文档库 最新最全的文档下载
当前位置:文档库 › 基于三维有限元模拟高钢级管线钢断裂过程中的裂纹尖端张开角

基于三维有限元模拟高钢级管线钢断裂过程中的裂纹尖端张开角

基于三维有限元模拟高钢级管线钢断裂过程中的裂纹尖端张开角
基于三维有限元模拟高钢级管线钢断裂过程中的裂纹尖端张开角

设计计算

基于三维有限元模拟高钢级管线钢断裂过程中的

裂纹尖端张开角

陈福来

(中国石油海外勘探开发公司,北京100034)

摘要:高压、富气的输送管道需要管道钢裂纹尖端张开角(CTOA)的测试方法。采用三维有限元方法模拟了高钢级CTOA试件的断裂扩展过程。(CTOA)

c

的有限元计算值与试验实测值的偏差为

10.38% 17.5%,且管线钢的(CTOA)

c

随试件厚度的增加而增大,并呈线性关系。基于对有限元

计算结果的分析,拟合得到了管线钢(CTOA)

c

的预测公式。

关键词:裂纹尖端张开角;三维有限元;公式拟合;止裂

中图分类号:TE973.6;O241.82文献标识码:A文章编号:1001-4837(2011)06-0016-04

doi:10.3969/j.issn.1001-4837.2011.06.004

Simulation of Crack Tip Opening Angle during Fracture Process

of High-grade Pipeline Steel Based on3D Finite Element Analysis

CHEN Fu-lai

(China National Oil&Gas Exploration and Development Corporation,Beijing100034,China)

Abstract:High pressure,rich gas transmission pipeline requires the development of measuring method of Crack Tip Opening Angle(CTOA).The simulation of high-grade pipeline steel CTOA specimen frac-ture process has been carried out with the3D finite element method.The results showed that the devia-

tions of the finite elements calculation values and the experimental values of the(CTOA)

c

are10.38%

17.5%,and the pipeline steel(CTOA)

c

is increased with specimen thickness increased,and they have

linear relation.The fitting predicted formulas of pipeline steel(CTOA)

c

were acquired by analyzing re-sults of finite elements calculation.

Key words:crack tip opening angle;3D finite element;fitting formula;arrest

0引言

大口径、高压输送及采用高钢级管线钢是国际输气管道工程发展的一个重要趋势,输气管道对止裂韧性已超出了现有延性止裂预测模型的范围,为了满足高强度、高韧性输气管线止裂韧性的预测,需新建一个基于断裂力学原理的延性断裂

止裂韧性测定标准。国内外文献[1-5]表明:CTOA 被公认为是一种具有发展前途的止裂判据。

笔者在文献[6-7]中所做CTOA试验结果表明:临界断裂韧性(CTOA)

c

与试件韧带厚度有

关,而厚韧带CTOA试件不易获得(CTOA)

c

。鉴于此,选用ANSYS有限元软件[8]对CTOA试件的

61

断裂过程进行模拟分析,然后通过对比(CTOA)

c 的有限元计算值与试验实测值以验证有限元计算的精度,最后由有限元计算结果拟合得到

(CTOA)

c

预测公式,以方便工程应用。

1有限元模拟

管线钢的临界裂纹尖端张开角(CTOA)

c

可通过试验测试获得,这点已在文献[6-7]中证实。关于CTOA的试验测试过程及有限元模型建立在此不再赘述,详细内容可参见文献[6-7,9]。下面主要介绍CTOA试件扩展的有限元模拟结果分析。

基于文献[10]实测管线钢的应力应变关系,有限元模拟过程中采用应力失效准则,若在距裂纹尖端前1mm处的应力达到(或超过)该管材的实测抗拉极限时,该点就认为开裂即释放其约束;反之,则继续加载直至达到指定值。依此类推,直到满足条件的节点约束释放完毕,裂纹扩展过程模拟结束,输出不同开裂长度对应的CTOA值。

经模拟计算得到CTOA试件的裂尖位置的应力云图(见图1),点A为裂纹尖端,可明显看出,裂纹尖端前约1mm处应力最大,且此应力已完全贯穿整个厚度,由此可验证选取此处应力作为断裂准则的正确性

图1CTOA试件裂尖处的应力云图

模拟结果的变形图显示,裂纹尖端前约1mm 处沿厚度方向出现最为明显的凹陷(即点A变形最大),如图2(a)所示,在CTOA试件断裂过程拍摄照片上显示出在相同位置处(点A)变形也最大,如图2(b)所示

。图2CTOA试件裂纹尖端处沿厚度方向的变形图

分别对X70,X80管线钢的4,8和10mm三种厚度CTOA试件的断裂扩展过程进行了有限元模拟计算,并获得每个开裂长度上的CTOA值,如图3所示。

图3示出开裂起始阶段CTOA值较大,然后进入相对平稳阶段;且厚度越大CTOA值平稳阶段越短,随后便出现了CTOA值大小剧烈波动的现象,表明裂纹扩展趋于止裂;总体来看,随试件厚度的增加,平稳阶段的CTOA越大。2(CTOA)

c

有限元计算值与试验实测值的对比分析

为了验证有限元方法的计算精度,有必要对

管线钢的(CTOA)

c

的有限元模拟计算值

((CTOA)

c

值为开裂部分相对平稳阶段各开裂点的CTOA平均值)与试验测量值进行对比。图4,5分别示出不同钢级、不同厚度试件的CTOA实测值[6-7]与计算值之间的对比(图中70-04-01

71

第28卷第6期压力容器总第223期

(a)X70

管线钢

(b)X80管线钢

图3不同厚度管线钢的CTOA

表示纲级(X70)-试件韧带厚度(4mm)-试件

序号(第1个))。

经对比可得,(CTOA)

c

的计算值与试验实测值的偏差范围为10.38% 17.5%,可见有限元方法的计算精度可满足工程应用。

3(CTOA)

c

与试件厚度的关系

为了进一步研究(CTOA)

c

值与试件厚度的关系,对X70管线钢CTOA试件,分别取8个不同厚度进行了有限元模拟计算;对X80管线钢CTOA 试件,选取6个不同厚度进行了有限元模拟计算。图6,7分别示出了X70,X80管线钢CTOA试件

厚度与(CTOA)

c

的关系,可看出随厚度的增加

(CTOA)

c

也随之增加,并呈良好的线性关系。

由图6中结果可拟合得到X70管线钢的

(CTOA)

c

与试件厚度的关系式为:

(CTOA)

c =0.42T

w

+6.71(4≤T

w

≤14)

(1)

式中(CTOA)

c

———临界的裂纹尖端张开角,?

T w ———试件厚度,

mm

(a)韧带厚度4mm

的试件

(b)韧带厚度8mm的试件

图4X70管线钢试件的CTOA实测值

与计算值对比

(a)韧带厚度4mm

的试件

(b)韧带厚度8mm的试件

图5X80管线钢试件的CTOA实测值

与计算值对比

81

CPVT基于三维有限元模拟高钢级管线钢断裂过程中的裂纹尖端张开角Vol28.No62011

图6X70管线钢CTOA试件的(CTOA)

c

厚度的关系

图7X80管线钢CTOA试件的(CTOA)

c

厚度的关系

由图7中结果可拟合得到X80管线钢的

(CTOA)

c

与试件厚度的关系式为:

(CTOA)

c =0.45T

w

+6.86(4≤T

w

≤14)

(2)

4结论

(1)基于大变形基础理论,合理确定了节点

起裂的判定准则,进行CTOA试件断裂扩展的三维有限元模拟计算,获得了裂纹稳态扩展阶段的(CTOA)

c

值。

(2)不同钢级、不同厚度试件的临界断裂韧

性(CTOA)

c

的模拟计算值与试验实测值的偏差为10.38% 17.5%,进而验证了使用有限元方法进行CTOA试件断裂扩展过程中CTOA值的模拟计算的可行性。

(3)结果表明,试件厚度越大其CTOA值平稳阶段越短,即越易止裂;X70,X80管线钢CTOA 试件的(CTOA)

c

均随试件厚度增加而增大,并与试件厚度呈良好的线性关系。基于模拟计算结果,分别拟合得到X70,X80管线钢CTOA试件的

(CTOA)

c

的预测公式。

(4)CTOA试件测试试验和有限元模拟方法

均可确定(CTOA)

c

,可对输气管道的止裂设计提供依据。

参考文献:

[1]David J Horsley.Background to the Use of CTOA for Prediction of Dynamic Ductile Fracture Arrest in Pipe-

lines[J].Engineering Fracture Mechanics,2003,70(3

-4):547-552.

[2]陈福来,帅健.输气管道延性断裂的止裂结构及韧性确定方法[J].压力容器,2006,23(7):39-43.[3]帅健,张宏,王永岗,等.输气管道裂纹动态扩展及止裂技术研究进展[J].石油大学学报(自然科学

版),2004,28(3):129-135.

[4]帅健,张宏,许葵.输气管道裂纹动态扩展的数值模拟[J].油气储运,2004,23(8):5-8.

[5]冯耀荣,庄茁,庄传晶,等.裂纹嘴张开角及在输气管线止裂预测中的应用[J].石油学报,2003,24

(4):99-107.

[6]帅健,陈福来,刘梅玲,等.X70管道钢裂纹尖端张开角的试验研究[J].工程力学,2008,25(7):201-

205.

[7]陈福来,帅健,祝宝利.X80管线钢裂纹尖端张开角的试验研究[J].压力容器,2010,27(10):8-11,

55.

[8]商跃进.有限元原理与ANSYS应用指南[M].清华大学出版社,2005.

[9]陈福来,帅健,许葵.管线钢断裂过程中CTOA的试验测试与三维有限元模拟[J].石油化工高等学校

学报,2009,22(2):56-58.

[10]陈福来,帅健,祝宝利.高钢级输气管线钢的止裂设计判据研究[J].压力容器,2010,27(8):1-5,

12.

收稿日期:2011-02-16修稿日期:2011-05-12

作者简介:陈福来(1979-),博士,工程师,主要从事管道运行、建设及科研管理工作,通信地址:100034北京市西城区阜成门北大街6-1号国投大厦D座中国石油海外勘探开发公司管道部,E-mail:chenfulai@cnpcint.com。

91

第28卷第6期压力容器总第223期

微机原理习题第四章

一、问答题: 1、微型计算机是由哪几部分组成的?各部分的功能是什么? 微型计算机是由五部分组成,包括控制器,运算器,存储器、输入设备,输出设备; 控制器控制计算机运转,计算器主要是算术运臬和逻辑运算,存储器主要是存储信息,输入设备主要是输入信息给计算机,输出设备主要是计算机输出信息。 2、IBM PC机的主存有哪几种存储器?它们的作用各是什么? IBM PC机的主存主要有只读存储器和随机存储器。只读存储器只能读出,不能写入,随机存储器可以写入也可以读出。 3、8086微处理器的字长是多少?能直接访问的存储单元有多少字节? 8086微处理器的字长为16位,能直接访问的存储单元可以是2个字节。 4、8088微处理器的逻辑地址是由哪几部分组成的?怎样将逻辑地址转换为物理地址? 8088微处理器的逻辑地址两部分组成,包括段地址和偏移地址;物理地址=段地址 *16+偏移地址。 5、如果一个程序在执行前(CS)=0A7F0H,(IP)=2B40H,该程序的起始地址是多少? 如果一个程序在执行前(CS)=0A7F0H,(IP)=2B40H,该程序的起始地址=0A7F0H*16+2B40H=0AAA40H。 6、有两个16位字1234H和5678H分别存放在02000H为首地址的存储单元中,试用图表示存储数据的情况。 02003H 02002H 02001H 02000H 7、什么叫寻址方式?8088指令系统有哪几种寻址方式? 寻址方式就是指:寻找操作数或者操作地址的各种方法,寻址方式主要有7种 (1).立即数寻址 (2).寄存器寻址 (3).直接寻址 (4).寄存器间接寻址 (5).寄存器相对寻址方式 (6).基址变址寻址方式 (7).相对基址变址寻址方式 二、填空题 1、CPU中的总线接口部件BIU,根据执行部件EU的要求,完成与或的数据传送。

高钢级X100管线钢的组织与性能

第29卷 第3期Vo l 29 No 3材 料 科 学 与 工 程 学 报Journal of M aterials Science &Engineering 总第131期Jun.2011 文章编号:1673 2812(2011)03 0386 06 高钢级X100管线钢的组织与性能 曾 明,江海涛,胡水平,赵征志 (北京科技大学高效轧制国家工程研究中心,北京 100083) 摘 要 本文利用光学显微康、扫描电镜、透射电镜等,对实验室T MCP 工艺生产的X100管线钢的组织构成、微观结构、析出物的形态和分布等进行了研究。研究结果表明,X100为GB(Granular Bainite)、BF(Bainite Ferrite)、M /A 构成的复相组织,且各相比例和形态对性能影响较大,以GB 为主的基体加上少量BF 及弥散分布的细小M/A 构成的组织具有较好的强度和韧性匹配。TEM 微观形貌观察发现,贝氏体晶粒内部具有高密度位错和不同位向的板条束及M /A 硬化相;萃取复形实验发现,X100中主要有两种类型的析出物:一类尺寸较大为T i 的析出,一类尺寸较小为Nb 的析出物;这两种析出物起阻碍奥氏体再结晶和晶粒长大及析出强化的作用。 关键词 X100管线钢;复相组织;高密度位错;析出物 中图分类号:T G142.33 文献标识码:A Microstructure and Mechanical Properties of Pipeline Steel X100 ZENG Ming,JIANG Hai tao,HU Shui ping,ZHAO Zheng zhi (National Engineering Research Center for Advanced Rolling Technology,Beijing University of Science and Technology,Beijing 100083,China) Abstract Microstr uctural constituents as w ell as distribution of precipitates in pipeline steel X100pro duced by thermo mechanical contr ol pr ocess (TM CP)techno logy w ere inv estig ated by m eans of optical micro scopy ,scanning electr on m icroscopy,tr ansm issio n electron micr oscopy,etc.Results show that X100is po lyphase structur ed steel w hich is m ainly constituted of GB (granular bainite)、BF (bainite fer rite )、M/A (martensite austensite ),conformation and proportion o f each phase have significant influence on the performances of X100.It is pro ved that GB based structure w ith a few BF and dispersed fine M /A inside has ex cellent effects on streng th and toughness.H igh density of dislocations,bainite lathes w ith differ ent orientatio ns and M /A har dening phase w ere found by means of T EM o bser vation.It also found tw o types of precipitate,o ne w ith big size mainly constitute of T i,the other w ith sm all size mainly constitute of Nb;each ty pe of precipitate have big effects o n hindering the recry stallizatio n of austenite and on the precipitation streng thening. Key words pipeline steel X100;poly phase;hig h density o f dislocations;precipitate 收稿日期:2010 09 09;修订日期:2010 10 18 作者简介:曾 明(1985-),男,硕士。研究方向:冶金工艺装备及钢种开发。E mail:z engming0504@https://www.wendangku.net/doc/e74832030.html, 。通讯作者:江海涛,副研究员。E mail:nw pujht@https://www.wendangku.net/doc/e74832030.html, 1 引 言 目前,世界石油管道的建设正朝着长距离、大口径、高输送压力发展,为减少建设和维护成本,高钢级 管线钢的开发应用已成为国内外管道用钢的研究热 点[1~3]。当前石油管道用钢的主流级别已成为X80,围绕该钢种的相关研究也已十分成熟。X100~X120 级别管线钢的实验室研发已取得成功,除了国外有少量实验管道,还未出现大规模工程应用,对其组织的研

裂纹扩展分析XFEM在断裂问题中的应用

目录 1 引言 (1) 1.1 研究的背景 (1) 1.2 研究的内容和途径 (1) 1.2.1 研究的内容 (1) 1.2.2 研究的途径 (1) 1.3 研究的意义 (2) 2 扩展有限元法的基本理论 (3) 2.1 单位分解法 (3) 2.2 水平集法 (4) 2.2.1 水平集法对裂纹的描述 (4) 2.2.2 水平集法对孔洞描述 (5) 2.3 扩展有限元法 (6) 2.3.1 扩展有限元法的位移模式 (6) 2.3.2 扩展有限元离散方程的建立 (6) 2.3.3 扩展有限元的单元积分 (7) 3 断裂力学的基本理论 (9) 3.1 裂纹的基本类型 (9) 3.2 几种常见的断裂判断依据 (10) 3.2.1 应力强度因子 (10) 3.2.2 J积分 (10) 3.2.3 COD判据 (11) 3.3 线弹性断裂力学 (11) 3.3.1 线弹性断裂力学适用范围 (12) 3.3.2 应力强度因子准则 (12) 3.4 弹塑性断裂力学 (13) 3.4.1 J积分 (13) 3.4.2 COD理论 (15) 4 算例分析 (16) 4.1 算例1 (16) 4.1.1 建立裂纹体的几何模型 (16) 4.1.2 裂纹体的有限元模型 (16) 4.1.3 裂纹体的材料性能 (17)

4.1.4 裂纹体的条件设置 (17) 4.1.5 结果分析 (18) 4.2 算例2 (22) 4.2.1 椭圆孔对裂纹扩展的影响 (22) 4.2.2 圆形孔对裂纹扩展的影响 (29) 4.2.3 方形孔对裂纹扩展的影响 (32) 4.2.4 三角形孔对裂纹扩展的影响 (35) 4.2.5 孔形对裂纹扩展的影响 (38) 本章小结 (41) 结论 (44) 参考文献 (45) 致谢 (47)

微机原理第四章课后习题答案

第四章课后作业(6—27) 6.试按下列要求分别编制程序段。 (1)把标志寄存器中符号位SF置“1”。 (2)寄存器AL中高、低四位互换。 (3)由寄存器AX、BX组成一个32位带符号数(AX中存放高16位),试求这个数的负数。 (4)现有三个字节存储单元A、B、C,在不使用ADD和ADC指令的情况下,实现(A)+(B) C。 (5)用一条指令把CX中的整数转变为奇数(如原来已是奇数,则CX中数据不变,如原来是偶数,则(CX)+1 形成奇数)。 答: (1) LAHF OR AH,80H SAHF (2) MOV CL,4 ROL AL,CL (3) MOV CX,0 NEG BX JC CHG JMP GO CHG: MOV CX,1 GO: NEG AX SUB AX,CX (4) MOV CL,A MOV AL,B MOV X,AL CHECK:INC X DEC CL JNZ CHECK (5) OR CX,0001H 7.试给出下列各指令的机器目标代码。 (1)MOV BL,12H [SI] (2)MOV 12H [SI],BL (3)SAL DX,1 (4)AND 0ABH [BP] [DI],1234H

答:(1)100010 1 0 01 011 100 00010010=8A5C12H (2)100010 0 0 01 011 100 00010010=885C12H (3)110100 0 1 11 100 010=0D1E2H (4)100000 0 1 10 100 011 10101011 00000000 00110100 00010010 =81A3AB003412H 8.执行下列指令: STR1 DW ‘AB’ STR2 DB 16DUP(?) CNT EQU $-STR1 MOV CX,CNT MOV AX,STR1 HLT 执行完成之后,寄存器CL的值是多少?寄存器AX的值是多少? 答:因为CNT=16+2=18,所以CX=18=0012H,所以CL=12H=0001,0010; AX中装入的是‘AB’的ASCII码值,其中‘A’在高位AH中,‘B’在低位AL中,所以AX=4142H=0100,0001,0100,0010。 9.JMP FAR PTR ABCD (ABCD是符号地址)的转移方式是什么? 答:段间直接转移。 10.按下列指令写出相应指令或程序段。 (1)写出两条使AX寄存器内容为0的指令。 (2)使BL寄存器中的高、低4位互换。 (3)现有两个带符号数分别在X1和X2变量中,求X1/X2,商和余数分别送入Y1和Y2中。 (4)屏蔽BX寄存器中的b4、b6、b11位。 (5)将AX寄存器的b4、b14位取反,其它位不变。 (6)测试DX寄存器的b0、b9位是否为“1”。 (7)使CX寄存器中的整数变为奇数(如原已经是奇数,则不变)。 答:(1)MOV AX,0 XOR AX,AX (2)MOV CL,4 ROL BL,CL (3)MOV AX,X1 CWD IDIV X2 MOV Y1,AX MOV Y2,DX (4)AND BX,1111 O111 1O10 1111 (5)XOR AX,0100 0000 0001 0000 (6)MOV AX,DX RCR AX,1 JC B0Y ;转向表示b0是1的标号为B0Y的程序段

管线钢综述

综述 管线钢指用于输送石油、天然气等的大口径焊接钢管用热轧卷板或宽厚板。管线钢在使用过程中,除要求具有较高的耐压强度外,还要求具有较高的低温韧性和优良的焊接性能。随着石油、天然气消费量的增长,其输送的重要性显越发突出,尤其是长距离输送。而提高输送效率,提高输送的经济效益就要通过加大输送管道口径,提高输送压力来解决。从而提高了对高级别、高性能管线钢的需求。 国外高级别管线钢呈现强劲的发展趋势,从20世纪70年代初期X65管线钢开始投入使用,80年代X70级管线钢逐渐被引入工程建设,1985年API标准中增加了X80钢级,随后X80开始部分在一些管线工程中使用,并很快就投入到X100和X120管线钢的开发试制工作。有关X100最早的研究报告发表于1988年,通过大量工作已形成很好的技术体系。高级别管线钢概述我国管道建设正处于大力发展阶段,因此管线钢的发展也非常迅速。20世纪50~70年代管线钢主要采用A3钢和16Mn钢;70年代后期和80年代采用从日本进口的TS52K钢(相当于X52级钢);90年代,管线钢主要采用的X52、X60、X65级热轧板卷主要由宝钢和武钢生产供应。“八五”期间成功研制和开发了X52~X70级高韧性管线钢,并逐步得到广泛应用。西气东输工程采用了X70级管线钢并逐渐向X80过度。国内管线钢生产技术现状分析由于市场要求单管输气量不断提高。我国早期四川、西北地区的天然气管道采用X52及以下钢级、426mm以下管径的管线钢管,设计年输气量在10亿m3/a以下;陕京一线第一次采用了X60钢级、

D660mm管线钢管设计年输量提高到33亿m3/a;西气东输一线采用X70钢级、D1016mm管线钢管,设计年输量提高到170亿m3/a;最近建设的西气东输二线管道,采用X80钢级、D1219 mm管线钢管,设计年输量提高到300亿m3/a。 这种单管输气量不断提高的趋势仍在持续。当前国际上新一轮巨型天然气长输管道,单管输气量将达到450亿-500亿m3/a的水平。干线一般采用X80钢级,具有输送距离长、采用更高工作压力和大管径输送的特点。 一个具有代表性的项目是正在建设的俄罗斯巴甫年科沃-乌恰天然气管道。管线长度1100km,采用1420mm管径和K65(类似于X80)钢级,输送压力11.8MPa,单管设计输气量约500亿m3/a,计划于2012年第三季度进行系统调试。 另一个有代表性的项目是拟在北美建设的阿拉斯加北坡天然气外输管道,管道的输送能力约465亿m3/a,管线长度2737km,采用1219mm管径和X80钢级,将阿拉斯加北坡丰富的天然气资源输送到加拿大和北美市场。 我国也已在规划研究未来多条西气东输管道(西三线~西八线)的方案。包括将单管输气量提高到400亿~500亿m3/a的多种方案都在研究之中。 由于西气东输二线采用的X80钢级、管径1219mm,12MPa工作压力的方案只能达到300亿m3/a的输气能力,要将输气能力进一步提高到400亿-500亿m3/a,只能进一步提高输送压力和管径。

钢管钢级对照表

一、管线管钢级对照 GB/T9711 API5L L245 B L290 X42 L320 X46 L360 X52 L415 X60 L450 X65 L485 X70 L555 X80 1、L245为9711.1中的牌号,***NB为9711.2中的牌号,***NCS为9711.3中 的牌号 2、GB/9711中245、360等数字表示屈服强度的最低值,单位为MPa; 注: 1、不同厂家的管坯元素含量各有偏重: 例如:X52管坯,宝钢管坯Ni含量是天钢管坯含量的100倍。在冲击、延伸等方面明显较天钢坯欠缺,需要进一步正火。 2、注意不同厂家炉号。 宝钢的炉号数字是6位,天钢的炉号7位数字,南通的炉号带有字母如A、B;注意不同的厂家同一材质成分的差别 3、注意成品化学成分允许偏差 以20#钢为例,其含C量应该是0.17%-0.23%,如果我们所测得试样含碳量是0.25%,那也认为它合格,因为含碳量小于0.25%的允许上偏差是0.02。 4、化学元素对钢的性能的影响 C:钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低。 Si:硅能显著提高钢的弹性极限,屈服点和抗拉强度。

Mn:在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度。 P:增加钢的冷脆性。 S:增加钢的热脆性,降低钢的韧性。 Cr:铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性。 二、名词 冷弯管是不需要灌沙的,冷弯管和热弯管的区分在于材质、管径、壁厚决定的,因为冷弯管最大只能弯到管外径为:420x15的钢管,而热弯管可以加工更大的管材,但是速度很慢,冷弯速度快, 热煨弯头是指在热状态下(即较高温度)将管道煨制而制成的管件。一般通过加热的方式制作。冷煨弯头一般利用砂子或者液压工具进行煨制。

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现 1.1 扩展有限元方法(XFEM)在ABAQUS上的实现 ABAQUS中XFEM的实现,两个步骤最为关键: 1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element. 2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。 在ABAQUS中模拟裂纹扩展的操作中,需要注意的是: 1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数 2、在Interaction模块,主菜单Special中创建XFEM的enrichment element 对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。 由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]: 1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂 纹; 2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度; 3.自适应的网格是不被支持的; 4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。 1.2 数值算例

微机原理与接口技术(第三版)课本习题答案

第二章 8086体系结构与80x86CPU 1.8086CPU由哪两部分构成?它们的主要功能是什么? 答:8086CPU由两部分组成:指令执行部件(EU,Execution Unit)和总线接口部件(BIU,Bus Interface Unit)。指令执行部件(EU)主要由算术逻辑运算单元(ALU)、标志寄存器FR、通用寄存器组和EU控制器等4个部件组成,其主要功能是执行指令。总线接口部件(BIU)主要由地址加法器、专用寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或I/O端口读取操作数参加EU运算或存放运算结果等。 2.8086CPU预取指令队列有什么好处?8086CPU内部的并行操作体现在哪里?答:8086CPU的预取指令队列由6个字节组成,按照8086CPU的设计要求,指令执行部件(EU)在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。从速度上看,该指令队列是在CPU 内部,EU从指令队列中获得指令的速度会远远超过直接从内存中读取指令。8086CPU内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。 5.简述8086系统中物理地址的形成过程。8086系统中的物理地址最多有多少个?逻辑地址呢?答:8086系统中的物理地址是由20根地址总线形成的。8086系统采用分段并附以地址偏移量办法形成20位的物理地址。采用分段结构的存储器中,任何一个逻辑地址都由段基址和偏移地址两部分构成,都是16位二进制数。通过一个20位的地址加法器将这两个地址相加形成物理地址。具体做法是16位的段基址左移4位(相当于在段基址最低位后添4个“0”),然后与偏移地址相加获得物理地址。由于8086CPU的地址线是20根,所以可寻址的存储空间为1M字节,即8086系统的物理地址空间是1MB。逻辑地址由段基址和偏移地址两部分构成,都是无符号的16位二进制数,程序设计时采用逻辑地址,也是1MB。 6.8086系统中的存储器为什么要采用分段结构?有什么好处? 答:8086CPU中的寄存器都是16位的,16位的地址只能访问64KB的内存。086系统中的物理地址是由20根地址总线形成的,要做到对20位地址空间进行访问,就需要两部分地址

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

高级别管线钢概述

高级别管线钢概述 管线钢是指用于输送石油、天然气等的大口经焊接钢管用热轧卷板或宽厚板。管线钢在使用过程中,除要求具有较高的耐压强度外,还要求具有较高的低温韧性和优良的焊接性能。随着石油、天然气消费量的增长,其输送的重要性显越发突出,尤其是长距离输送。而提高输送效率,提高输送的经济效益就要通过加大输送管道口径,提高输送压力来解决。从而提高了对高级别、高性能管线钢的需求。 1、国内发展概况 我国管线钢的起步较晚,国内生产符合API5L标准的管线工程设计要求的管线钢仅有10多年的历史,X60~X70级管线钢已在国际市场上占有一定的地位,目前国内已投入生产的X80级管线钢质量也达到了国际先进水平,X100级管线钢已经研制出来。随着国内冶金技术装备水平的提高,我国能生产管线钢板卷的企业逐渐增多,但是能够生产X70及以上级别的钢厂仅有宝钢、武钢、鞍钢、舞钢、等。近两年来,许多钢铁厂加大了对高级别管线钢的研究开发,宝钢已研发出X120级别的管线用钢板。 21世纪是我国输气管建设的高峰时期。“西气东输”管线采用大口径、高压输送管的方法,这条管线全长4167km,输送压力为10MPa,管径为1016mm,采用的钢级为X70、厚度4.6mm,-20℃的横向冲击功≥120J。从西气东输工程钢材与钢板的国产化率统计看(表1.1)[1],此项目X70钢材与钢管的总国产化率并不高,说明我国迫切需要加速高钢级管线钢宽厚板生产能力的建设。从总体上来看,我国X80级别以上高级别管线钢与国际上还有很大的差距,同级别管线钢的开发与应用整整比发达国家晚了近30年。 表1.1西气东输工程钢材与钢板的国产化率统计 2、国外发展概况 国外高级别管线钢呈现强劲的发展趋势,从20世纪70年代初期X65管线钢开始投入使用,80年代X70级管线钢逐渐被引入工程建设,1985年API标准中

微机原理第四章作业

第四章... 汇编语言.... 作业.. 第四章 P26 2(7)、(8)、3、5、6、7 一、选择题 1.SEGMENT 伪指令总是______指令成对使用。 A .ENDS B .ENDP C .BOTTOM D .END 2.若用户堆栈位于存储区10000H-1FFFFH ,则该堆栈的段地址是________。 A .10000H B .1FFFFH C .1000H D .0FFFFH 3.下列串操作中,在________指令前加重复前缀指令REP 是没有实际使用价值的。 A .MOVS B B .STOSB C .LODSB D .CMPSB 4.汇编语言源程序经汇编后可直接生成________。 A .ASM 文件 B .OBJ 文件 C .EXE 文件 D .COM 文件 5.在汇编语言源程序中,下列伪指令只能出现一次的是________。 A .ORG B .END C .DW D .ORG 二、阅读程序题 1.设数据段定义如下: DATA SEGMENT NA EQU 15 NB EQU 10 NC DB 2 DUP (4,2 DUP (5,2)) CNT DB $ - NC CWT DW $ - CNT DATA ENDS 从DS :0000开始至CNT 单元之前存放的数据依次为____________。 CNT 单元中的值为____。 CWT 单元中的值为____。 2.试分析下述程序段执行后,(AX)=_______、(BX)=_______。 XOR AX ,AX DEC AX MOV BX ,6378H XCHG AX ,BX NEG BX 3.执行下列指令段后,AX 和CX 的内容分别是多少? BUF DB 1,2,3,4,5,6,7,8,9,10 MOV CX ,10 MOV SI ,OFFSET BUF+9 LEA DI ,BUF+10

我国高钢级管线管研究及应用[1]

世界金属导报/2012年/3月/13日/第B12版 钢管型材 我国高钢级管线管研究及应用 王旭 随着油气田开发向边远的荒漠、极地冻土带和海洋等地域拓展,将面临地理环境复杂、气候条件低寒、石油与天然气成分复杂、具有腐蚀性等一系列问题,因此要求管线管具有更高的可靠性,而且还要具有高强度、高韧性(特别是低温冲击韧性和止裂韧性)、良好的焊接性、抗腐蚀(SCC 和HIC)和抗大变形等性能。 近些年,国外的新日铁集团、安赛乐米塔尔钢铁集团及欧洲钢管等开展高钢级管线钢的研究,已取得了丰硕成果。国内在这方面的研究也成效显著,在大口径、大壁厚X80焊管成功应用,并在积极开展X100、X120超高强度管线钢管试制。本文主要介绍几种高钢级管线管的研究及应用。 1X80钢管的研究及应用 西气东输二线建设期间,我国钢厂和制管厂密切协作,在一年时间成功开发了外径1219mm、壁厚15.3、18.4mm的X80螺旋焊管和壁厚22、26.4、27.5mm的X80直缝埋弧焊管,以及最大壁厚33mm的感应加热弯管和管件,并在钢管生产中应用了高精度成型和高速焊接等先进技术,使大口径高强度钢管的尺寸精度和冲击韧性达到国际先进水平。X80钢管的国产化率超过90%,比采用X70钢级的西气东输一线钢管国产化率大幅提高。节约钢材40万t,节省资金65亿元。西气东输二线X80管线管开发成功并大批量生产,不仅加强了我国在高钢级管线管领域的国际地位,也为高附加值的高钢级管线钢管走出国门创造了十分有利的条件。虽然,我国在大口径、大壁厚X80焊管生产技术上趋于成熟,但也应该看到,我国还需要在X80焊管的性能稳定性、X80钢管系列化方面进行深入研究,开展较小口径、薄壁X80焊管的试制,开展低成本、高性能和高可靠性X80管线钢材研究,从而降低管道建设成本,提高管线运行的安全性,满足管道建设需求。 2 X90、X100、X120超高强度钢管的研究与应用 欧洲、日本的制管企业实现了X100、X120管线钢管的生产,在北美地区建设了X100、X120超高强度管线钢管试验段,我国也试制成功了X90、X100、X120超高强度管线钢管,并且计划年内在国内建设X100焊管的试验段。虽然X100、X120钢管能大幅度节约用钢量,同时还可节约焊接材料和施工等方面的成本,但目前所建的X100以上钢级焊管试验段还没有真正意义上应用,问题在于难以依靠管材本身的韧性实现止裂,需要安装大量止裂器,因此管道建设还没有大规模采用,世界范围内X100、X120超高强度管线钢管只处于技术储备的研制阶段。而X80钢管韧性止裂能力还有一定的裕量,因此X90钢管能否实现既降低管线用钢量,又能韧性止裂正逐渐成为关注的焦点,需要更深入研究。 3抗大变形管线钢管的研究与应用 管线钢管发展最具挑战性的领域之一是用于地震区、滑坡、采空区塌陷以及冻土带等特殊地质地区,这些地区管线钢管可能发生大的塑性变形。 近年来,日本JFE公司推出了抗大变形钢管,这种钢管具有较强的变形能力,在上述地区应用时不至于发生破坏。我国从西气东输二线开始,在地震和地质断层区采用了以应变为基础的管线设计方法,截止目前,宝钢、鞍钢、南钢、首钢和湘钢均已完成中缅X70大变形钢管试制工作的首轮制管,产品性能完全达到了国外同类产品的水平。 宝鸡石油钢管有限责任公司和渤海装备巨龙钢管公司也在抓紧研制X80抗大变形管线钢管方面的工作。可以看出,我国虽然填补了国内抗大变形管线钢管产品的研发空白,但抗大变形管线焊管的系列化开发和国产化仍是一项紧迫而艰巨的任务,是进一步增强我国油气输送制管领域

微机原理第3章习题与答案

习题 一、选择题 1.寻址方式指出了操作数的位置,一般来说_______。 A.立即寻址给出了操作数的地址 B.寄存器直接寻址的操作数在寄存器内,而指令给出了存储器 C.直接寻址直接给出了操作数本身 D.寄存器直接寻址的操作数包含在寄存器内,由指令指定寄存器的名称 答案:D 2.寄存器寻址方式中,操作数在_________。 A.通用寄存器 B.堆栈 C.内存单元 D.段寄存器 答案:A 3.寄存器间接寻址方式中,操作数在_________。 A.通用寄存器 B.堆栈 C.内存单元 D.段寄存器 答案:C 4.下列指令中的非法指令是______。 A.MOV[SI+BX],AX B.MOVCL,280 C.MOV[0260H],2346H D.MOVBX,[BX] 答案:B 5.设(SP)=0100H,(SS)=2000H,执行PUSHBP指令后,栈顶的物理地址是_____。 A.200FEH B.0102H C.20102H D.00FEH 答案:A 6.指令LEABX,TAB执行后,其结果是______。 A.将TAB中内容送BX B.将TAB的段基址送BX C.将TAB的偏移地址送BX D.将TAB所指单元的存储内容送BX 答案:C 7.下列正确的指令格式有______。 A.MOV[BX],1 B.MOVAL,0345H C.MOVES:PTR[CX],3 D.XLAT 答案:D 8.设(AX)=C544H,在执行指令ADDAH,AL之后,______。 A.CF=0,OF=0 B.CF=0,OF=1 C.CF=1,OF=0D,CF=1,OF=1 答案:C 9.若AL、BL中是压缩BCD数,且在执行ADDAL,BL之后,(AL)=0CH,CF=1,AF=0。再执行DAA后,(AL)=_____。 A.02H B.12H C.62H D.72H 答案:B 10.执行下列程序后AL的内容为_____。 MOVAL,25H SUBAL,71H DAS A.B4H B.43H C.54H D.67H

微机原理第2章作业

微机原理第2章作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第2章习题与思考题 4、下列各种情况下应判定哪个标志位并说明其状态: ①比较两个无符号数是否相等。ZF=1相等,反之不相等。 ②两个无符号数相减后比较大小。CF=0被减数≥减数,CF=1被减数<减数。 ③两数运算后结果是正数还是负数。SF=0结果为正,反之为负。 ④两数相加后是否产生溢出。OF=1结果溢出,反之不溢出。 5.简述8086系统中物理地址的形成过程。8086系统中的物理地址最多有多少个逻辑地址 呢 6. 答:①8086的地址加法器用来合成20位物理地址的,合成方法: 物理地址=段地址×16 +偏移地址, ②物理地址最多有220=1048576个 ③一个PA可对应多个逻辑地址。如:10145H可对应 10100H+45H 也可对应 10140H+05H等等。因此,逻辑地址难以计数。 7.8086系统中的存储器为什么要采用分段有什么好处 8. 答:①把1MB存储器分段,使每段最大可寻址64KB,这样段内地址可用16位表示,8086的地址寄存器便可使用。 ②而且为信息按特征分段存贮带来了方便。 9.在某系统中,已知当前(SS)=2360H,(SP)=0800H,请说明该堆栈段在存储器中的 物理地址范围。若往堆栈中存有20个字节数据,那么SP的内容为什么值? 答:①该堆栈段在存储器中的物理地址范围: 23600H~23E00H(23600H~23600+0800H) ②若往堆栈中存有20个字节数据,SP=0800H–14H=07ECH 10.已知当前数据段位于存储器的B4000H~C3FFFH范围内,则DS段寄存器的内容为多少?答:DS=B400H 11.8086系统中为什么一定要有地址锁存器需要锁存哪些信息 12. 答:①因为8086的AD15~AD0引脚是地址/数据复用线,只能通过外接地址锁存器来锁存输出地址信息。 ②地址锁存器用3片8位数据锁存器Intel 8282,锁存20位地址和 1 位

UOE和JCOE管线管的性能和成本分析

直缝埋弧焊管的主要成型方法为UOE成型法(U成型、O成型、E扩径)、JCOE成型法(钢板压成J型、再依次压成C型和O型、后进行扩径),作为比较成熟的生产工艺,在国际上已经广泛应用,目前在我国也均有引进。由于其生产工艺上的差异,必然导致其产成品性能的差异,下面重点从产品的技术指标方面对UOE和JCOE的优缺点进行分析比较。 1、生产工艺 (1)UOE的生产工艺流程转炉→精炼→连铸→厚板→钢板上料→焊引弧板→铣边→预弯边→U成型→O成型→高压水冲洗→干燥→预焊→内焊→外焊→ 去除引弧板→焊缝及管端超声探伤→X光检查→钢管扩径→管端焊缝磨平→管端平头→水压试验→焊缝及管端超声探伤→焊缝及管端X光检查→倒棱→管端分层及磁粉探伤→剩磁退磁→工厂检查→称重、测长→喷标记→上保护环→堆放、发货。 (2)JCOE的生产工艺流程材料复检→真空吊→板探→翻板→刨边→上板→卷曲前半幅钢板(J成型)→松出→输入后半幅钢板→卷曲后半幅钢板(C成型)→松出→后弯→预焊→焊引(熄)弧板→内焊→清根→外焊→去引(熄)弧板→超声波检验→机械扩径→水压试验→机械修端→超声波检验→管端环向UT分层检验→X射线检验→成品检验→磁粉检验→称重与测长→外防腐→内防腐→标记→发货。 2、UOE和JCOE的生产工艺不同导致的产品差异 从上述两种生产工艺来看,二者在成型前后的工艺基本相同,最大差别在于成型方式上。UOE成型主要由两步完成:U成型和O成

型。而JCOE成型部分程序分为6个环节,生产效率大大降低。而由于成型方式的不同,导致了UOE和JCOE在直径、壁厚、外形尺寸、生产效率、屈强比等方面的差异(如下表)。 2.1 UOE和JCOE产品规格和生产效率的比较 (1)管径和壁厚 JCOE可生产的管径和壁厚范围要大于UOE,这是由两种产线的模具及生产工艺决定的。对于UOE,一套O机模具只能生产一种直径的钢管,且是二道工序完成成型,对成型机组压力要求高,因此UOE可生产的管径和壁厚范围稍小。对于JCOE,钢管成型采取的是折弯机 步进方式成型每次弯曲需要的压力要大大减小,因而对机组的动力要求大大减小。因此在同等机组压力的情况下,JCOE可生产的壁厚范围要更大,且一套模具可以生产多种管径的钢管,可生产钢管的管径范围要更大。宝钢的O成型机压力达到72000t ,是世界上压力最大的O成型机组之一,生产的壁厚能达到40mm。从目前国内外的管线钢技术发展来看,高钢级,薄壁厚是管道发展的必然趋势,西气东输二线所用的φ1219钢管是当前最大口径的钢管,UOE的生产能力有 足够大 的余量,因而目前宝钢UOE的管径和壁厚生产范围完全可以满足管线工程的需要。 (2)生产效率和产能

管线钢知识

管线钢知识 石油和天然气的需求迅速增长,2011-2015 年世界范围内管道建设的工程投资每年近400 亿美元。 西气东输二线管道以高强度X80为管材,管径1219mm,压力12MPa,主干线全长 4895km。2010年底的统计资料显示,我国已建立原油管道1.9*104km, 天然气管道 3.3*104km,成品油管道1.6*104km,油气管道总里程已达6.8*104km,2020年有望达到 20*104km。同时,与我国的能源需求和先进国家的管道水平相比,我国管道建设还有巨大的需求和潜力。 一、管道工程面临的挑战与管线钢发展方向 管道的大管径、高压输送与高强度管线钢 由建立在流体力学基础上的设计计算可知,原油管道单位时间输送量与输送压力梯度的平方根成正比,与略大于管道直径的平方成正比。加大管道直径,提高管道工作压力是提高管道输送量的有力措施和油气管道的基本发展方向。 目前认为,输油管道合适的最大管径为1220m m,输气管道合适的最大管径为 1420mm。在输送压力方面,提高压力的追求仍无止境。20世纪50-60年代的最高输送压力为6.3MPa(X52),70-80年代的最高输送压力为10MPa(X60-65),90年代后的最高输送压力达14MPa(X70-80)。近年来,国外一些新建天然气管道压力一般为10-15MPa,一些管道压力已超过20MPa (X100-X120)。 由管道设计准则可知,管道工程的大口径、高压输送这一目标可以通过增加钢管壁厚和钢管强度来实现。然而,提高管线钢的强度才是一种理想的选择。这是因为高强度管线钢的采用不仅可减少钢管壁厚和重量,节约钢材成本,而且由于钢管管径和壁厚的减少,可以产生许多连带的经济效益。据统计,在大口径管道工程中,25%-40%的工程成本与材料有关。一般认为,管线钢每提高一个级别,可使管道造价成本降低5%-15%。 管道的低温环境与高韧性管线钢 随着管道工程的发展,对管线钢韧性的技术要求日益提高,韧性已成为管线钢最重要的性能指标。为获取高韧性管线钢,可通过多种韧化机制和韧化方法,其中低碳或超低碳、纯净或超纯净、均匀或超均匀、细晶粒或超细晶粒以及针状铁素体为代表的组织形态是高韧性管线钢最重要的特征。 超纯净管线钢:S W 0.0005%、P< 0.002%、N W 0.002%、O< 0.001%和H< 0.0001%; 超细晶粒管线钢:通过严格控制控轧、控冷条件,目前可获得这种有效晶粒尺寸达到1-2um,因而赋予了管线钢优良的韧性。现代管线钢的A v大都在 200-300J以上,50%FAT可达-45 C以下。经过精心控制的管线钢,其A可高达400-500J 以上,DWTT勺85%FAT可降至-60 °C 以下。 管道的大位移环境与大变形管线钢 所谓大变形管线钢是一种适应大位移服役环境的,在拉伸、压缩和弯曲载荷下具有较高极限应变能力和延性断裂抗力的管道材料。这种管线钢既可满足管道高压、大流量输送的强度要求和满足防止裂纹起裂和止裂的韧性要求,同时又具有防止管道因大变形而引起的屈曲、失稳和延性断裂的极限变形能力,因此大变形管线钢是管道工程发展的迫切需要,也是传统油、气输送管道材料的一种重要补充和发展。 大变形管线钢的主要性能特征是在保证高强韧性的同时,具有低的屈强比 (c s/ (T b V 0.8 ),高的均匀伸长率(如S u > 8%和高的形变强化指数(n> 0.15 )。大变形管线钢的主要组织特征是双相组织。双相大变形管线钢不同于传统的管线钢,也不同于一般意义上的双相钢。它通过低碳、超低碳的多元微合金设计和特定的控制轧制和加速冷

喷气式发动机的压气转子叶片包含一个疲劳裂纹时的可靠性分析外文文献翻译、中英文翻译

附录1外文翻译 喷气式发动机的压气转子叶片包含一个疲劳裂纹时的可靠性分析 喷气式发动机转子叶片包含一个疲劳裂纹的可靠性是被评估通过实际转子叶片和螺栓孔样品含有已知长度的裂纹时的涡流探伤响应(ECI)。这种探测阀以及检测的概率曲线已经被确定。使用动态贝叶斯网络模型去量化不确定性。由于该模型包括一个涡流探伤的响应模型,它能够考虑到所有的与之相关的检测数据类型,裂纹长度的最大变因素已经由灵敏度分析测得,并通过91%可信度的9.93 贝叶斯因子。基于可靠性指数bctrl ?3 的控制水平,以及从校准模型中计算得到的可性赖指数。从第一次检查到裂纹开始出现的时间间隔为1600 小时,小于目前的3200 小时。 1 引言: 有很多关于J85 发动机的第一级压缩机转子叶片失效面导致的飞行中熄火事件。李在[1]中故障分析中指出:疲劳裂纹是由中心增长到临界的长度,根据应力分析,中心受到了最大的负载,并且最有可能引发裂纹。负载主要是由于离心力,当叶以100%的转速转动计算出的最大应力是538MP。 事故发生后,每一个第一级叶片都采用涡流探伤检查,进行检查,共有53 个裂缝被发现,并且进行了ECI,由于压缩机转子叶片不单独跟踪,所以仅能得到压缩机转子组件的累积在冀时间和大修后的工作时间。为了得到POD 曲线和检测值,对已知裂纹长度的被马尔可夫蒙特卡洛链模拟。 在这篇论文中,对一个J85 发动机压缩转子含疲劳裂纹时的可靠性进行了评估,帕斯卡定律被用作裂纹扩展的定律,三维裂纹的压力强度因子已经使用neartip 区域的子模型技术的有限元法来计算。因为这项工作需要的计算应力强度因素,元模型已经建成以加快模拟。 为了捕捉到疲劳裂纹的随机性,多种不确定定性的来源被用来研究。使用灵敏度分析与预测裂纹长度分布因素已被确定并校准。这种可预测裂纹长度的不确定性,通过贝恩斯网络来测定(量化),并且这种贝恩斯模型参数已经校准和检测数据得到验证。有一种类似的方法用于预测疲劳裂纹长度。在参数[4]中,并且可以预测在结构中包含一个应力腐蚀裂纹的可靠性,这种可靠性被本文的作者在[6]中提出。目前的这种模式比之前

相关文档