文档库 最新最全的文档下载
当前位置:文档库 › 电子密度泛函理论与应用理论课程总结

电子密度泛函理论与应用理论课程总结

+ Local density

+ Density gradient

+ Inexplicit occupied orbital information + Explicit occupied orbital information

+Unoccupied orbital information

jacob's ladder

局域密度近似(LDA)

?LDA underestimates Ec but overestimates Ex, resulting in unexpectedly good values of Exc.

?The LDA has been applied in, calculations of band structures and total energies in solid-state physics.

?In quantum chemistry,it is much less popular, because it fails to provide results that are accurate enough to permit a quantitative discussion of the chemical bond in molecules.

16

泛函分析课程论文

泛函分析课程论文 数学与计算科学学院 09数本2班 黄丽萍 2009224725 大四新学年开始了,我们也开始学习了一门综合性及专业性强的课程——泛函分析。首先,理解下“泛函分析”这个概念。 泛函分析是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。所以在接下来的两章内容的学习中,我们将先学习“两大空间”——度量空间和赋范线性空间及其相关知识(第七章和第八章)。在学习中慢慢体味泛函分析的综合性及专业性。 第七章的标题已经明确给出了学习任务——度量空间和赋范线性空间。 §1 度量空间 §1.1 定义:若X 是一个非空集合,:d X X R ?→是满足下面条件的实值函数,对于,x y X ?∈,有 (1)(,)0d x y =当且仅当x y =; (2)(,)(,)d x y d y x =; (3)(,)(,)(,)d x y d x z d y z ≤+, 则称d 为X 上的度量,称(,)X d 为度量空间。 【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。 §1.2 度量空间的进一步例子 例:1、离散的度量空间(,)X d ,设X 是一个非空集合,,x y X ?∈,当1,(,)0,=x y d x y x y ≠?=??当当。

2、序列空间S ,i =1i |-|1(,)21+|-|i i i i d x y ξηξη∞ =∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t A d x y x y ∈=是度量空间 4、连续函数[a,b]C ,(,)max|(t)-(t)|a t b d x y x y ≤≤=是度量空间 5、空间2l ,122=1(,)[(-)]k k i d x y y x ∞=∑是度量空间 §1.3度量空间中的极限,稠密集,可分空间 §1.3.1极限:类似数学分析定义极限,如果 {}n x 是(,)X d 中点列,如果?x X ∈,使n l im (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列,x 是点列{}n x 的极限。 同样的类似于n R ,度量空间中收敛点列的极限是唯一的。 §1.3.2稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令 M M M ?表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。 即:{},n n M E x E x M s t x x n ??∈??→→∞在中稠密对 §1.3.3 例子 1、 n 维欧氏空间n R 是可分空间; 2、 坐标为有理数的全体是n R 的可数稠密子集; 3、 l ∞是不可分空间。 §1.4 连续映射 §1.4.1定义:设 (,),(,),> 0,X (,) < (T ,T ) < ,o o o o X X d Y Y d T X Y x X d x x x d x x T x εδδε==∈ 是两个度量空间,是到中映射,如果对于任意给定的正数,存在正数 使对 中一切满足 的 ,有 则称在连续。

密度泛函理论及其应用

密度泛函理论及其应用 一、密度泛函理论(Density Functional Theory :DFT ) VASP 的理论基础是电荷密度泛函理论在局域电荷密度近似(LDA )或是广 义梯度近似(GGA )的版本。DFT 所描述的电子气体交互作用被认为是对大部分 的状况都是够精确的,并且它是唯一能实际有效分析周期性系统的理论方法。 1.1 单电子薛定谔方程式 一个稳定态(与时间无关)的单一粒子薛定谔方程式可表示为一个本征值问 题(暂略动能项的 /2m ): ()()H r E r ψψ= (1) 2[]()()V r E r ψψ-?+= (2) 多体量子系统 (如双电子的薛定谔方程式): 2212121212[(,)](,)(,)V r r r r E r r ψψ-?-?+= (3) 在普遍的状况下,12(,)V r r 里的12,r r 是无法分离变量的,因此,即便简单如 双电子的薛定谔方程式就己经没有解析解了。而任何的计算材料的量子力学问 题,都需要处理大量数目的电子。 1.2 Hohenberg-Kohn 定理 量子力学作为20世纪最伟大的发现之一,是整个现代物理学的基石。量子力 学最流行的表述形式是薛定谔的波动力学形式,它的核心是波函数及其运动方程 薛定谔方程。对一个给定的系统,我们可能得到的所有信息都包含在系统的波函 数当中。对一个外势场v (r)中的N 电子体系,量子力学的波动力学范式可以表示 成: v (r) ?Ψ (r1; r2; …; r N ) ?可观测量 (4) 即,对给定的外势,将其代入薛定谔方程可以得到电子波函数,进一步通过

波函数计算力学量算符的期望值可以得到所有可观测量的值。电荷密度是这些可 观测量中的一个: 333* 232()...(,...)N N n r N d r d r d r r r r =ψ???2(,...)N r r r ψ (5) 如前所述,任何的计算材料的量子力学问题,都需要处理大量数目的电子。 而,对于超过两个电子以上的体系,薛定谔方程就已经难以严格求解了。对于实 际物质的这样一种每立方米中有2910数量级的原子核和电子的多粒子系统,我们 是更不可能由薛定谔方程来严格求解其体系的电子结构的。但,建立于 Hohenberg-Kohn 定理上的密度泛函理论不但给出了将多电子问题简化为单电子 问题的理论基础,同时也成为分子和固体的电子结构和总能量计算的有力工具。 因此,密度泛函理论是多粒子系统理论基态研究的重要方法。 密度泛函理论的基本想法是原子、分子和固体的基态物理性质可以用粒子密 度函数来描述,这源于H.Thomas 和E·费米1927年的工作。密度泛函理论基础是建 立在P.Hohenberg 和W.Kohn 的关于非均匀电子气理论基础上的,它可归结为两个 基本定理: 定理一:不计自旋的全同费米子系统的基态能量是粒子数密度函数()n r 的唯 一泛函。 它的推论是,任何一个多电子体系的基态总能量都是电荷密度()n r 的唯一泛 函,()n r 唯一确定了体系的(非简并)基态性质。 由于电荷密度与电子数N 直接联系:()n r dr N =?,这样决定多电子薛定谔 方程解的电子数N 和外势场都由电荷密度()n r 唯一确定,因此基态波函数[] F n 以及其它的电子结构性质都由电荷密度唯一确定。 由于()V r 决定了哈密顿量,多电子体系的基态ψ是()n r 的唯一泛函,自然 动能和库仑能也是()n r 的泛函,那么体系的所有性质也将是基态密度的泛函。于 是定义一个普适泛函[]F n ,有: 2,,22,()1 (1)()2()l ps l ps l l ps d r l l V r E r dr r ??Φ+??=+-????Φ?????? []??()F n r T U ≡<ψ+ψ> (6) 适用于任何外场下的具有任意电子数的体系。所以系统基态的能量可表示为

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

泛函分析学习心得

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

泛函分析课程总结

泛函分析课程总结 数学与计算科学学院 09数本5班 符翠艳 2009224524 序号:26 一.知识总结 第七章 度量空间和赋范线性空间 1. 度量空间的定义:设X 是一个集合,若对于X 中任意两个元素,x y ,都有唯 一确定的实数(),d x y 与之相对应,而且满足 ()()()()()()()1,0,,0=;2,,;3,,,,d x y d x y x y d x y d y x d x y d x z d z y z ≥=?? ??=????≤+?? 、的充要条件是、、对任意都成立。 则称d 为X 上的一个度量函数,(d X ,)为度量空间,),(y x d 为y x ,两点间的度量。 2. 度量空间的例子 ①离散的度量空间(),X d 设X 是任意的非空集合,对X 中任意两点,x y X ∈,令 ()1,,0,x y d x y x y ≠?? =??=?? 当当 ②序列空间S 令S 表示实数列(或复数列)的全体,对S 中任意两点 ()()12n 12,,...,,...,,...,,...n x y ξξξηηη==及,令 ()11,21i i i i i i d x y ξηξη∞ =-=+-∑ ③有界函数空间B (A ) 设A 是一给定的集合,令B (A )表示A 上有界实值(或复值)函数全体,对B (A )中任意两点,x y ,定义 (),()()sup t A d x y x t y t ∈=- ④可测函数空间m(X) 设m(X)为X 上实值(或复值)的L 可测函数全体,m 为L 测度,若()m X ≤∞,对任意两个可测函数()()f t g t 及,令 ()()(),1()() X f t g t d f g dt f t g t -=+-?

实变函数学习心得

实变函数学习心得 实变函数课在我国高等学校数学系的教学计划中属于专业基础课,是一门承上启下的课。下面是为大家准备的实变函数学习心得体会,希望大家喜欢! 实变函数学习心得体会范文篇1 学习实变函数这们课已经一个学期了,对于我们数学专业的学生,大学最难的一门课就是实变函数论与实变函数这门课了。我们用的教材难度比较大,所以根据我自己学习这门课的心得与方法,有以下几点: 1、复习并巩固数学分析等基础课程。学习实变函数这门课程要求我们以数学分析为学习基础,因此,想学好这门课必须有相对比较扎实的数学分析基础。 2、课前预习。实变函数是一门比较难的课程,龙老师上课也讲得比较快、比较抽象,因此,适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。 3、上课认真听讲,认真做笔记。龙老师是一位博学的老师,上课内容涵盖许多知识。因此,上课应注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,实变函数这门课比较难,所以建议听课是一个全身心投入听、记、思相结合的过程。 4、课后复习,做作业,做练习。我们作为大三的学生,我们要学

会抓住零碎的时间复习实变函数课堂的学习内容,巩固学习。复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某些定理证明的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,理解并掌握其证明思路。做作业、做练习时,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。 所以,我们学习实变函数总的来说要把握课前、课时与课后的任务,学习内容要多下功夫掌握基本概念和原理及其证明思路,尽可能地掌握作业题目,在记忆的基础上理解,在完成练习中深化理解,在比较中构筑知识结构的框架,是提高学习实变函数课程效率的重要途径。 实变函数学习心得体会范文篇2 古语有云:微机原理闹危机,汇编语言不会编,随机过程随机过,量子力学量力学,实变函数学十遍。其它的不好说,这实变函数确实要多看几遍的。虽然我曾旁听过这门课,但是对于其中的种种总感觉模模糊糊,不甚明了。前几日在网上down了一个完整的教学视频,便想着把这门课重新来过,遂借着这片地方留下一些印记,好督促自己万不可半途而废。 1、集合列的极限有上下极限之分,只有当上下极限相等时,才称集合列存在极限。对于上极限可以这样定义: {x|x属于无穷多个An}.无穷多是用文字语言来进行形象的描述,那么转换成数学的语言应该是怎样的呢?类比数学分析中的聚点原理,我们可以假设若x属于某个Am,那么一定可以找到mm,使得x也属于m,如若不然,x就属于有限个集合,而不是无穷多个了。上述

泛函分析重要内容

们同意前人的提法,认为线性泛函与无穷维空间上引进坐标的思想有关,而对偶理论则有如无穷维线性空间上的解析几何学。 Chp.1 距离线性空间 SS1. 选择公理,良序定理,佐恩引理 有序集的定义: (1)若a在b之先,则b便不在a之先。 (2)若a在b之先,b在c之先,则a在c之先。 这种先后关系记作 良序集:A的任何非空子集C都必有一个属于C的最先元素。 良序集的超限归纳法: (1)为真,这里是A中最先的元素。 2)对一切,为真,则亦真 那么对一切皆真。 选择公理 设N={N}是一个非空集合构成的族,则必存在定义在N上的函数f,使得对一切N都有 部分有序 称元素族X是部分有序的,如果在其中某些元素对(a,b)上有二元关系,它据有性质: 例如X中包换关系 在部分有序集下,有上界、极大元和完全有序 其中完全有序的C:。 例如在复数域中,按大小关系定义两个复数的关系,则复平面是部分有序的,实轴、虚轴是完全有序的。 佐恩引理 设X非空的部分有序集,如果X的任何完全有序子集都有一个上界在X中,则X必含有极大元。 从现代观点来看,泛函分析研究的主要是研究实数域或者复数域上的完备赋线性空间。 SS2. 线性空间,哈迈尔(Hamel)基 线性空间的定义:加法交换、加法结合、有零元,有负元、有单位元等。 线性流形:线性空间中的非空子集,如果它加法封闭、数乘封闭。 线性流形的和M+N:所有形如m+n的元素的集合,其中m∈M, n∈N。 线性流形的直和:如果M∩N={θ},则以代替M+N 如果,则称M与N是代数互补的线性流形。 于是有下述定理:

定理2.1 设M,N是线性空间X的线性流形,则当且仅当对每个x∈X都有唯一的表达式 x=m+n, m∈M,n∈N. 定理2.2 若,则dimX=dimM+dimN Hamel基的定义: 设X是具有非零元的线性空间,X的子集H称为X的Hamel基,如果 (1)H是线性无关的。 (2)H成的线性流形是整个空间。 则有Hamel基和线性无关子集的关系: 定理2.3 设X是线性空间,S是X中任意的线性无关子集,则存在X的一个Hamel基使得 推论任何非零线性空间必有Hamel基 由定理2.3,可有 定理2.4 设M是线性空间X的线性流形,则必有线性流形使得,即N是M的代数补。 SS3 距离空间(度量空间),距离线性空间 定义了距离(满足正定性、对称性和三角不等式的映射)d(x,y)的空间即为距离空间,记为 按距离收敛: 设距离空间中的点列使得 ,则称按d(·,·)收敛到x,简记为 距离线性空间: 设赋有距离d(·,·)的线性空间X满足 (1) (2) 距离线性空间的例子 例1 有界序列空间(m) 设X代表所有有界数列的集合,设

实变函数与泛函分析课程教学大纲

《实变函数与泛函分析》课程教学大纲 一、课程基本信息 课程代码:110047 课程名称:实变函数与泛函分析 英文名称:Real variable analysis And Functional analysis 课程类别:专业基础课 学时:50 学分:3 适用对象:信息与计算科学专业本科 考核方式:考试,平时成绩30%,期末成绩70% 先修课程:数学分析和高等代数 二、课程简介 中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。 英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning. 三、课程性质与教学目的 本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。本课程要求如下: 1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。

密度泛函理论的进展与问题

密度泛函理论的进展与问题 摘要:本文综述了密度泛函理论发展的基础及其最新进展,介绍了求解具体物理化学问题时用到的几种常用的数值计算方法,另外对密度泛函理论的发展进行了展望。密度泛函理论的发展以寻找合适的交换相关近似为主线,从最初的局域密度近似、广义梯度近似到现在的非局域泛函、自相互作用修正,多种泛函形式的相继出现使得密度泛函理论可以提供越来越精确的计算结果。另外,在密度泛函理论体系发展的同时,相应的数值计算方法的发展也非常迅速。随着密度泛函理论本身及其数值方法的发展,它的应用也越来越广泛,一些新的应用领域和研究方向不断涌现。 关键词:密度泛函数值计算发展应用 1 研究背景 量子力学作为20世纪最伟大的发现之一,是整个现代物理学的基石。量子力学最流行的表述形式是薛定谔的波动力学形式,核心是波函数及其运动方程薛定谔方程。对一个外势场v(r)中的N电子体系,量子力学的波动力学范式可以表示成: 即对给定的外势,将其代入薛定谔方程可以得到电子波函数,可以得到所有可观测量的值。 当用量子力学处理真实的物理化学体系时,传统的波动力学方法便显得有点力不从心。因为在大多数情况下,人们只是关心与实验相关的一部分信息,如能量、密度等。所以,人们希望使用一些较简单的物理量来构造新的理论[1]。 电子密度泛函理论是上个世纪60年代在Thomas-Fermi理论的基础上发展起来的量子理论的一种表述方式。传统的量子理论将波函数作为体系的基本物理量,而密度泛函理论则通过粒子密度来描述体系基态的物理性质。因为粒子密度只是空间坐标的函数,这使得密度泛函理论将3N 维波函数问题简化为3维粒子密度问题,十分简单直观。另外,粒子密度通常是可以通过实验直接观测的物理量。粒子密度的这些优良特性,使得密度泛函理论具有诱人的应用前景。 2 密度泛函理论的基础 Thomas-Fermi模型 1927 年Thomas和Fermi分别提出:体系的动能可以通过体系的电子密度表达出来。他们提出了一种的均匀电子气模型,把空间分割成足够小的立方体,通过在这些立方体中求

量子力学泛函计算简介

量子力学泛函计算 纪岚森 (青岛大学物理科学学院材料物理一班) 摘要:文章叙述了密度泛函理论的发展,密度泛函理论以“寻找合适的交换相关为主线,从 最初的局域密度近似,,从最初的局域密度近似、广义梯度近似到现在的非局域泛函、自相 互作用修正,多种泛函形式的出现,是的密度泛函在大分子领域的计算越来越精确。近年来 密度泛函理论在含时理论与相对论方面发展也很迅速。计算体系日臻成熟,而我所参加的创 新实验小组就是以密度泛函研究大分子体系。在量子力学泛函计算的产生,发展,理论,分 支,前景等方面予以介绍,本着科学普及的态度希望大家能够更加进一步的理解泛函计算。 关键字:量子力学泛函计算,发展,理论分支,前景,科普 1引言:随着量子理论的建立和计算机技术的发展,人们希望能够借助计算机对微观体系的量子力学方程进行数值求解【3】,然而量子力学的基本方程———Schirdinger 方程的求解是极其复杂的。克服这种复杂性的一个理论飞跃是电子密度泛函理论(DFT)的确立电子密度泛函理论是上个世纪60 年代在Thomas-Fermi 理论的基础上发展起来的量子理论。与传统的量子理论向悖,密度泛函理论通过离子密度衡量体系的状态,由于离子密度只是空间的函数,这样是就使得解决三维波函数方程转化为解决三维密度问题,使得在数学计算上简单了很多,对于定态Schirdinger 方程,我们只能解决三维氢原子,对于更加复杂的问题,我们便无法进行更为精确的计算,而且近似方法也无法是我们得到更为精确的结果。但是密度泛函却在这方面比较先进,是的大分子计算成为可能。【2】 2.过程:第一性原理,密度泛函是一宗量子力学重头计算的计算方法,热播呢V啊基于密度泛函的理论计算成为第一性原理——first-principles。经过几十年的发展密度泛函理论被广泛的应用于材料,物理,化学和生物等科学中,Kohn也由于其对密度泛函理论的不可磨灭的先驱性贡献获得了诺贝尔化学奖。密度泛函理论体系包括交换相关能量近似,含时密度泛函。 3.密度泛函理论的发展: 1交换相关能,在密度泛函理论中我们把所有近似都归结到交换相关能量一项上,所以密度泛函的精确度也就是由交换相关能一项上。寻求更好的更加合适的相关近似,即用相同密度的均匀电子气交换相关泛函作为非均匀系统的近似值,或许这也出乎人们的意料,这样一个简单的近似却得到了一个极好的结论。直接导致了后来的泛函理论的广泛应用。由此获

泛函分析课程总结论文

泛函分析课程总结论文 第一部分:知识点体系 第七章:度量空间和赋范线性空间 度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。 泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。 一、度量空间的进一步例子 1、度量空间的定义 定义1.1 设X 为一个集合,一个映射X X R ?→d :.若对于任何x ,y,z 属 于X ,有 1°d(,)0x y ≥,且d(,)0x y =当且仅当x y =(非负性); 2°(,)(,)d x y d y x =(对称性); 3°(,)(,)(,)d x y d x z d z y ≤+ (三角不等式) 则称d 为集合X 的一个度量,同时称 () ,X d 为一个度量空间 (课本第二章第一节中已经讲解了度量空间的定义,第七章第一节接着讲解度量空间,下面介绍六种度量空间。) 2、常见的度量空间 例2.1 离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。 例2.2 序列空间S 令S 表示实数列(或复数列)的全体,对S 中的任意两点 令 称 为序列空间。 例2.3 (3)有界函数空间B(A ) 设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体, 对B(A)中任意两点x,y ,定义 ,x y X ∈1,(,)0,if x y d x y if x y ≠?=?=?(,)X d 1212(,,...,,...),(,,...,,...), n n x y ξξξηηη==1|| 1(,)21||i i i i i i d x y ξηξη∞ =-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-

密度泛函理论(DFT)

一、 计算方法 密度泛函理论(DFT )、含时密度泛函理论(TDDFT ) 二、 计算方法原理 1. 计算方法出处及原理 本计算方法设计来源于量子化学理论中的Born –Oppenheimer 近似,给近似下认为原子核不动, 这样电子就相当于在一个由核产生的外部的静态势场 V 中运动。那么一个固定的电子态可以用波函数 Ψ(1r , · · · ,N r ), 并且满足多 N 电子 体系薛定谔方程: ()() 22????,2N N N i i j i i i i j H T V U V r U r r E m

电子密度0()n r 是知道的话, 那么基态的波函数012(,,)N r r r ψ???就唯一确定。也就是说, 基态的波函数0ψ是基态电子密度0n 的泛函[11], 表达为: []00n ψ=ψ (2-5) 既然有以上的假定, 那么对于基态的任何一个观测量?O , 它的数学期望就应该是0n 的泛函: [][][]000 ?O n n O n =ψψ (2-6) 特别的, 基态的能量也是0n 的泛函: [][][]0000 ???E E n n T V U n ==ψ++ψ (2-7) 这里外部势能的贡献[][]00?n V n ψψ可以通过基态的电子密度0 n 来精确表达: 300[]()()V n V r n r d r =? (2-8) 或者外部势能?V ψψ可以用电子密度 n 来表达: 30[]()()V n V r n r d r =? (2-9) 泛函 T [n ] 和 U [n ] 被称作通用泛函, 而势能泛函 V [n ] 被称做非通用泛函, 因为它与当前研究的系统息息相关。对于一个给定的体系, 就存在一个对应的?V ,相应的, 该体系的能量可以表达为: 3[][][]()()E n T n U n V r n r d r =+=? (2-10) 假定, 已经得到了T [n ] 和 U [n ] 的表达式, 那么对于公式 2-10, 以 ()n r 为自变量, 求解 E [n ] 的最小值, 就可以得到基态的0n 对应的能量 E 0 , 同样也能得到其他的基态的客观测量。求解能量最小值的变分问题可以通过 Lagrangian

力场简介

1分子(或原子)间相互作用势简介 分子(或原子)间相互作用势的准确性对计算结果的精度影响极大,但总的来说,原子之间的相互作用势的研究一直发展得很缓慢,从一定程度上制约了分子动力学在实际研究中的应用.原子间势函数概念本身已把电子云对势函数的贡献折合在内了,原子间势函数的发展经历了从对势,多体势的过程.对势认为原子之间的相互作用是两两之间的作用,与其他原子的位置无关,而实际上,在多原子体系中,一个原子的位置不同,将影响空间一定范围内的电子云分布,从而影响其他原子之间的有效相互作用,故多原子体系的势函数更准确地须用多体势表示. 2 力场简介

图1 键伸缩势示意图图2键伸缩势示意图

图3二面角扭曲势示意图 在分子动力学模拟的初期,人们经常采用的是对势.应用对势的首次模拟是Alder和Wainwright在1957年的分子动力学模拟中采用的间断对势.Rahman在1964年应用非间断的对势于氩元素的研究,他和Stillinger在1971年也首次模拟了液体HzO分子,并对分子动力学方法作出了许多重要的贡献,比较常见的对势有以下几种: (a)间断对势 Alder和Wainwrigh在1957年使用间断对势 这个势函数虽然很简单,但模拟结果给人们提供了许多有益的启示.后来他们又采取了另一种形式的间断对势。 (b)连续对势 对势一般表示非键结作用,如范德瓦耳斯作用;常见的表达方式有以下几种:

ij ij 其中,Lennard —Jones 势是为描述惰性气体分子之间相互作用力而建立的,因此它表达的作用力较弱,描述的材料的行为也就比较柔韧.也有人用它来描述铬、钼、钨等体心立方过渡族金属.Born-Lande 势是用来描述离子晶体的. Morse 势与Johnson 势经常用来描述金属固体,前者多用于Cu ,后者多用于 Fe .Morse 势的势阱大于Johnson 势的势阱,因此前者描述的作用力比后者强,并且由于前者的作用力范围比后者长,导致Morse 势固体的延性比Johnson 势固体好.对势虽然简单,得到的结果往往也符合某些宏观的物理规律,但其缺点是必然导致Cauchy 关系,即Cl2=C44,而一般金属并不满足Cauchy 关系,因此对势实际上不能准确地描述晶体的弹性性质

《泛函分析》课程标准

《泛函分析》课程标准 英文名称:Functional Analysis 课程编号:407012010 适用专业:数学与应用数学学分数:4 一、课程性质 泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。 二、课程理念 1、培育理性精神,提高数学文化素养 基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。 2、良好的学习状态,提高综合解题能力 本课程面对的是数学与应用数学专业四年级的学生。学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。需要师生共同努力去正确面对才能顺利完成本门课的教学任务。为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。 3、内容由浅入深 本课程的框架结构是根据教学对象和教学任务来安排的: “度量空间”泛函分析的基本概念之一,十分重要。首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。在赋范空间上定义线性算子及线性泛函,并讨论相关性质。第三步,在线性赋范空间上定义内积,可以得到内积空间和希尔伯特空间的定义,在内积空间上引入正交以及投影的概念,并建立起相应的几何学,还要讨论希尔伯特空间上的算子,特别是自伴算子、酉算子、正常算子的一些初步性质。最后,介绍巴拿赫空间中的四个著名定理:Hahn-Banach泛函延拓定理,一致有界性定理,逆算子定理和闭图像定理,这些定理充分显示了泛函分析的威力及其广泛应用。 4、理论联系实际,拓展学生知识面 在教学过程中,主要把握以下几点:将先进的教学思想和教学理念贯穿到课程的内容和体系;强化数学思想方法、加强学生分析解决问题能力和数学素养的培养,让学生接受现代的、新的观念,以启迪学生的创新思维;准确把握课程定位,培养学生掌握扎实的数学基础知识、严密的逻辑思维能力以及应用数学知识解决实际问题的能力,同时为学生向科研型理论型人才发展留下充足的空间。课堂教学提倡启发式,采用各种现代化的教学手段,有些内容举一些数学分析中的例子使学生容易理解泛函分析的抽象理论等。教师通过应用信息技术手段,可以使得授课内容信息量大,学生更能深入泛函分析的内容。 要求学生做到:将书上的基本知识点吃透,注意咬文嚼字;注意抽象思维能力和逻辑思维能力,要求会做一些理论证明;要求在上课时认真听讲,完成课上训练和课堂作业.课下能够查阅

第四章 密度泛函理论(DFT)

第四章 密度泛函理论(DFT)
4.1 引言 4.2 DFT的优点 4.3 Hohenberg-Kohn定理 4.4 能量泛函公式 4.5 局域密度近似 4.6 Kohn-Sham方程 4.7 总能Etot表达式 4.8 DFT的意义 4.9 小 结
1

4.1 引言
1。概述 ? DFT = Density Functional Theory (1964): 一种用电子密度分布n( r)作为基本变量,研究多粒子 体系基态性质的新理论。 W. Kohn 荣获1998年Nobel 化学奖 ? 自从20世纪60年代(1964)密度泛函理论(DFT) 建立并在局域密度近似(LDA)下导出著名的Kohn -Sham (沈呂九)(KS)方程以来,DFT一直是凝聚态 物理领域计算电子结构及其特性最有力的工具。
2

2。地位和作用 ? 近几年来,DFT同分子动力学方法相结合, 有许多新发展; ? 在材料设计、合成、模拟计算和评价诸多方 面有明显的进展; ? 已成为计算凝聚态物理、计算材料科学和计 算量子化学的重要基础和核心技术; ? 在工业技术领域的应用开始令人关注。
3

4.2 DFT的优点
? 它提供了第一性原理或从头算的计算框 架。在这个框架下可以发展各式各样的能 带计算方法。 ? 在凝聚态物理中,如: 材料电子结构和几何结构, 固体和液态金属中的相变等。 ? 这些方法都可以发展成为用量子力学方法 计算力的, 精确的分子动力学方法。
4

泛函分析报告结课论文设计

泛函分析结课论文Functional Analysis Course Paper 学号

一、泛函分析空间理论 泛函中四大空间的认识 第一部分我们将讨论线性空间,在线性空间的基础上引入长度和距离的概念,进而建立了赋线性空间和度量空间。 在线性空间中赋以“数”,然后在数的基础上导出距离,即赋线性空间,完备的赋线性空间称为巴拿赫空间。数可以看出长度,赋线性空间相当于定义了长度的空间,所有的赋线性空间都是距离空间。 在距离空间过距离的概念引入了点列的极限,但是只有距离结构、没有代数结构的空间,在应用过程中受到限制。赋线性空间和积空间就是距离结构与代数结构相结合的产物,较距离空间有很大的优越性。 赋线性空间是其中每个向量赋予了数的线性空间,而且由数诱导出的拓扑结构与代数结构具有自然的联系。完备的赋线性空间是Banach空间。赋线性空间的性质类似于熟悉的n R,但相比于距离空间,赋线性空间在结构上更接近于n R。 赋线性空间就是在线性空间中,给向量赋予数,即规定了向量的长度,而没有给出向量的夹角。 在积空间中,向量不仅有长度,两个向量之间还有夹角。特别是定义了正交的概念,有无正交性概念是赋线性空间与积空间的本质区别。任何积空间都赋线性空间,但

赋线性空间未必是积空间。 距离空间和赋线性空间在不同程度上都具有类似于n R 的空间结构。事实上,n R 上还具有向量的积,利用积可以定义向量的模和向量的正交。但是在一般的赋线性空间中没有定义积,因此不能定义向量的正交。积空间实际上是定义了积的线性空间。在积空间上不仅可以利用积导出一个数,还可以利用积定义向量的正交,从而讨论诸如正交投影、正交系等与正交相关的性质。Hilbert 空间是完备的积空间。与一般的Banach 空间相比较,Hilbert 空间上的理论更加丰富、更加细致。 1 线性空间 (1)定义:设X 是非空集合,K 是数域,X 称为数域上K 上的线性空间,若,x y X ?∈,都有唯一的一个元素z X ∈与之对应,称为x y 与的和,记作 z x y =+ ,x X K α?∈∈,都会有唯一的一个元素u X ∈与之对应,称为x α与的积,记作 u x α= 且,,x y z X ?∈,,K αβ∈,上述的加法与数乘运算,满足下列8条运算规律: 10 x y y x +=+ 20 ()()x y z x y z ++=++ 30 在X 中存在零元素θ,使得x X ?∈,有x x θ+= 40 x X ?∈,存在负元素x X ?-∈,使得()x x θ+-= 50 1x x ?= 60 ()()x x αβαβ= 70 ()+x x x αβαβ+= 80 ()x y x y ααα+=+ 当K R =时,称X 为实线性空间;当K C =时,称X 为复线性空间 (2)维数: 10 设X 为线性空间, 12,,,n x x x X ∈若不存在全为0的数12,,,n K ααα∈,使 得 11220n n x x x ααα++ +=

相关文档