构》考试大纲 考试内容: 数据结构主要考查考生以下几个方面: 1.理解数据结构的基本概念;掌握数据的逻辑结构、存储结构及其差异,以及各种基本操作的实现。 2.掌握基本的数据处理原理和方法的基础上,能够对算法进行设计与分析。 3.能够选择合适的数据结构和方法进行问题求解。 应掌握的具体内容为: 一、线性表 (一)线性表的定义和基本操作 (二)线性表的实现 1.顺序存储结构 2.链式存储结构 3.线性表的应用 二、栈、队列和数组 (一)栈和队列的基本概念 (二)栈和队列的顺序存储结构 (三)栈和队列的链式存储结构 (四)栈和队列的应用 (五)特殊矩阵的压缩存储 三、树与二叉树 (一)树的概念 (二)二叉树 1.二叉树的定义及其主要特征 2.二叉树的顺序存储结构和链式存储结构 3.二叉树的遍历 4.线索二叉树的基本概念和构造 5.二叉排序树 6.平衡二叉树 (三)树、森林 1.书的存储结构 2.森林与二叉树的转换 3.树和森林的遍历 (四)树的应用 1.等价类问题 2.哈夫曼(Huffman)树和哈夫曼编码 四、图 (一)图的概念

(二)图的存储及基本操作 1.邻接矩阵法 2.邻接表法 (三)图的遍历 1.深度优先搜索 2.广度优先搜索 (四)图的基本应用及其复杂度分析 1.最小(代价)生成树 2.最短路径 3.拓扑排序 4.关键路径 五、查找 (一)查找的基本概念 (二)顺序查找法 (三)折半查找法 (四)B-树 (五)散列(Hash)表及其查找 (六)查找算法的分析及应用 六、内部排序 (一)排序的基本概念 (二)插入排序 1.直接插入排序 2.折半插入排序 (三)起泡排序(bubble sort) (四)简单选择排序 (五)希尔排序(shell sort) (六)快速排序 (七)堆排序 (八)二路归并排序(merge sort) (九)基数排序 (十)各种内部排序算法的比较 (十一)内部排序算法的应用 题型和分值 填空题20分、选择题30分、问答题70分、算法题30分 参考书目 数据结构(C语言版)严蔚敏吴伟民清华大学出版社

数据结构实验四题目一排序实验报告

数据结构实验报告 实验名称:实验四——排序 学生:XX 班级: 班序号: 学号: 日期: 1.实验要求 实验目的: 通过选择实验容中的两个题目之一,学习、实现、对比、各种排序的算法,掌握各种排序算法的优劣,以及各种算法使用的情况。 题目1: 使用简单数组实现下面各种排序算法,并进行比较。 排序算法如下: 1、插入排序; 2、希尔排序; 3、冒泡排序; 4、快速排序; 5、简单选择排序; 6、堆排序; 7、归并排序; 8、基数排序(选作); 9、其他。 具体要求如下: 1、测试数据分成三类:正序、逆序、随机数据。 2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关 键字交换记为3次移动)。 3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微妙。 4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。 5、编写main()函数测试各种排序算法的正确性。 2. 程序分析 2.1 存储结构

存储结构:数组 2.2 关键算法分析 一、关键算法: 1、插入排序 a、取排序的第二个数据与前一个比较 b、若比前一个小,则赋值给哨兵 c、从后向前比较,将其插入在比其小的元素后 d、循环排序 2、希尔排序 a、将数组分成两份 b、将第一份数组的元素与哨兵比较 c、若其大与哨兵,其值赋给哨兵 d、哨兵与第二份数组元素比较,将较大的值赋给第二份数组 e、循环进行数组拆分 3、对数据进行编码 a、取数组元素与下一个元素比较 b、若比下一个元素大,则与其交换 c、后移,重复 d、改变总元素值,并重复上述代码 4、快速排序 a、选取标准值 b、比较高低指针指向元素,若指针保持前后顺序,且后指针元素大于标准值,后 指针前移,重新比较 c、否则后面元素赋给前面元素 d、若后指针元素小于标准值,前指针后移,重新比较 e、否则前面元素赋给后面元素 5、简单选择排序 a、从数组中选择出最小元素 b、若不为当前元素,则交换 c、后移将当前元素设为下一个元素 6、堆排序 a、生成小顶堆 b、将堆的根节点移至数组的最后 c、去掉已做过根节点的元素继续生成小顶堆

相关文档
相关文档 最新文档