文档库 最新最全的文档下载
当前位置:文档库 › 一元二次方程整数根问题的十二种思维

一元二次方程整数根问题的十二种思维

一元二次方程整数根问题的十二种思维
一元二次方程整数根问题的十二种思维

地址:北京市海淀区车公庄西路38号逸升轩520室(首师大对面) 一元二次方程整数根问题的十二种思维策略

一. 利用判别式

例1.(2000年黑龙江中考题)当m 是什么整数时,关于x 的一元二次方程2440mx x -+=

与2244450x mx m m -+--=的根都是整数。 解:∵方程2440mx x -+=有整数根, ∴⊿=16-16m ≥0,得m ≤1

又∵方程2244450x mx m m -+--=有整数根 ∴22164(445)0m m m =---≥ 得54

m ≥-

综上所述,-

4

5≤m ≤1

∴x 可取的整数值是-1,0,1

当m=-1时,方程为-x 2-4x+4=0 没有整数解,舍去。 而m ≠0 ∴ m=1

例2.(1996年四川竞赛题)已知方程210x mx m +-+= 有两个不相等的正整数根,求m

的值。

解:设原方程的两个正整数根为x 1,x 2,则m =-(x 1+x 2)为负整数. ∴2

44m m =+- 一定是完全平方数 设22

44m m k +-=(k 为正整数) ∴2

2

(2)8m k +-=

即:(2)(2)8m k m k +++-=

∵m+2+k ≥m+2-k,且奇偶性相同

∴2422

m k m k ++=??

+-=?或2224

m k m k ++=-??

+-=-?

解得m=1>0(舍去)或m=-5。

当m=-5时 ,原方程为x 2-5x+6=0,两根分别为x 1=2,x 2=3。

地址:北京市海淀区车公庄西路38号逸升轩520室(首师大对面)

二. 利用求根公式

例3.(2000年全国联赛)设关于x 的二次方程2222(68)(264)4k k x k k x k -++--+=

的两根都是整数,求满足条件的所有实数k 的值。

解:22222(264)4(4)(68)4(6)k k k k k k =-----+=-

由求根公式得2

2

2642(6)

2(68)

k k k x k k -++±-=

-+

即 12241,14

2

x x k k =--=--

--

由于x ≠-1,则有12244,211

k k x x -=-

-=-++

两式相减,得

122421

1

x x -

=++

即 12(3)2x x +=-

由于x 1,x 2是整数,故可求得122,4x x ==-或122,2x x =-=-或121,5x x ==- 分别代入,易得k=

3

10,6,3。

三. 利用方程根的定义

例4.b 为何值时,方程 220x bx --=和2

2(1)0x x b b ---=有相同的整数根? 并且求出它们的整数根?

解:两式相减,整理得(2-b)x=(2-b)(1+b)

当b ≠2时,x=1+b,代入第一个方程,得2

(1)(1)20b b b +-+-= 解得b=1,x=2

当b=2时,两方程无整数根. ∴b=1,相同的整数根是2 四.利用因式分解

例5.(2000年全国竞赛题)已知关于x 的方程2

(1)210a x x a -+--=的根都是整数,

那么符合条件的整数a 有___________个.

解: 当a=1时,x=1

当a ≠1时,原方程左边因式分解,得 (x-1)[(a-1)x+(a+1)]=0 即得1221,11x x a

==-+

-

地址:北京市海淀区车公庄西路38号逸升轩520室(首师大对面)

∵ x 是整数

∴ 1-a=±1,±2, ∴a=-1,0,2,3 由上可知符合条件的整数有5个.

例6.(1994年福州竞赛题) 当m 是什么整数时,关于x 的方程2(1)10x m x m --++=

的两根都是整数?

解:设方程的两整数根分别是x 1,x 2,由韦达定理得

121x x m +=- ① 121x x m ?=+ ②

由②-①消去m ,可得12212x x x x --=

12(1)(1)3131(3)x x --==?=-?-

则有121113x x -=??-=? 或121113x x -=-??-=-?

解得:1224x x =??=? 或1202

x x =??=-?

由此128x x ?=或0,分别代入②,得7m =或1m =- 五.利用根与系数的关系

例7.(1998年全国竞赛题) 求所有正实数a,使得方程240x ax a -+=仅有整数根. 解:设方程的两整数根分别是x 1,x 2,且12x x ≤ 由根与系数的关系得

120x x a +=> ① 1240x x a ?=> ②

由①得

22

a x a ≤≤ ③

将③代入②得1214a x x x a =≤

12142

a a x x x =≥?

∴148x ≤≤

显然 x 1≠4,故x 1可取5,6,7,8。 从而易得a=25,18,16。 六.构造新方程

例8.(1996年全国联赛)方程()(8)10x a x ---=有两个整数根,求a 的值.

地址:北京市海淀区车公庄西路38号逸升轩520室(首师大对面) 解:原方程变为 2(8)(8)(8)10x a x -+---= 设y=x-8,则得新方程为 2(8)10y a y +--= 设它的两根为y 1,y 2,则 12128,1y y a y y +=-?=-

∵x 是整数,∴y 1,y 2也是整数,则y 1,y 2只能分别为1,-1或-1,1 即y 1+y 2=0 ∴a=8。 七.构造等式

例9.(2000年全国联赛C 卷) 求所有的正整数a,b,c,使得关于x 的方程

2

2

2

320,320,320x ax b x bx c x cx a -+=-+=-+=的所有的根都是正整数.

解:设三个方程的正整数解分别为123456,,,,,x x x x x x ,则有

2

1232()()x ax b x x x x -+=-- 23432()()x bx c x x x x -+=-- 25632()()x cx a x x x x -+=--

令x=1,并将三式相加,注意到x i ≥1(i=1,2,…6),有

1234563()(1)(1)(1)(1)(1)(1)0000a b c x x x x x x -++=--+--+--≥++=

但 a ≥1,b ≥1,c ≥1,又有 3-(a+b+c )≤0, ∴ 3-(a+b+c )=0 故 a=b=c=1 八.分析等式

例10.(1993年安徽竞赛题) n

为正整数,方程21)60x x -+-=

有一个整数根,则n=__________. 解:不妨设已知方程的整数根为α,则

2

1)60a a -+

-=

整理。得2

6)a a a n --=

-

因为a 为整数,所以2

6a a --为整数

)a n -

)a n -为整数,必有a n =

由此得260a a --=,即2

60n n --=

地址:北京市海淀区车公庄西路38号逸升轩520室(首师大对面) 解得n=3或-2(舍去) ∴ n=3。

九.反客为主

例11.(第三届《祖冲之杯》竞赛题)求出所有正整数a,使方程22(21)4(3)0ax a x a +-+-= 至少有一个整数根.

解:由原方程知x ≠2,不妨将方程整理成关于的一元一次方程

2

(44)212x x a x ++=+

得2

2121(2)

x a x +=

≥+(因为是正整数)

则得(4)(2)0x x +-≤

解得42x -≤≤

因此,x 只能取-4,-3,-1,0,1,2。

分别代入a 的表达式,故所求的正整数a 是1,3,6,10。 十.利用配方法

例12. (第三届《祖冲之杯》竞赛题) 已知方程22(1)2(51)240a x a x --++= 有两个不等的负整数根,则整数a 的值是__________. 解:原方程可变为

2

2

2

102240a x ax x x ---+=

即222

102521a x ax x x -+=++

2

2

(5)(1)ax x -=+

5(1)ax x -=±+

得:1264,1

1

x x a a =

=

-+

当a-1=-1,-2,-3,-6,即a=0,-1,-2,-5时,x 1

为负整数。

但a=0时,x 2>0; a=-5时,x 1=2=-1 又a ≠-1 ∴ a=-2。

十一.利用奇偶分析

例13.(1999年江苏第14届竞赛题)已知方程2

19990x x a -+=有两个质数根,

地址:北京市海淀区车公庄西路38号逸升轩520室(首师大对面) 则常数a=___________.

解:设方程的两个质数根为x 1,x 2( x 1<x 2) 由根与系数的关系得x 1+x 2=1999.

显然 x 1=2,x 2=1997,于是a=2×1997=3994.

十二.利用反证法

例14.不解方程,证明方程2199719970x x -+=无整数根

证明:假设方程有两个整数根αβ,则α+β=1997,αβ=1997,由第二式知αβ均为奇数,于是

α+β为偶数,但这与第一式相矛盾,所以α,β不可能都是整数.

假设方程只有一个整数根,则α+β不可能是整数, 也与第一式相矛盾,所以方程不可能只有一个整数根.

综上所述,原方程无整数根.

一元二次方程公共根

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤: 1.设公共根为α,则α同时满足这两个一元二次方程; 2.用加减法消去α2的项,求出公共根或公共根的有关表达式; 3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式. 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 2?= ⑵ 2b ak -=或2b ak --,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围 1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围. (2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值. 2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值 3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由. 4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程根的情况试题练习题

一元二次方程根的情况练习题(含答案) 一.选择题 1.一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 2.一元二次方程3x2﹣4x+1=0的根的情况为() A.没有实数根 B.只有一个实数根 C.两个相等的实数根D.两个不相等的实数根 3.一元二次方程x2﹣7x﹣2=0的实数根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.无实数根D.有一根为0 6.一元二次方程2x2﹣3x+1=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.一元二次方程2x2﹣3x+1=0根的情况是()

C.只有一个实数根D.没有实数根 8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为() A.没有实数根 B.有一个实数根 C.有两个不相等的实数根D.有两个相等的实数根 9.一元二次方程x2+2x+1=0的根的情况() A.有一个实数根B.有两个相等的实数根 C.有两个不相等的实数根D.没有实数根 10.一元二次方程x2﹣x﹣1=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 11.一元二次方程x2﹣2x﹣1=0的根的情况为() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 12.一元二次方程4x2+1=4x的根的情况是() A.没有实数根 B.只有一个实数根 C.有两个相等的实数根D.有两个不相等的实数根 13.方程x2﹣2x+3=0的根的情况是() A.有两个相等的实数根B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根 14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()

中考试题一元二次方程的整数根

学科:数学 专题:一元二次方程整数根 主讲教师:黄炜 北京四中数学教师 重难点易错点辨析 在解决整数根问题时,还是不要忽略了对二次项系数的讨论。 题一 题面:关于x 的方程()21210a x x a -+--=的根都是整数,求符合条件的a 的整数值. 金题精讲 题一 题面:已知关于x 的一元二次方程x 2+2x +2k -4=0有两个不相等的实数根. (1)求k 的取值范围; (2)若k 为正整数,且该方程的根都是整数,求k 的值. 判别式,考虑参数范围 满分冲刺 题一 题面:已知,关于x 的一元二次方程222(23)41480x m x m m --+-+= ⑴若0m >,求证:方程有两个不相等的实数根; ⑵若1240m <<的整数,且方程有两个整数根,求m 的值. 判别式,整数根

题二 题面:已知关于x 的一元二次方程x 2+(m +3)x +m +1=0. (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)当m 为何整数时,原方程的根也是整数. 判别式,整数根 讲义参考答案 重难点易错点辨析 题一 答案:当1a =时,1x =; 当1a ≠时,122111 x x a ==-- -,(分离常数), a ∵为整数 1023a =-∴,,, 综上,a 的整数值为10123-,,,,. 金题精讲 题一 答案:(1)52 k <;(2)k =2. 满分冲刺 题一 答案:⑴证明:[]2 2=2(23)4(4148)84m m m m ?----+=+ ∵0m >, ∴840m +>. ∴方程有两个不相等的实数根. ⑵(23)x m - 且m 为整数. 又∵1240m <<, ∴252181.m <+< ∴5. 21m +∵为奇数, 7= ∴24m =.

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

一元二次方程根的分布教学设计

一元二次方程根的分布教学设计 大庆一中高中部孙庆夺 一、教学分析 (一)教学内容分析 本节课所讲的内容是高中数学必修一第三章第一节《函数与方程》之后的一个专题内容,是中学数学的重要内容之一。这段内容与一元二次不等式,二次函数等内容有着紧密的联系。它是在前面学习了函数与方程,二次方程,二次不等式基础上对函数与方程内容的深化和拓展,通过根的分布的不同情况,充分体现了由简单到复杂、特殊到一般的化归的数学思想。从而提升学生对数学知识的应用能力。通过学习一元二次方程根的分布,有助于学生进一步理解二次方程,二次函数,加深函数与方程思想,数形结合思想在数学学习中的应用的认识,同时也为以后数学的学习打下扎实的基础。 (二)教学对象分析 高中一年级的学生已经有了一定的观察识图能力及分析判断能力,有利用已有知识解决新问题的愿望。学生学习了函数与方程,二次方程,二次函数的知识, 已经具有用数学知识解决实际问题的能力。学生抽象逻辑思维很大程度上还属于经验型,需要感性经验的直接支持。通过学习,抽象逻辑思维逐步成熟,能够用理论作为指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。 (三)教学环境分析 由于本节课涉及到根的分布情况较多,对老师的的作图提出了很高的要求。采用传统的板式教学,根本就无法向学生演示动态过程,很难满足学生的求知欲,达不到教学的最佳效果。多媒体网络教学,是现代高中数学教学全新的教育技术,

使传统的教学方式得到补充。在计算机的帮助下,利用制作好的几何画板课件,操作演示,感受根的分布的不同情况,加深学生的认识和理解,同时也符合学生认识事物从感性认识到理想认识的认知过程。 (四)教学手段 采用多媒体网络教学。《普通高中数学课程标准》指出:“现代信息技术的广泛应用真正对数学教学、数学学习方面产生深刻的影响,数学课程的设计应重视运用现代信息技术,大力开发并向学生提供更为丰富的学习资源,提倡实现信息技术与课程内容的有机结合。”本节课涉及到的图象信息较多,利用多媒体网络教学可以实现最大容量地向学生提供图象信息,并让学生整理归纳信息,增强学生的动手能力、思考能力和自主学习能力,也能实现数学课堂中学生的高参与度,从而实现资源、时间、效率的最优化。 (五)教学方式 自主式探究,学案式导学。自主探究,学案导学的教学方式,能够激发学生的学习兴趣、突出学生的主题地位,培养学生的数学应用意识、合作精神,这与《新课标》的要求是吻合的。 二、教学目标 1.知识与能力 加深对一元二次方程,二次函数图象与性质的认识;会利用函数知识,方法重新审视一元二次方程. 2.过程与方法 体验“观察-猜想-验证”探究问题的方法,领会由简单到复杂,由特殊到一般的化归思想,加深对函数与方程,数形结合思想的理解。

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元二次方程根与系数的关系演示教学

12.4一元二次方程的根与系数的关系 中考考点 1.理解一元二次方程的根与系数的关系(韦达定理)。 2.会运用根与系数的关系,由已知的一元二次方程的一个根求出另一个根与未知系数。 3.会求一元二次方程两个根的倒数和与平方和。 考点讲解 1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则 x1+x2=-, x1·x2=。 2.以x1,x2为根的一元二次方程是(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程ax2+bx+c=0 (a≠0)。

3.对二次项系数为1的方程x2+px+q=0的两根为x1,x2时,那么x1+x2=-p,x1·x2=q。反之,以x1,x2为根的一元二次方程是:(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程: x2+px+q=0。 4.一元二次方程的根与系数关系的应用主要有以下几方面: (1)已知一元二次方程的一个根,求另一个根,可用两根和或两根积的关系求另一个根。 (2)已知含有字母系数的一元二次方程的一个根,求另一个根及字母系数的值。可用根与系数关系式,一个关系式求得另一个根,再用另一个关系式求得字母系数的值。 (3)已知一元二次方程,不解方程,可求与所给方程两根和、两根积的某些代数式的值。如,方程2x2-3x+1=0的两根为x1,x2,不解方程,求x12+x22的值。 [∵x1+x2=, x1·x2=,∴

x12+x22=(x1+x2)2-2x1x2=()2-2× = ] (4)验根、求根、确定根的符号。 (5)已知两根,求作一元二次方程(注意最后结果要化为整系数方程)。

初三数学培优之一元二次方程的整数根

初三数学培优之一元二次方程的整数根 阅读与思考 解一元二次方程问题时,我们不但需熟练地解方程,准确判断根的个数、符号特征、存在范围,而且要能深入地探讨根的其他性质,这便是大量出现于各级数学竞赛中的一元二次方程的整数根问题。这类问题因涵盖了整数的性质、一元二次方程的相关理论,融合了丰富的数学思想方法而备受命题者的青睐.. 解整系数(即系数为整数)一元二次方程的整数根问题的基本方法有: 1.直接求解 若根可用有理式表示,则求出根,结合整除性求解. 2.利用判别式 在二次方程有根的前提下,通过判别式确定字母或根的范围,运用枚举讨论、不等分析求解 3.运用根与系数的关系 由根与系数的关系得到待定字母表示的两根和、积式,从中消去待定字母,再通过因式分解和整数性质求解. 4.巧选主元 若运用相关方法直接求解困难,可选取字母为主元,结合整除知识求解. 例题与求解 【例1】 已知关于x 的方程032)1280()8)(4(2 =+----x k x k k 的解都是整数,求整数k 的值. (绍兴市竞赛试题) 解题思路:用因式分解法可得到根的表达式,因方程类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定k 的值才能全面而准确. 【例2】 q p ,为质数且是方程0132 =+-m x x 的根,那么 q p p q +的值是( ) A .22121 B .22123 C .22125 D .22 127 (黄冈市竞赛试题) 解题思路:设法求出q p ,的值,由题设条件自然想到根与系数的关系

【例3】 关于y x ,的方程2922 2=++y xy x 的整数解),(y x 的组数为( ) A .2组 B .3组 C .4组 D .无穷多组 解题思路:把2922 2 =++y xy x 看作关于x 的二次方程,由x 为整数得出关于x 的二次方程的根的判别式是完全平方数,从而确定y 的取值范围,进而求出x 的值. 【例4】 试确定一切有理数r ,使得关于x 的方程01)2(2 =-+++r x r rx 有根且只有整数根. (全国初中数学联赛试题) 解题思路:因方程的类型未确定,故应分类讨论. 当0≠r 时,由根与系数的关系得到关于r 的两个不等式,消去r ,先求出两个整数根. 【例5】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数. (全国初中数学联赛试题) 解题思路:设前后两个两位数分别为y x ,,99,10≤≥y x ,则y x y x +=+100)(2 ,即 0)()50(222=-+-+y y x y x ,于是将问题转化为求一元二次方程有理根、整数根的问题. 【例6】 试求出所有这样的正整数解a ,使得二次方程0)3(4)12(22 =-+-+a x a ax 至少有一个整数根. (“祖冲之杯”竞赛试题) 解题思路:本题有两种解法. 由于a 的次数较低,可考虑“反客为主”,以a 为元,以x 为已知数整理成一个关于a 的一元一次方程来解答;或考虑因方程根为整数,故其判别式为平方式.

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系 一、目标认知 学习目标 1.掌握一元二次方程的根与系数的关系; 2.能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值; 3.能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根; 4.能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程. 重点 对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用. 难点 一元二次方程的根与系数的关系的运用. 二、知识要点梳理 一元二次方程根与系数的关系 如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么. 注意它的使用条件为a≠0,Δ≥0. 三、规律方法指导 一元二次方程根与系数的关系的用法: ①不解方程,检验两个数是否为一元二次方程的根; ②已知方程的一个根,求另一个根及未知系数; ③不解方程,求已知一元二次方程的根的对称式的值; ④已知方程的两根,求这个一元二次方程; ⑤已知两个数的和与积,求这两数; ⑥已知方程的两根满足某种关系,确定方程中字母系数的值; ⑦讨论方程根的性质。 四、经典例题透析 1.已知一元二次方程的一个根,求出另一个根以及字母系数的值. 1.已知方程x2-6x+m2-2m+5=0一个根为2,求另一个根及m的值. 思路点拨:本题通常有两种做法,一是根据方程根的定义,把x=2代入原方程,先求出m的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m的值. 解:法一:把x=2代入原方程,得 22-6×2+m2-2m+5=0 即m2-2m-3=0 解得m1=3,m2=-1 当m1=3,m2=-1时,原方程都化为 x2-6x+8=0

一元二次方程根与系数的关系各种类型题及训练

一元二次方程根与系数的关系应用例析及训练 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解? 分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 解:∵方程(1)有两个不相等的实数根, ∴ 解得; ∵方程(2)没有实数根, ∴ 解得; 于是,同时满足方程(1),(2)条件的的取值范围是 其中,的整数值有或 当时,方程(1)为,无整数根; 当时,方程(1)为,有整数根。 解得: 所以,使方程(1)有整数根的的整数值是。 总结:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出 ,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若 判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 解:∵,∴△=—4×2×(—7)=65>0 ∴方程有两个不相等的实数根。 设方程的两个根为, ∵<0 ∴原方程有两个异号的实数根。 总结:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。 三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得 当时,原方程均可化为: ,

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程根与系数关系附答案

一元二次方程根与系数的关系(附答案) 评卷人得分 一.选择题(共6小题) 1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根 C.没有实数根 D.无法确定 2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1 3.关于x的一元二次方程x2+3x﹣1=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6 5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D. 6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为() A.﹣1 B.0 C.1 D.3 评卷人得分

二.填空题(共1小题) 7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为. 评卷人得分 三.解答题(共8小题) 8.已知关于x的方程x2﹣(2k+1)x+k2+1=0. (1)若方程有两个不相等的实数根,求k的取值围; (2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长. 9.已知关于x的方程x2+ax+a﹣2=0. (1)若该方程的一个根为1,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. 10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m的值. 11.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.

一元二次方程整数根问题的几种思维策略

一元二次方程整数根问题的几种思维策略 一、利用判别式 例1. 当m 是什么整数时,关于x 的一元二次方程2440mx x -+= 与2244450x mx m m -+--=的根都是整数。 解:∵方程2440mx x -+=有整数根, ∴⊿=16-16m ≥0,得m ≤1 又∵方程2244450x mx m m -+--=有整数根 ∴⊿=16m 2-4(4m 2-4m -5) ≥0 得54m ≥- . 综上所述,54 -≤m≤1 ∴x 可取的整数值是-1,0,1 当m=-1时,方程为-x 2-4x+4=0 没有整数解,舍去。 而m≠0 ∴ m=1 23.(东城) 已知关于x 的一元二次方程2220x ax b ++=,0,0>>b a . (1)若方程有实数根,试确定a ,b 之间的大小关系; (2)若a ∶b 1222x x -=,求a ,b 的值; (3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A 在点C 的左 侧),与y 轴的交点为B ,顶点为D .若点P (x ,y )是四边形ABCD 边上的点,试求3x -y 的最大值. 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根, ∴ Δ=,04)2(2 2≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0. ∵ 0,0>>b a , ∴ a+b >0,a -b ≥0. ∴ b a ≥. …………………………2分

(2) ∵ a ∶b , ∴ 设2,a k b ==(k >0). 解关于x 的一元二次方程22430x kx k ++=, 得 -3x k k =-或. 当12,= -3x k x k =-时,由1222x x -=得2k =. 当123,= -x k x k =-时,由1222x x -=得25 k =- (不合题意,舍去). ∴ 4,a b ==. …………………………5分 (3) 当4,a b ==2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4). 设z =3x -y ,则3y x z =-. 画出函数2 812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线 经过点C 时符合题意,此时最大z 的值等于-6 ……………7分 二、利用求根公式 例2.设关于x 的二次方程2222 (68)(264)4k k x k k x k -++--+=的两根都是整数, 求满足条件的所有实数k 的值。 解:△=(2k 2-6k-4)2-4(k 2-4)(k 2-6k+8)=4(k-6)2 由求根公式得222642(6)2(68) k k k x k k -++±-=-+ 即 12241,142 x x k k =--=---- 只有当x≠-1时,则有12244,211k k x x -=- -=-++ 两式相减,得 1224211x x -=++, 去分母,整理得 12(3)2x x +=-

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

已知一元二次方程有一个根是

填空 11.已知一元二次方程有一个根是2,?那么这个方程可以是_______(填上你认为正确的一个方程即可). 12.方程(x-2)(x-3)=6的解为______. 13.(2006年成都市)已知某工厂计划经过两年的时间,?把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台. 14.若一个等腰三角形三边长均满足方程x 2-6x+8=0,则此三角形的周长为_____. 15、用______法解方程(x-2)2=4比较简便。 16、关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________。 17、已知α,β是方程0522 =-+x x 的两个实数根,则α2+β2+2α+2β的值为_________。 18、若a-b+c=0,a ≠0, 则方程ax 2+bx+c=0必有一个根是_______。 19、已知关于x 的方程x 2-(a +2)x +a -2b =0的判别式等于0,且x = 12是方程的根,则a +b 的值为 ______________。 20、如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________。 1、方程3x 2-5x=0的二次项系数是 2、5x 2+5=26 x 化成一元二次方程的一般形式为 3、一元二次方程ax 2+bx+c=0,若有一个根为﹣1,则a -b+c= ,如果a +b+c=0,则有一根为 4、一元二次方程ax 2+bx+c=0,若有一个根为0,则c= 5、关于x 的方程2x m2-1-3=0是一元二次方程,则m= 6、方程x 2-3x+4=0 和x 2+3x -4=0的公共根是 7、若x 2-3x+1=0,则x+x 1= 8、y= 时, y 2+5y 与6互为相反数。 9、若xy ≠0,且x 2-2x y -8y 2=0,则 y x =

一元二次方程的根系关系

一元二次方程的根的判别式(一) 二、教学重点、难点、疑点及解决方法 1.重点:会用判别式判定根的情况. 2.难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.” 3.疑点:如何理解一元二次方程ax2+bx+c=0在实数范围内,当b2-4ac<0时,无解.在高中讲复数时,会学习当b2-4ac<0时,实系数的一元二次方程有两个虚数根. 三、教学步骤 (二)整体感知:在推导一元二次方程求根公式时,得到b2-4ac决定了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题.在探索一元二次方程根的情况是由谁决定的过程中,从中体会转化的思想方法以及分类的思想方法,对思维全面性的考察起到了一个积极的渗透作用. (三)重点、难点的学习及目标完成过程 1.复习提问(1)平方根的性质是什么?(2)解下列方程: ①x2-3x+2=0;②x2-2x+1=0;③x2+3=0. 问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用. 2.任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将 (1)当b2-4ac>0时,方程有两个不相等的实数根.

(3)当b2-4ac<0时,方程没有实数根. 教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?答:b2-4ac. 3.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“△”表示. ②一元二次方程ax2+bx+c=0(a≠0). 当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根; 当△<0时,没有实数根. 注意以下几个问题: (1)∵ a≠0,∴ 4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应渗透转化和分类的思想方法.(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是方程无实数根”的意思.4.例1 不解方程,判别下列方程的根的情况: (1)2x2+3x-4=0;(2)16y2+9=24y;(3)5(x2+1)-7x=0. 解:(1)∵△=32-4×2×(-4)=9+32>0,∴原方程有两个不相等的实数根.(2)原方程可变形为16y2-24y+9=0.∵△=(-24)2-4×16×9=576-576=0,∴原方程有两个相等的实数根. (3)原方程可变形为5x2-7x+5=0.∵△=(-7)2-4×5×5=49-100<0, ∴原方程没有实数根.

相关文档
相关文档 最新文档