文档库 最新最全的文档下载
当前位置:文档库 › 新编 变上限积分函数及其导数

新编 变上限积分函数及其导数

新编 变上限积分函数及其导数
新编 变上限积分函数及其导数

(完整版)【工程数学】复变函数复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1) 模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数); 主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

积分上限函数小结

小结 积分上限函数(或变上限定积分)()()x a F x f t dt =?的自变量是上限变量x , 在求导时,是关于x 求导,但在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。弄清上限变量和积分变量的区别是对积分限函数进行正确运算的前提。 1.关于积分上限函数的理论 定理1 如果)(x f 在],[b a 上可积,则?=x a dt t f x F )()(在],[ b a 上连续. 定理 2 如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[b a 上可导,且 ).(])([)(x f dt t f dx d x F x a == '? 注:(Ⅰ)从以上两个定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数 )(x f '甚至不一定是连续的。 (Ⅱ)定理(2)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(2)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。 推论1 )(])([x f dt t f dx d b x -=? 推论2 )()]([])([) (x x f dt t f dx d x c ???'=? 推论3 )()]([)()]([])([) ()(x x f x x f dt t f dx d x x ??ψψψ?'-'=? 2.积分限函数的几种变式 (1) 比如 ?-=x dt t f t x x F 0)()()( (被积函数中含x , 但x 可提到积分号外面来.) 在求)(x F '时,先将右端化为????-=-x x x x dt t tf dt t f x dt t tf dt t xf 0 )()()()(的形 式,再对x 求导。 (2)比如 ?-=x dt x t tf x F 0)()(

考研数学利用变限积分求导计算函数极限的方法

考研数学:利用变限积分求导计算函数极限的方法 在考研数学中,利用变限积分求导来计算定积分、函数极限和证明积分等式或不等式是常考的题型,事实上,变限积分是与微积分基本定理(牛顿-莱布尼茨公式)紧密联系在一起的,其重要性不言而喻。在上一篇文章中,文都考研数学辅导老师向大家介绍了利用变限积分求导来计算定积分的技巧,下面对利用变限积分求导来计算函数极限这类题的解题方法进行分析介绍,供各位考生参考,希望对大家有所裨益。 变限积分求导的基本公式: 公式1:若()f x 连续,则 ()()x a d f t dt f x dx =?; 公式2:若()f x 连续,12(),()x x ??可导,则21 () 2211()()(())()(())()x x d f t dt f x x f x x dx ??????''=-? 利用变限积分求导计算函数极限的基本方法: 1)如果函数是含变限积分的分式,可以考虑使用变限积分求导法计算极限; 2)通常是对 00型和∞ ∞ 型不定式积分使用,并结合洛必达法则使用; 3)如果被积函数中含参数x ,应该先将参数x 分离出来,提到积分号前面去。 例1. 求极限2 2 2lim x t x x te dt x e →∞ ? 解析:这是一个 ∞ ∞ 型不定式极限,可以运用洛必达法则,而分子是一个变上限积分函数,因此可如下计算:2 2 2 2 2 20 232lim lim 22x t x x x x x x te dt x e x x e xe x e →∞ →∞ ?==+?2 2 lim 11x x x →∞=+ 例2. 0 ()()(0)0,lim ()x x x tf x t dt f x f x f t dt →-≠??若连续,求 解析:这是一个 型不定式极限,可以运用洛必达法则,但分子中的被积函数含参数x ,需要先将x 分离出来,提到积分号外面去,这可以通过积分换元法实现,具体过程如下: 1.()()()()()()()x t u x x x x x tf x t dt x u f u du x t f t dt x f t dt -=-= --= -=-?? ? ? ?

考研高数重要知识点讲解:变限积分求导

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研高数重要知识点讲解:变限积分求 导 在考研复习的初期,打好基础是学好数学的关键。下面,考研高数重要知识点讲解之变限积分求导,希望能帮助到大家。 数学虽然属于理科科目,但是仍然有许多重要的知识点需要记忆和运用。特别为广大考生归纳一下高等数学的部分知识点。这次我们介绍的是变限积分求导。 变限积分求导是考研试卷中每年必考的内容,该知识点可以和高等数学中所有内容都可以结合起来考查综合题,重点是考查变限积分函数求导,其基本原理是如下三个公式: 在这三个公式中,被积函数中不含有参数x,而考试的时候经常被积函数中间含有参数x,处理的时候有两种情况,第一种情况是参数x和积分变量t是可以分离;第二种情况参数x 和积分变量t是没法分离的,用定积分的换元法来处理。

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢

考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点 ()()x a F x f t dt =? 形如上式的积分,叫做变限积分。 注意点: 1、在求导时,是关于x 求导,用课本上的求导公式直接计算。 2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。 (即在积分内的x 作为常数,可以提到积分之外。) 关于积分上限函数的理论 定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则?=x a dt t f x F )()(在],[b a 上连续。 定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。 定理3如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[ b a 上可导,而且有 ).(])([)(x f dt t f dx d x F x a == '? ========================================== 注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。 (Ⅱ)定理(3)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

变上限定积分函数及其导数教案

高等数学教案 变上限定积分函数及其导数 教学内容:变上限定积分函数及其导数。 知识目标:使学生掌握变上限定积分函数的定义; 使学生了解原函数存在定理的证明; 使学生会熟练运用原函数存在定理求导数。 情感目标:通过原函数存在定理体会积分和微分之间的联系。 教学重点:通过对变上限定积分的掌握和原函数存在定理的结论会求 变上限定积分函数的导数。 教学难点:原函数存在定理的证明。 教学设计:对高职生来说,原函数存在定理的证明过程是本节课的难点,所以采用提前给出储备知识减弱学生负担,同时又辅以数形结合 来形象展示。对变上限积分函数的导数采用讲练结合来强化重点。 教学方法:讲练结合+任务驱动 教学过程: 一课程导入 在前面我们通过两个实例曲边梯形的面积和变速直线运动的路程引入了定积分的概念。求定积分的过程实际上是求和式的极限一般来说,根据定义求定积分计算是很复杂的,所以,必须寻求一种简单而有效的方法。牛顿-莱布尼兹在创建微积分时,就发现定积分和不定积分有密切的联系。我们第二讲要讲的牛顿-莱布尼兹公式,从而把求定积分的问题转化为求不定积分(既原函数)的问题,为人们计算定积分提供了简便的方法。本节课所要讲的原函数存在定理,在微分

和积分之间建立了关系,牛顿和莱布尼兹利用这种关系用来计算计算定积分,得出了著名的牛顿-莱布尼兹公式。 二 储备知识 引导学生复习下面一些知识点,为后面的知识做准备。 1 原函数:若)()(x f x =Φ',则)(x Φ是)(x f 的一个原函数。 2 可导的概念:若x x f x ??→?)(lim 0存在 ,则)(x f 可导。 3 复合函数求导:)()())(((x u u f x u f dx d '?'= 4 定积分的积分区间可加性:dx x f dx x f dx x f b c b ???+=c a a )()()(。 5 定积分积分中值定理 :)())(()(b a a b f dx x f b a ≤≤-=?ξξ。 三 给出课堂任务目标 给出本节课的任务目标,以便让学生明白本节课的主要任务。 本堂课主要有三个任务目标 :1 掌握变上限积分函数的概念; 2 了解原函数存在定理的证明; 3 会熟练运用原函数存在定理求导数。 四 课程内容 1变上限定积分函数的概念 设)(x f 在],[b a 上连续,],[b a x ∈,则)(x f 在],[x a ,即定积分?x a dx x f )(存在,这样很容易混淆,又定积分的值与积分变量无关,我们把积分变量换成t,即得?x a dt f )t (。若固定积分下限a ,则对任意一个],[ b a x ∈,定积分?x a dt f )t (都有唯一的值与x 对应,所以?x a dt f )t (是上限变量x 的函数,称它为变上限定积分函数, 记作?=Φx a dt f x )t ()(。 从定积分的几何意义来解释变上限积分是x 的函数。

变限积分确定的函数的性质及其应用

变限积分确定的函数的性质及应用 摘要 由变限定积分和变限反常积分定义的一类函数,有重要的理论价值和应用价值。本文给出了变限积分的定义及其性质,主要讨论变限积分的求导问题以及奇偶性周期性等方面问题,较系统地讨论了这类函数的性质,得到若干结果,并简要介绍了它们的几点应用。 关键词:变限积分;函数;可积;连续;收敛。

ABSTRACT Limited by the variable and variable limit integral improper integral defined a class of functions, there are important theoretical and practical value. In this paper, changing the definition and nature of limit points, discuss the derivation of integral limits change issues and other aspects of the periodic parity, more systematic discussion of the nature of such functions, by a number of results, and a brief introduction Some of their applications. Key word: variable limit integral, function, integral, continuity, convergence.

3变限积分函数的性质及其应用

404 §3 变限积分函数的性质及其应用 由于定积分概念是利用极限工具给出的,所以利用定积分的定义计算定积分是十分困难的,有时甚至是不可能的。为了让定积分概念能得到实际应用,必须寻找简便有效的计算定积分的方法,那么我们必须探求定积分更加深刻的性质。本节将介绍两个重要的定理,通过沟通定积分与不定积分的关系,给出了一个解决定积分计算问题的有效途径。 3.1 变限积分 定积分有一个十分特殊而重要的性质,它对进一步考察微分和积分的关系起十分关键的作用。但需要先介绍一个概念: 注 由于 ?? -=x b b x dt t f dt t f )()(,因此,只要讨论变上限函数即可。 证 利用连续函数的定义及定积分的性质即可证得。 对[a ,b ]上的任一点x ,只要[],x x a b +?∈,按照Φ的定义有 ()()x x x a a x x x fdt f dt +??Φ=Φ+?-Φ=- ? ? 。 又函数 ) (x f 在[a , b ]上可积,则 ) (x f 在[a , b ]上有界,即存在正数M ,对 一切[],x a b ∈有()f x M ≤。又当0x ?≥时有 x x x x x x x x x f d t f d t M d t M x +?+?+??Φ=≤≤=?? ? ? 。

405 又不难验证,当0x ?<时,上述不等式M x ?Φ≤?仍然成立。从而有 lim 0x ?→?Φ=。这就证得Φ在[],a b 上的连续性。 3.2 微积分学基本定理 1 变限积分的可微性 ——微积分学基本定理 当函数得可积性问题获得解决后,接着是要找到一种计算定积分得有效方法。下面将通过揭示定积分与不定积分之间的内在联系来完成这一任务。下面的两个定理,由于所起的重要作用而被称为微积分学基本原理。 证 ],[b a x ∈?,任取0≠?x ,且],[b a x x ∈?+,则 ? ? - = Φ-?+Φ=?Φ?+x a x x a t d t f t d t f x x x )()()()( ? ? ? ? ?+?+= - + = x x x x a x x x x a t d t f t d t f t d t f t d t f )()()()(, 由积分中值定理知,存在ξ 介于x 与x +?x 之间,使得 x f ?=?Φ)(ξ, 由于x x →?→?ξ0,再由导数定义及) (x f 的连续性知 )()(l i m )(l i m l i m )(00x f f f x x x x x ===??Φ =Φ'→→?→?ξξξ。 注 (1) 当],[b a C f ∈时, ? = Φx a dt t f x )()(可导且在点∈x ] , [b a 的导数 恰为被积函数在上限的值。 亦即 )(x Φ是)(x f 的一个原函数。即连续函数必有原函数,因此定理1又称原函数存在定理。 (2) 变上限函数与分段函数有点类似,是一个难点,从而也是一个考试的热点,它常与极限、求导、最值等知识结合出现形成综合性的题目,应与重视。我们将这里拓宽一下。 若)(x ?可导,则)(x ?与变上限函数)(x Φ构成了复合函数?) ()(x a t d t f ?,由复 合函数求导法则知

关于积分上限函数的小结.doc

关于积分上限函数 积分上限函数(或变上限定积分)F(x)= 的自变量是上限变量兀, Ja 在求导时,是关于兀求导,但在求积分时,则把兀看作常数,积分变量r在积分区间上变动。弄清上限变量和积分变量的区别是对积分限函数进行正确运算的前提。 1.关于积分上限函数的理论 定理1如果/(X)在[。,饲上可积,则F(X)= ( 在[a,h]上连续. 定理2如果/⑴在[a.b]±连续,则F(x)=[f(t)dt在⑷切上可导,且r(x) = £[f/(r)t/z]= /(%). 注:(I)从以上两个定理可看出,对门力作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数/(兀)经过求导后,其导函数广(兀)甚至不一定是连续的。 (n)定理(2)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(2)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。 推论1 = -/(%) 推论2 f I=川0⑴]0(0 dx 4 推论3 ⑴如=⑴]0⑴一/"⑴]0(兀)

2.积分限函数的几种变式 (1)比如F(x) = ^(x-t)f(t)dt (被积函数中含X,但X可提到积分号外面来.) 在求”(兀)时,先将右端化为f xf^dt -[=⑴刃的形式,再对尢求导。 (2)比如F(x)= ^tf(t-x)dt (f的自变量中含X,可通过变量代换将X置换到f的外面来) 在求F(力时,先对右端的定积分做变量代换u=t-x(把兀看作常数),此时, dt = du , / = 0时,w = -x ; t = x时,w = 0 ,这样,FO)就化成了以”作为积分变量的积分下限函数:F(x) = f (x + u)f(u)du = x f(u)du + uf(u)du ,然后再对x求导。 J-x J-x 丄JV (3)比如F(x) = ^f(xt)dt (这是含参数x的定积分,可通过变量代换将x变换到积分限的位置上去) 在求F(力时,先对右端的定积分做变量代换u = xt(把兀看作常数),此时, dt = —y t = 0时,w = 0 ; t = 1时,u = x ,于是,F(x)就化成了以“作为积 x 分变量的积分上限函数:F(兀) = £(/(u)du ,然后再对x求导。 3.有积分限函数参与的题型举例 (1)极限问题: .2 3 f sin 2 tdt 例1 lini ------------------ (答:12) ' >0 £ t(t - sin t)dt

变上限积分求导

变上限定积分求导法则: 例如:原函数存在定理:()( )()0x f t dt f x ' =? 如果该函数()f t 再添一个变量x ,那么公式就变为 ()() ()()0 x x xf t dt f t dt xf x '=+? ? 相当于:x 是一个常数,提取在变上限定积分()0x f t dt ?的前面。 举例:(2008年高职升本试卷) 若()f x 在(),-∞+∞内连续,()()()02x F x x t f t dt =-? 证明:(1)若()f x 为奇函数,则()F x 为奇函数。 (2)若()f x 非增,则()F x 非减。 证明:(1)若()f x 为奇函数,则证明()()F x F x -+=0即可。 ()()()()002x x F x x t f t dt xf t dt ''????'=-=-??????????()02x tf t dt '?????? ? =()()()()()002x x f t dt xf x xf x f t dt xf x +-=-?? ()()()()00 2()x x F x x t f t dt x f t dt --''????'-=--=--????? ?????()02x tf t dt -'??????? =()()()()()0 ()(1)2()(1)x x f t dt x f x x f x f t dt xf x ---+-------=---?? 故:()()()()()()00 x x F x F x f t dt xf x f t dt xf x -''+-=----?? ()()()0 0 0x x x x f t dt f t dt f t dt --=+==??? 由拉格朗日定理,可知:()() F x F x C ''+-≡(C 为常数) 当0x =时代入,可得:()()F x F x -+=0。 (2)若()f x 非增,则证明()0F x '>。 由()F x '= ()()0 x f t dt xf x -?

复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

关于积分上限函数的小结

关于积分上限函数 积分上限函数(或变上限定积分)()()x a F x f t dt =?的自变量是上限变量x , 在求导时,是关于x 求导,但在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。弄清上限变量和积分变量的区别是对积分限函数进行正确运算的前提。 1. 关于积分上限函数的理论 定理1 如果)(x f 在],[b a 上可积,则?=x a dt t f x F )()(在],[ b a 上连续. 定理2 如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[b a 上可导,且 ).(])([)(x f dt t f dx d x F x a == '? 注:(Ⅰ)从以上两个定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数 )(x f '甚至不一定是连续的。 (Ⅱ)定理(2)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(2)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。 推论1 )(])([x f dt t f dx d b x -=? 推论2 )()]([])([) (x x f dt t f dx d x c ???'=?

推论3 )()]([)()]([])([) ()(x x f x x f dt t f dx d x x ??ψψψ?'-'=? 2. 积分限函数的几种变式 (1) 比如 ?-=x dt t f t x x F 0)()()( (被积函数中含x , 但x 可提到积分号外面来.) 在求)(x F '时,先将右端化为????-=-x x x x dt t tf dt t f x dt t tf dt t xf 0 )()()()(的形 式,再对x 求导。 (2)比如 ?-=x dt x t tf x F 0)()( ( f 的自变量中含x , 可通过变量代换将x 置换到f 的外面来) 在求)(x F '时,先对右端的定积分做变量代换x t u -=(把x 看作常数),此时, du dt =,0=t 时,x u -=;x t =时,0=u ,这样,)(x F 就化成了以u 作为 积分变量的积分下限函数: ???---+=+=0 00)()()()()(x x x du u uf du u f x du u f u x x F ,然后再对x 求导。 ( 3 ) 比如 ?=1 )()(dt xt f x F (这是含参数x 的定积分, 可通过变量代换将x 变换到积分限的位置上去) 在求)(x F '时,先对右端的定积分做变量代换xt u =(把x 看作常数),此时, x du dt = ,0=t 时,0=u ;1=t 时,x u =,于是,)(x F 就化成了以u 作为积分变量的积分上限函数:?=x du u f x x F 0)(1)(,然后再对x 求导。 3. 有积分限函数参与的题型举例 (1) 极限问题: 例1 ?? -→x x x dt t t t tdt 2 3 )sin (sin lim 2 (答:12)

1-3复变函数的导数(1)

$1.3 复数函数的导数 授课要点:导数的定义,柯西—黎曼条件 1、 复变函数的导数: 0'()lim z df w f z dz z ?→?==? 如果极限存在,且与0z ?→的方式无关,则称()f z 在z 点可导。'()f z 或 df dz 称为函数在z 点的导数. 从形式上看,复变函数的导数与实变函数的导数一样,实变函数中的一些关于求导的公式也可用于复变函数之中,比如 1212121221112 12222()()''(1()dw dw d w w dz dz dz dw dw d w w w w dz dz dz w w w w w d dz w w dw dz dz dw dF dF dw F w dz dw dz ?+=+???=+??-?=????=????=??? 1sin cos cos sin ln 1n n z z dz nz dz d e e dz d z z dz d z z dz d z dz z -?=???=???=???=-???=?? 复变函数导数存在的条件是一个很严格的条件,因为 0lim z w z ?→?? 的值存在必须是在z ?以任意方式趋于零的条件下成立,首先考虑两种特殊情况: (1) 沿平行于x 轴方向,这意味着z x ?=?;从而: 0lim (,)(,)(,)(,)lim 0x w u x x y iv x x y u x y iv x y z z x ?→?+?++?--=?→?? 0(,)(,)(,)(,)lim[]x u x x y u x y v x x y v x y i x x ?→+?-+?-=+?? u v i x x ??=+?? (1) 同样的道理,若考虑沿平行于y 轴的方向,有z i y ?=?,则: 00(,)(,)(,)(,)lim lim z y w u x y y iv x y y u x y iv x y z i y ?→?→?+?++?--=??

专题3——关于变上限积分(函数)的一个重要规则

专题3——()()()()x x a a f x g t dt f x g t dt =?? 这里的标题就是一个公式: ()()()()x x a a f x g t dt f x g t dt =? ?,这个公式为什么成立?专题2中出现 过 ()x x f x dx ? ,参照标题公式,为什么不把它化为0 ()()x x x x f x dx f x dx =???这一切问题困扰着你幼 小的心灵。 解决这些问题的关键是找准积分变量!什么是积分变量?微分符号d 后面的变量就是积分变量,dt ——t 就是积分变量,dx ——x 就是积分变量,du ——u 就是积分变量。 积分区间和积分变量是什么关系?积分区间就是积分变量的取值区间! 在清楚了以上基本的知识后,再回过头来理解标题公式 ()()()()x x a a f x g t dt f x g t dt =? ?,明显,这 里的积分变量就是t ,不是x ,那么积分区间[,]a x (x a >)就是t 的变动范围。假如函数()g t 的 原函数为()G t ,即()()G t g t '=,那么()()f x G t 对t 求导,有[()()]()()f x G t f x g t '=,那么, ()()[()()][()()]|()()()()x x x a a a f x g t dt f x G t dt f x G t f x G x f x G a '===-? ?,而 ()()()()()()|()[()()]()()()()x x x a a a f x g t dt f x G t dt f x G t f x G x G a f x G x f x G a '==?=?-=-??, 故 ()()()()x x a a f x g t dt f x g t dt =? ?。所以说公式中()f x 就相当于定积分不定积分中的常数K ,当然 可以提到积分外面去。

复变函数与积分变换学习笔记

第二章解析函数 一、复变函数的导数及微分 1、导数的定义 2、可导与连续 3、求导法则 实变函数的求导法则可以不加更改地推广到复变函数中来 4、微分的概念 与一元实变函数的微分概念完全一致 二、解析函数的概念 1、解析函数的定义 如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。 如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。或称f(z)是区域D内的一个解析函数(全纯函数或正则函数) 2、奇点的定义 如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。 根据定义可知,函数在区域内解析和区域内可导是等价的。但是,函数在一点处解析和一点 处可导是不等价的,即在一点处可导,不一定在该点处解析。 函数在一点处解析比在该点处可导的要求高得多。 定理 (1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点) 在D内解析。 (2)设函数h=g(z)在z平面上的区域D内解析,函数w=f(h)在h平面上的区域G内解析。如果对于D内的每个点z,函数g(z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。 根据定理可知: (1)所有多项式在复平面内是处处解析的。 (2)任何一个有理分式函数P(z)/Q(z)在不含分母为零的点的区域内是解析的,使分 母为零的点是它的奇点。 注意:复变函数的导数定义与一元实变函数的导数定义在形式上是完全一样的,它们的求导 公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一 点可导的条件比实变函数严格得多。 第二节、函数解析的充要条件 一、主要定理 定理一:设函数f(z)=u(x,y)+iv(x,y)定义在区域D内,则f(z)在D内一点z=x+yi 可导的充要条件是:u(x,y)与v(x,y)在点(x,y)可微,并在该点满足柯西-黎曼方 程:?u?v?u ==- , ?x?y?y ?v ?x 。 根据定理一,可得函数f(z)=u(x,y)+iv(x,y)在点z=x+yi处的导数公式:f'(z) ?u =+i ?x ?v ?x 1 = i ?u?v + ?y?y 。 定理二:函数f(z)=u(x,y)+iv(x,y)在其定义域D内解析的充要条件是:u(x,y)

相关文档
相关文档 最新文档