文档库 最新最全的文档下载
当前位置:文档库 › 工业以太网交换机原理与应用

工业以太网交换机原理与应用

工业以太网交换机原理与应用

工业以太网交换机原理与应用

工业以太网交换机原理

?

工业以太网交换机,即应用于工业控制领域的以太网交换机设备,由于采用的网络标准其开放性好、应用广泛;能适应低温高温,抗电磁干扰强,防盐雾,抗震性强。

?

?

以太网交换机多是二层的,如丰润达的以太网交换机都是工作在数据链路层,交换MAC地址数据。也有第三层的,如华为的核心交换机是工作在网络层的。

?

?

工作原理是:当有一个帧到来时,他会检查其目的地址并对应自己的MAC地址表,如果存在目的地址,则转发,如果不存在则泛洪(广播),广播后如果没有主机的MAC地址与帧的目的MAC地址相同,则丢弃,若有主机相同,则会将主机的MAC自动添加到其MAC地址表中。

?

?

?

?

主要体现在功能和性能:

工业以太网交换机在新能源领域的应用实例

2017年9月5日 [光伏发电监控系统/光伏/风电箱变测控系统/光伏逆变并网自动化监测系统/风力发电站SCADA监控系统/水电站视频网络监控系统]

目录 一、光伏发电监控系统 (3) 解决方案 (3) 系统结构图 (3) 二、光伏/风电箱变测控系统 (4) 解决方案 (4) 系统结构图 (4) 三、光伏逆变并网自动化监测系统 (5) 解决方案 (5) 系统结构图 (5) 四、风力发电站SCADA监控系统 (6) 解决方案 (6) 系统结构图 (6) 四、水电站视频网络监控系统 (7) 解决方案 (7) 系统结构图 (8)

在以光伏、风能、水电为代表的新能源领域,对网络监控系统的可靠性要求极高,迈威工业以太网交换机够实现及时安全的冗余环网保护、远距离网络传输、可以在严苛环境下安全运行和提高网络质量。 一、光伏发电监控系统 光伏发电系统是利用光生伏特效应原理将太阳能转换成电能的发电系统,它的主要部件是太阳能光伏阵列、汇流箱、直流柜逆变器和箱变等,其特点是可靠性高、使用寿命长、不污染环境、能独立发电能并网运行,是干净清洁无污染的环保能源,受到各国企业组织的青睐,具有广阔的发展前景。 解决方案 光伏发电系统主要由太阳能光伏板、汇流箱、直流柜、逆变器、箱变和变压器组成。光伏发电通信系统主要由光伏区串口服务器Mport3102、户外房交换机MIEN6208和升压站交换机MISCOM6026组成光伏区光伏组件发电,通过电缆经汇流箱汇流后到直流柜,通过逆变器将直流变为交流电,通过箱变将电压提升到35KV通过电力线缆传输到升压站,电压提升到110kv,再输送到国家电网。 在光伏区汇流箱需监测每条回路的电流电压功率等测量值,串口服务器Mport3102将汇流箱。直流柜。逆变器和箱变的检测数据接入到通信网络中,经迈威环网交换机MIEN6208传输至继保室,经继保室机架式交换机MISCOM6026接入光功率预测与控制等后台其他系统进行数据处理分析与保存。 每1MW对应一个户外小室,光伏区一般由20‐100个户外房组成,每10台与中控室交换机组成光纤环网,确保网络通信的稳定性和稳定性。运行人员可在远方对光伏区设备进行监测和控制,从而大大减少了现场维护的工作量以及由此带来的人身安全隐患。 系统结构图

工业催化原理——知识要点

第四章金属催化剂及其催化作用 1、金属催化剂的应用及其特性 1)金属催化剂的应用 金属催化剂:指催化剂的活性组分是纯金属或者合金 纯金属催化剂:指活性组分只由一种金属原子组成,这种催化剂可单独使用,也可负载在载体上 合金催化剂:指活性组分由两种或两种以上金属原子组成 2)金属催化剂的特性 常用的金属催化剂的元素是d区元素,即过渡元素(ⅠB、ⅥB、ⅦB、Ⅷ族元素) 金属催化剂可提供的各种各样的高密度吸附反应中心 2、金属催化剂的化学吸附 1)金属的电子组态与气体吸附能力间的关系 (1)金属催化剂化学吸附能力取决于金属和气体分子的化学性质,结构及吸附条件 (2)具有未结合d电子的金属催化剂容易产生化学吸附 (3)价键理论:不同过渡金属元素的未结合d电子数不同,他们产生化学吸附的能力不同,其催化性能也不同(4)配位场理论:金属表面原子核体相原子不同,裸露的表面原子与周围配位的原子数比体相中少,表面原子处于配位价键不饱和状态,他可以利用配位不饱和的杂化轨道与被吸附分子产生化学吸附。(5)吸附条件对进水催化剂的吸附的影响: 低温有利于物理吸附,高温有利于化学吸附 高压有利于物理吸附,也有利于化学吸附 2)金属催化剂的化学吸附与催化性能的关系 (1)金属催化剂的电子逸出功(脱出功) 定义:将电子从金属催化剂汇中移到外界(通常是真空环境中)所需做的最小功,或者说电子脱离金属表面所需要的最低能量 符号:Φ,在金属能带图中表现为最高空能级与能带中最高填充电子能级的能量差 意义:其大小代表金属失去电子的难易程度或说电子脱离金属表面的难易 (2)反应物分子的电离势 定义:指反应物分子将电子从反应物中移到外界所需的最小功,用I表示。 意义:其大小代表反应物分子失去电子的难易程度。 电离能:激发时所需的最小能量 (3)化学吸附键和吸附状态 ①当Φ>I时,电子将从反应物分子向金属催化剂表面专业,反应物分子变成吸附在金属催化剂表面上的正离子。反应物分子与催化剂活性中心吸附形成离子键,它的强弱程度决定于Φ与I的相对值,两者相差越大,离子键越强。这种正离子吸附层可以降低催化剂表面的电子逸出功。随着吸附量的增加,Φ逐渐降低。 ②当Φ

以太网交换机技术原理

以太网交换机技术原理 接入网产品部网络组

目录 第一章以太网交换技术概述 (1) 1.1交换式以太网的发展 (1) 1.2以太网的基本概念 (1) 1.3交换机工作原理 (2) 第二章物理端口和介质 (4) 2.1以太网命名方法 (4) 2.2 RJ-45的相关知识 (5) 第三章以太网交换机管理的概念 (6) 3.1带外管理 (6) 3.2带内管理 (6) 第四章以太网交换机重要功能 (8) 4.1 VLAN (8) 4.2 IGMP S NOOPING (11) 4.3生成树协议(S PANNING T REE P ROTOCOL) (12) 4.4链路聚合(T RUNKING) (14) 4.5端口工作状态 (15) 4.6流量控制 (16) 4.7数据帧过滤 (16) 4.8端口镜像 (16)

4.9端口锁定 (17) 4.10以太网交换机的Q O S (17) 第五章产品及应用 (19) 5.1交换机产品系列 (19) 5.2主要特点 (19) 5.3典型应用 (19) 5.4组网示意图 (20)

第一章以太网交换技术概述 1.1交换式以太网的发展 “以太网”是Ethernet的中译名,是在二十世纪七十年代由施乐(Xerox)公司 的Palo Alto研究中心(PARC)开发的,是一种局域网技术。让我们首先回顾一 下以太网的发展过程。 1982年12月,IEEE802.3标准的出现标志着以太网技术的起步,同时也标志 着符合国际标准、具有高度互通性的以太网产品的面世。 1990年,出现了第一台以太网交换机。 1993年,全双工以太网的出现改变了以太网半双工的工作模式,彻底解决了 多个端口的信道竞争。 1995年3月,IEEE802.3u规范的通过,标志着100Mbps快速以太网时代的 到来。 1998年6月,通过了IEEE802.3z规范,以太网速度达到了1000Mbps(即 1Gbps),以太网进入高速网络的行列。 1.2以太网的基本概念 CSMA/CD 以太网的访问是竞争式的,这种技术称为CSMA/CD(带冲突检测的载波侦听多 路访问) “载波侦听”表示希望发送的站点先要侦听线路,如果其他站点正在发送,则等 待到线路空闲为止。 “多路访问”是指多个站点共享媒体。 冲突检测”是指站点在发送时要监测媒体,从而知道是否有冲突发生—即有其 他站点同时在发送。 IEEE802.3帧结构 8 6 6 2 可变 4 前同步码 目的地址 源地址 长度 数据 FCS 这是IEEE802.3帧格式。这和传统的以太网帧略有差别,但IEEE802.3是一个 标准,多数厂商推出的都是兼容IEEE802.3的硬件和软件,当我们提到一个以

华为三层以太网交换机基本原理及转发流程

华为三层以太网交换机基本原理及转发流程 1.1. MAC地址介绍 MAC 地址是48 bit 二进制的地址,如:00-e0-fc-00-00-06。 能够分为单播地址、多播地址和广播地址。 单播地址:第一字节最低位为0,如:00-e0-fc-00-00-06 多播地址:第一字节最低位为1,如:01-e0-fc-00-00-06 广播地址:48 位全1,如:ff-ff-ff-ff-ff-ff 注意: 1)一般设备网卡或者路由器设备路由接口的MAC 地址一定是单播的MAC 地址才能保证其与其它设备的互通。 2)MAC 地址是一个以太网络设备在网络上运行的基础,也是链路层功能实现的立足点。 1.2. 二层转发介绍 交换机二层的转发特性,符合802.1D 网桥协议标准。 交换机的二层转发涉及到两个关键的线程:地址学习线程和报文转发线程。 学习线程如下:

华为认证技术文章 2 1)交换机接收网段上的所有数据帧,利用接收数据帧中的源MA C 地址来建立MAC 地址表; 注意:老化也是按照源MAC 地址进行老化。 报文转发线程: 1)交换机在MAC 地址表中查找数据帧中的目的MAC 地址,如果找到,就将该数据帧发送到相应的端口,如果找不到,就向所有的端口发送; 2)如果交换机收到的报文中源MAC 地址和目的MAC 地址所在的端口相同,则丢弃该报文; 3)交换机向入端口以外的其它所有端口转发广播报文。 1.3. VLAN二层转发介绍 报文转发线程: 引入了VLAN 以后对二层交换机的报文转发线程产生了如下的阻碍:

1)交换机在MAC 地址表中查找数据帧中的目的MAC 地址,如果找到(同时还要确保报文的入VLAN 和出VLAN 是一致的),就将该数据帧发送到相应的端口,如果找不到,就向(VLAN 内)所有的端口发送; 2)如果交换机收到的报文中源MAC 地址和目的MAC 地址所在的端口相同,则丢弃该报文; 3)交换机向(VLAN 内)入端口以外的其它所有端口转发广播报文。 以太网交换机上通过引入VLAN,带来了如下的好处: 1)限制了局部的网络流量,在一定程度上能够提升整个网络的处理能力。 2)虚拟的工作组,通过灵活的VLAN 设置,把不同的用户划分到工作 华为认证技术文章 3 组内; 3)安全性,一个VLAN 内的用户和其它VLAN 内的用户不能互访, 提升了安全性。

以太网交换机工作原理

以太网交换机工作原理 交换机是用来连接局域网的主要设备,交换机能够根据以太网帧中目标地址智能的转发数据,因此交换机工作在数据链路层。交换机分割冲突域,实现全双工通信。 交换机数据转发原理1: 交换机A在接收到数据帧后,执行以下操作: 交换机A查找MAC地址表,查看是否有此MAC地址 若没有,学习主机11的MAC地址 交换机A向其他所有端口发送广播 交换机数据转发原理2: 换机B在接收到数据帧后,执行以下操作: 交换机B查看MAC地址表,查看是否有此MAC地址 若没有,学习源MAC地址和端口号 交换机B向所有端口广播数据包 主机22,查看数据包的目标MAC地址不是自己,丢弃数据包

交换机数据转发原理3: 主机33,接收到数据帧 主机44,丢弃数据帧 交换机数据转发原理4: 交换机B在接收到数据帧后,执行以下操作: 交换机B学习源MAC地址和端口号 交换机B查看MAC地址表,根据MAC地址表中的条目,单播转发数据到端口3

交换机数据转发原理6: 学习 通过学习数据帧的源MAC地址来形成的MAC地址表 广播 若目标地址在MAC地址表中没有,交换机则向除接收到该数据帧的端口外的其他所有端口广播该数据帧 转发 若目标地址在MAC地址表中存在,交换机根据MAC地址表单播转发数据帧 更新 交换机MAC地址表的老化时间是300秒,即MAC地址在MAC地址表中存在的时间。 交换机若发现一个帧的入端口和MAC地址表中源MAC地址的所在端口不同,交换机将MAC 地址重新学习到新的端口 交换机的工作模式 单工 只有一个信道,传输方向只能是单向的

半双工 只有一个信道,在同一时刻,只能是单向传输 全双工 双信道,同时可以有双向数据传输 交换机的三种交换方式: 1.直通转发(Cut-through)

工业催化原理——作业汇总

第一章 催化剂与催化作用基本知识 1、简述催化剂地三个基本特征. 答:①催化剂存在与否不影响△G θ地数值,只能加速一个热力学上允许地化学反 应达到化学平衡状态而不能改变化学平衡;②催化剂加速化学反应是通过改变化学反应历程,降低反应活化能得以实现地;③催化剂对加速反应具有选择性. 2、1-丁烯氧化脱氢制丁二烯所用催化剂为MoO 3/BiO 3混合氧化物,反应由下列各步组成 (1)CH 3-CH 2-CH=CH 2+2Mo 6++O 2-→CH 2=CH-CH=CH 2+2Mo 5++H 20 (2)2Bi 3++2Mo 5+→2Bi 2++2Mo 6+ (3)2Bi 2++1/202→2Bi 3++02- 总反应为CH 3-CH 2-CH=CH 2+1/202→CH 2=CH-CH=CH 2+H 20 试画出催化循环图. CH 3-CH 2 CH 2=CH-CH=CH 2 Mo 5+ Bi 2+ H 20 3、合成氨催化剂中含有Fe 3O 4、Al 2O 3和K 20,解释催化剂各组成部分地作用. 答:Fe 3O 4:主催化剂,催化剂地主要组成,起催化作用地根本性物质 Al 2O 3:构型助催化剂,减缓微晶增长速度,使催化剂寿命长达数年 K 20:调变型助催化剂,使铁催化剂逸出功降低,使其活性提高 第二章 催化剂地表面吸附和孔内扩散 1、若混合气体A 和B 2在表面上发生竞争吸附,其中A 为单活性吸附,B 2为解离吸附:A+B 2+3*→A*+2B*,A 和B 2地气相分压分别为p A 和p B .吸附平衡常数为k A 和k B . 求吸附达到平衡后A 地覆盖率θA 和B 地覆盖率θB . 解:对于气体A :吸附速率v aA =k aA P A (1—θA —θB ) ;脱附速率v dA =k dA θA 平衡时:v aA =v dA ,即θA =(k aA /k dA )P A (1—θA —θB )=k A ·k B (1—θA —θB ) 对于气体B :吸附速率v aB =k aB P B (1—θA —θB )2 ;脱附速率v dB =k dB θ B 2 平衡时:v aB =v dB ,即θ B 2= k B P B (1—θA —θB )2 故:B B A A A A A k k P k 1P k +=θθ B B A A B B B k k P k 1P k +=θθ

工业催化答案完整版

第一章催化剂基本知识1、名词解释 (1)活性:催化剂使原料转化的速率,工业生产上常以每单位容积(或质量)催化剂在单位时间内转化原料反应物的数量来表示,如每立方米催化剂在每小时内能使原料转化的千克数。 (2)选择性:目的产物在总产物中的比例,实质上是反应系统中目的反应与副反应间反应速度竞争的表现。 (3)寿命:指催化剂的有效使用期限。 (4)均相催化反应:催化剂与反应物同处于一均匀物相中的催化作用。 (5)氧化还原型机理的催化反应:催化剂与反应物分子间发生单个电子的转移,从而形成活性物种。 (6)络合催化机理的反应:反应物分子与催化剂间配位作用而使反应物分子活化。 (7)(额外补充)什么是络合催化剂?答:一般是过渡金属络合物、过渡金属有机化合物。 (8)反应途径:反应物发生化学反应生成产物的路径。 (9)催化循环:催化剂参与了反应过程,但经历了几个反应组成的循环过程后,催化剂又恢复到初始态,反应物变成产物,此循环过程为催化循环。 (10)线速度:反应气体在反应条件下,通过催化床层自由体积的的速率。(11)空白试验:在反应条件下,不填充催化床,通入原料气,检查有无壁效应,是否存在非催化反应。

(12)催化剂颗粒的等价直径:催化剂颗粒是不规则的,如果把催化剂颗粒等效成球体,那么该球体的直径就是等价直径。 (13)接触时间:在反应条件下的反应气体,通过催化剂层中的自由空间所需要的时间。 (14)初级离子:内部具有紧密结构的原始粒子。 (15)次级粒子:初级粒子以较弱的附着力聚集而成-----造成固体催化剂的细孔。 2.叙述催化作用的基本特征,并说明催化剂参加反应后为什么会改变反应速度? ①催化剂只能加速热力学上可以进行的反应,而不能加速热力学上无法进行的反应。 ②催化剂只能加速反应趋于平衡,而不能改变平衡的位置(平衡常数)。 ③催化剂对反应具有选择性。 ④催化剂的寿命。 催化剂之所以能够加速化学反应趋于热力学平衡点,是由于它为反应物分子提供了一条轻易进行的反应途径。 3.从反应途径说明什么是催化循环? 催化剂是一种化学物质,他借助于反应物间的相互作用而起催化作用,在完成催化的一次反应后,又恢复到原来的化学状态,因而能循环不断地起催化作用。催化剂暂时的介入反应,在反应物系的始态和终态间架起了新的通道,从而改变了反应的某种不稳定的活性中间络合物,后者再继续反应生成产物和恢复成原来的催化剂。这样不断循环起作用。

Bypass 工业以太网交换机案例

高速公路视频监控系统的Bypass 工业以太网交换机 视频监测系统的网络拓扑结构: 高速公路视频监控系统从分中心采用讯记科技1台28G二层全千兆网管型工业以太网交换机作为主干交换机与7 个站点的28G二层全千兆网管型工业以太网交换机进行环网链接。主干网络拓扑采用千兆光纤CK-RING冗余自愈环网进行数据交换,满负载下故障恢复时间<20MS。各个站点与多区域接入站点的10口全千兆网管型工业交换机采用千兆光纤CK-RING冗余自愈环网并带Bypass旁路功能的Bypass 工业以太网交换机,支持切换时间100ms内进行数据交换。 高速公路视频监控系统分中心网络设备与各站点网络设备是采用具有多年成熟应用的讯记20口机架式网管工业交换机产品,同时采用高强度IP40防护外壳,工业级EMC设计,支持宽范围冗余电

源输入(100~240V AC/DC)以增加通讯网络的可靠性。工业以太网交换机提供管理功能,可通过Web浏览器、CLI和SNMP进行管理。可以根据业务口需求灵活的进行光电组合。Bypass 工业以太网交换机基于工业安装需求,提供1U机架式或者桌面式两种安装方式。本产品同时采用无风扇、低功耗、工业级设计,-40~85℃工作温度范围,能够满足各种工业现场的要求,提供便捷的以太网通讯解决方案」。 高速公路视频监控系统区域接入站点的导轨式网管Bypass工业以太网交换机采用高强度IP40防护外壳,工业级EMC设计,支持宽范围冗余电源输入(12~48V DC)以增加通讯网络的可靠性。提供管理功能,可通过Web浏览器、CLI和SNMP进行管理。网管Bypass 工业以太网交换机支持2~6个10/100/1000BASE-T(X) RJ45电口和0~4个1000BASE SFP接口,光口支持Bypass旁路功能,可以根据业务口需求灵活的进行光电组合。基于工业安装需求,提供35mm导轨或壁挂式两种安装方式。本产品同时采用无风扇、低功耗、工业级设计,

交换机基本原理及转发流程

求索知识分享社区
三层以太网交换机基本原理及转发流程
本文简要介绍了三层以太网交换机的二三层转发机制, 主要目的是帮助读者 进一步了解交换机的基本原理及转发流程, 以期有利于更好的从事设备维护工作 和建立于进一步学习的索引. 三层以太网交换机的转发机制主要分为两个部分:二层转发和三层交换.
1. 二层转发流程
1.1. MAC地址介绍 MAC 地址是 48 bit 二进制的地址,如:00-e0-fc-00-00-06.可以分为单播地址, 多播地址和广播地址. 单播地址:第一字节最低位为 0,如:00-e0-fc-00-00-06 多播地址:第一字节最低位为 1,如:01-e0-fc-00-00-06 (问题 1:以 03 开头的 MAC 地址是单播 MAC 地址还是多播 MAC 地址) 广播地址:48 位全 1,如:ff-ff-ff-ff-ff-ff 注意: 1) 普通设备网卡或者路由器设备路由接口的 MAC 地址一定是单播的 MAC 地址 才能保证其与其它设备的互通. 2) MAC 地址是一个以太网络设备在网络上运行的基础, 也是链路层功能实现的 立足点. 1.2. 二层转发介绍 交换机二层的转发特性,符合 802.1D 网桥协议标准. 交换机的二层转发涉及到两个关键的线程:地址学习线程和报文转发线程. 学习线程如下: 1)交换机接收网段上的所有数据帧,利用接收数据帧中的源 MAC 地址来建立 MAC 地址表;
https://www.wendangku.net/doc/e54965492.html,

求索知识分享社区
2)端口移动机制:交换机如果发现一个包文的入端口和报文中源 MAC 地址的 所在端口(在交换机的 MAC 地址表中对应的端口)不同, 就产生端口移动, MAC 将 地址重新学习到新的端口; 3)地址老化机制:如果交换机在很长一段时间之内没有收到某台主机发出的报 文,在该主机对应的 MAC 地址就会被删除,等下次报文来的时候会重新学习. 注意: 老化也是根据源 MAC 地址进行老化. 报文转发线程: 1)交换机在 MAC 地址表中查找数据帧中的目的 MAC 地址,如果找到,就将该 数据帧发送到相应的端口,如果找不到,就向所有的端口发送; 2)如果交换机收到的报文中源 MAC 地址和目的 MAC 地址所在的端口相同,则 丢弃该报文; 3)交换机向入端口以外的其它所有端口转发广播报文. 1.3. VLAN二层转发介绍 报文转发线程: 引入了 VLAN 以后对二层交换机的报文转发线程产生了如下的影响: 1)交换机在 MAC 地址表中查找数据帧中的目的 MAC 地址,如果找到(同时还 要确保报文的入 VLAN 和出 VLAN 是一致的)就将该数据帧发送到相应的端口, , 如果找不到,就向(VLAN 内)所有的端口发送; 2)如果交换机收到的报文中源 MAC 地址和目的 MAC 地址所在的端口相同,则 丢弃该报文; 3)交换机向(VLAN 内)入端口以外的其它所有端口转发广播报文. 以太网交换机上通过引入 VLAN,带来了如下的好处: 1)限制了局部的网络流量, 在一定程度上可以提高整个网络的处理能力. 2)虚拟的工作组,通过灵活的 VLAN 设置,把不同的用户划分到工作组内; 3)安全性,一个 VLAN 内的用户和其它 VLAN 内的用户不能互访,提高了安全 性. 另外,还有常见的两个概念 VLAN 的终结和透传, 从字面意思上就可以很好的 了解这两个概念. 所谓 VLAN 的透传就是某个 VLAN 不仅在一台交换机上有效,
https://www.wendangku.net/doc/e54965492.html,

工业催化复习资料问答题

1.什么是催化剂?根据IUPAC于1981年提出的定义,催化剂)是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化 2.催化作用的四个基本特征是什么? ⑴催化剂只能加速热力学上可以进行的反应,而不能加速热力学上无法进行的反应;⑵催化剂只能加速反应趋于平衡,而不能改变平衡的位置(平衡常数),且催化剂可同时加速正逆反应;⑶催化剂对反应具有选择性,当反应有一个以上生成多种产物的方向时,催化剂仅加速其中的一种。⑷催化剂由正常运转到更换所延续时间(寿命)。 3.什么是助催化剂?分为哪几种? 催化剂中加入的另一种或者多种物质,本身不具活性或活性很小的物质,但能改变催化剂的部分性质,如化学组成、离子价态、酸碱性、表面结构、晶粒大小等,从而使催化剂的活性、选择性、抗毒性或稳定性得以改善。结构型和电子型两类 4.请说明理想的催化剂载体应具备的条件。 ⑴具有能适合反应过程的形状和大小;⑵有足够的机械强度,能经受反应过程中机械或热的冲击;有足够的抗拉强度,以抵抗催化剂使用过程中逐渐沉积在细孔里的副反应产物(如积碳)或污物而引起的破裂作用;⑶有足够的比表面,合适的孔结构和吸水率,以便在其表面能均匀地负载活性组分和助催化剂,满足催化反应的需要;⑷有足够的稳定性以

抵抗活性组分、反应物及产物的化学侵蚀,并能经受催化剂的再生处理;⑸能耐热,并具有合适的导热系数;⑹不含可使催化剂中毒或副反应增加的物质;⑺原料易得,制备方便,在制备载体以及制备成催化剂时不会造成环境污染;⑻能与活性组分发生有益的化学作用;⑼能阻止催化剂失活 5多相催化反应的一般步骤?物理过程和化学过程分别是哪几步? ⑴反应物分子从气流中向催化剂表面和孔内扩散。⑵反应物分子在催化剂内表面上吸附。 ⑶吸附的反应物分子在催化剂表面上相互作用或与气相分子作用进行化学反应。⑷反应产物自催化剂内表面脱附。⑸反应产物在孔内扩散到反应气流中去 ⑴⑸扩散为物理过程;⑵⑶⑷为化学过程 6物理吸附与化学吸附的特点? 物理吸附是借助分子间力,吸附力弱,吸附热小(8~20kJ/mol),接近于气体的液化热,且是可逆的,无选择性,分子量越大越容易发生,吸附稳定性不高,吸附与解吸速率都很快,可单分子层或多分子层吸附,不需要活化能。 化学吸附与一般的化学反应相似,是借助于化学键力,遵从化学热力学和化学动力学的传统定律,具有选择性特征,吸附热大(40~800kJ/mol),吸附很稳定,一般是不可逆的,尤其是饱和烃分子的解离吸附更是如此,吸附是单分子层的,具有饱和性。 7.如何推导简单的Langmiur吸附等温式?以及重要的假设是什么?

M12工业以太网交换机,EN50155嵌入式轨道交通插座

M12网络端口,三层工业以太网交换机,EN50155嵌入式轨道交通专用插座示例:

M8系列插座 PGS-B9142ET-M12-C是网管型M12网络端口,三层工业以太网交换机,EN50155嵌入式轨道交通专用插座,CompactPCI板卡式冗余环网交换机。前面板带有6个10/100/1000Base-T(X)M12接口。后面的CPCI接口有8个10/100/1000Base-T(X)以太网接口。是特别为轨道交通行业EN50155标准要求而设计的坚固型交换机。它同时具有以下特性: ●支持2线以太网距离扩展端口,节约布线成本。 ●介质冗余协议(MRP)允许环网中的交换机在信号失效时快速恢复。在生成树协议的网络中取得更快的恢复时间。 ●提供高级IP-based带宽管理功能:可以现在每个IP设备的最大带宽用户可以在使用IP摄像机和NVR是通过带宽管理,给他们提供更大的带宽。 ●支持应用级QoS功能:应用级QoS功能可以按TCP/UDP端口给数据流设置不同的优先级 ●Device Binding功能:设备绑定功能只允许制定的MAC地址访问网络,在没有许可时其他人是无法访问网络的。它可以有效防止未经授权进行网络访问的行为。. ●高级DOS/DDOS自动防护功能:如果IP泛洪行为短时间内突然增大交换机将锁定源IP地址一段时间以防范攻击。它是硬件级别的防护,因此可以立即启用,即刻防护DOS/DDOS攻击. ●TCP/IP网络Modbus协议 ●IEEE802.3az节能以太网技术:允许在数据量少时减低硬件功耗。减少50%以上的电力消耗,同时保持与现有设备的兼容性。 ●支持以太网冗余协议MSTP(RSTP/STP兼容),可以让关键应用在网络通讯中断或短时故障时快速恢复通讯。 ●宽温工作温度为-40°C到70°C可以满足严苛的工业环境需求。同时提供Telnet和console(CLI)配置方式, 为保障车载CBTC系统信息传输的可靠性,在车载CBTC系统中采用CPGS-B9142ET-M12-C交换机,以配合车载ATC计算机的应用。该交换机安装在车载ATC计算机里面,用来传输车载ATP等重要信号数据,CPGS-B9142ET-M12-C交换机部分端口可通过CPCI背板引出。

工业催化原理—作业汇总(含答案)

第一章催化剂与催化作用基本知识 1、简述催化剂的三个基本特征。 答:①催化剂存在与否不影响△Gθ的数值,只能加速一个热力学上允许的化学反应达到化学平衡状态而不能改变化学平衡;②催化剂加速化学反应是通过改变化学反应历程,降低反应活化能得以实现的;③催化剂对加速反应具有选择性。 2、1-丁烯氧化脱氢制丁二烯所用催化剂为MoO3/BiO3混合氧化物,反应由下列各步组成 (1)CH3-CH2-CH=CH2+2Mo6++O2-→CH2=CH-CH=CH2+2Mo5++H20 (2)2Bi3++2Mo5+→2Bi2++2Mo6+ (3)2Bi2++1/202→2Bi3++02- 总反应为CH3-CH2-CH=CH2+1/202→CH2=CH-CH=CH2+H20 试画出催化循环图。 CH3-CH2-CH=CH Mo Bi 3、合成氨催化剂中含有Fe3O 4、Al2O3和K20,解释催化剂各组成部分的作用。 答:Fe3O4:主催化剂,催化剂的主要组成,起催化作用的根本性物质 Al2O3:构型助催化剂,减缓微晶增长速度,使催化剂寿命长达数年 K20:调变型助催化剂,使铁催化剂逸出功降低,使其活性提高 第二章催化剂的表面吸附和孔内扩散 1、若混合气体A和B2在表面上发生竞争吸附,其中A为单活性吸附,B2为解离吸附:A+B2+3*→A*+2B*,A 和B2的气相分压分别为p A和p B。吸附平衡常数为k A和k B。 求吸附达到平衡后A的覆盖率θA和B的覆盖率θB。 解:对于气体A:吸附速率v aA=k aA P A(1—θA—θB) ;脱附速率v dA=k dAθA 平衡时:v aA=v dA,即θA=(k aA/k dA)P A(1—θA—θB)=k A·k B(1—θA—θB) 对于气体B:吸附速率v aB=k aB P B(1—θA—θB)2;脱附速率v dB=k dBθB2 平衡时:v=v,即θ2= k P(1—θ—θ)2 。 m (2)求Al2O3的表面积。(已知:N2分子截面积16.2×10-20m2) 解:P/V a(P0-P)=(1/CV m)[1+(C-1)P/P O]=[(C-1)/CV m](P/P O)+1/CV m 由题目可知:(C-1)/CVm=50.06 1/CVm=0.2723 ∴C=184.84 Vm=0.01987L(标况) n=0.01987/22.4=8.875×10-4S=nN A S O=8.875×10-4×6.023×1023×16.2×10-20=86.60m2 3、多相催化反应一般包括那几个步骤?其中哪几个步骤属于化学过程? 答:多相催化反应包括: 外扩散:反应物分子从气流中向催化剂颗粒表面扩散;(孔)内扩散:反应物分子从颗粒表面向颗粒内表面扩散;化学吸附:反应物分子在催化剂内表面吸附;表面反应:吸附的反应物分子在催化剂表面上反应;脱附:产物分子自催化剂内表面脱附;(孔)内扩散:产物分子从颗粒内表面向颗粒外表面扩散; 外扩散:产物分子从催化剂颗粒外表面向气流中扩散;其中化学吸附、表面反应、脱附属于化学过程。 4、在多相催化反应中,为什么至少有一种反应物必须经过化学吸附? 答:因为化学吸附可使反应物分子均裂生成自由基,也可以异裂生成离子或使反应物分子强极化为极性分子,生成的这些表面活性中间物种具有很高的反应活性,有利于催化反应的进行。

华为三层以太网交换机基本原理及转发流程

1. 二层转发流程 1.1. MAC地址介绍 MAC 地址是48 bit 二进制的地址,如:00-e0-fc-00-00-06。 可以分为单播地址、多播地址和广播地址。 单播地址:第一字节最低位为0,如:00-e0-fc-00-00-06 多播地址:第一字节最低位为1,如:01-e0-fc-00-00-06 广播地址:48 位全1,如:ff-ff-ff-ff-ff-ff 注意: 1)普通设备网卡或者路由器设备路由接口的MAC 地址一定是单播的MAC 地址才能保证其与其它设备的互通。 2) MAC 地址是一个以太网络设备在网络上运行的基础,

也是链路层功能实现的立足点。 1.2. 二层转发介绍 交换机二层的转发特性,符合802.1D 网桥协议标准。 交换机的二层转发涉及到两个关键的线程:地址学习线程和报文转发线程。 学习线程如下: 华为认证技术文章 2 1)交换机接收网段上的所有数据帧,利用接收数据帧中的源MAC 地址来建立MAC 地址表; 2)端口移动机制:交换机如果发现一个包文的入端口和报文中源MAC地址的所在端口不同,就产生端口移动,将MAC 地址重新学习到新的端口;

3)地址老化机制:如果交换机在很长一段时间之内没有收到某台主机发出的报文,在该主机对应的MAC 地址就会被删除,等下次报文来的时候会重新学习。 注意:老化也是根据源MAC 地址进行老化。 报文转发线程: 1)交换机在MAC 地址表中查找数据帧中的目的MAC 地址,如果找到,就将该数据帧发送到相应的端口,如果找不到,就向所有的端口发送; 2)如果交换机收到的报文中源MAC 地址和目的MAC 地址所在的端口相同,则丢弃该报文; 3)交换机向入端口以外的其它所有端口转发广播报文。 1.3. VLAN二层转发介绍

工业以太网交换机和普通交换机的区别

工业以太网交换机和普通交换机的区别 工业以太网交换机和普通交换机的区别主要体现在功能和性能上。 功能上的区别主要是指:工业以太网交换机在功能上与工业网络通讯更接近,比如与各种现场总线的互通互联、设备的冗余以及设备的实时等;而性能上的区别则主要体现在适应外界环境参数的不同。工业环境除了有很多如:煤矿、舰船等特别恶劣的环境外,还有在EMI (电磁兼容性)、温度、湿度以及防尘等方面有特殊要求的环境。其中温度对工业网络设备的影响面是最广泛的。 本文主要论述温度这一重要参数对工业网络交换机的影响。而对于功能方面以及性能其他方面的参数这里不再赘述。 一、衡量设备可靠性的指标 可靠性是指产品在规定的条件下和规定的时间内,完成规定功能的能力。任何产品不论是机械、电子,还是机电一体化产品都有一定的可靠性,产品的可靠性与实验、设计和产品的维护有着极大的关系。 衡量可靠性的指标很多,常见的有以下几种: 1.可靠度R(t),即产品在规定条件下、规定时间内完成规定功能的概率,亦称平均无故障时间MTBF(mean time between failure); 2.平均维修时间MTTR是指产品从发现故障到恢复规定功能所需要的时间; 3.失效率λ(t),是指产品在规定的使用条件下使用到时刻t后,产品失效的概率。产品的可靠性变化一般都有一定的规律,其特征曲线形状像浴盆,通常称之为“浴盆曲线”。在实验和设计初期,由于产品设计制造中的错误、软件不完善以及元器件筛选不够等原因而造成早期失效率高;通过修正设计、改进工艺、老化元器件、以及整机试验等,使产品进入稳定的偶然失效期;使用一般时间后,由于器件耗损、整机老化以及维护等原因,产品进入了耗损失效期。这就是可靠性特征曲线呈“浴盆曲线”型的原因。衡量一个电子产品、尤其是工业类产品最常用的是MTBF,也就是平均无故障时间。 二、温度和MTBF的关系 由于现代电子设备所用的电子元器件的密度越来越高,这将使元器件之间通过传导、辐射和对流产生热耦合。因此,热应力已经成为影响电子元器件失效率的一个最重要的因素。对于某些电路来说,可靠性几乎完全取决于热环境。所以,为了达到预期的可靠性目的,必须将元器件的温度降低到实际可以达到的最低水平。有资料表明:环境温度每提高10℃,元器件寿命约降低1/2。这就是有名的“10℃法则”。 MTBF测试:目前国外广泛采用Bellcore的RPP(Reliability Prediction Procedure)来测量设备的MTBF,这其中包括晶体管数量、功率衰减以及环境参数。我们分析其中用风扇散热的24口网络交换机的检测报告,在环境温度为30℃,40℃,50℃时,无风扇交换机和有风扇

工业催化期末复习题

第二章催化作用与催化剂 电子型助催化剂的作用:改变主催化剂的电子结构,促进催化活性及选择性。 金属的催化活性与其表面电子授受能力有关。具有空余成键轨道的金属,对电子有强的吸引力,吸附能力的强弱是与催化活性紧密相联的 在合成氨用的铁催化剂中,由于Fe是过渡元素,有空的d轨道可以接受电子,故在Fe-Al2O3中加入K2O后,后者起电子授体作用,把电子传给Fe,使Fe原子的电子密度增加,提高其活性,K2O是电子型的助催化剂 第三章吸附与多相催化 1简述多相催化反应的步骤 包括五个连续的步骤。 (1)反应物分子从气流中向催化剂表面和孔内扩散; (2)反应物分子在催化剂表面上吸附; (3)被吸附的反应物分子在催化剂表面上相互作用或与气相分子作用进行化学反应; (4)反应产物自催化剂表面脱附; (5)反应产物离开催化剂表面向催化剂周围的介质扩散。 上述步骤中的第(1)和(5)为反应物、产物的扩散过程。属于传质过程。第(2)、(3)、(4)步均属于在表面进行的化学过程,与催化剂的表面结构、性质和反应条件有关,也叫做化学动力学过程 2外扩散与内扩散的区别 外扩散:反应物分子从流体体相通过吸附在气、固边界层的静止气膜(或液膜)达到颗粒外

表面,或者产物分子从颗粒外表面通过静止层进入流体体相的过程,称为外扩散过程。 内扩散:反应物分子从颗粒外表面扩散进入到颗粒孔隙内部,或者产物分子从孔隙内部扩散到颗粒外表面的过程,称为内扩散过程。 为充分发挥催化剂作用,应尽量消除扩散过程的影响 外扩散 阻力:气固(或液固)边界的静止层。 消除方法: 提高空速 内扩散 阻力:催化剂颗粒孔隙内径和长度. 消除方法:减小催化剂颗粒大小,增大催化剂孔隙直径 3解离吸附的Langmuir 等温式的推导过程 1/21/211+Kp 1a a a k K K k P k p K θθθθθθθθ---→=-==-??== ?-??≈=22a a 2 d a d 22a a 解离吸附:H H +H, 吸附时两个解离离子各占有一个活性中心,所以V (1)P 脱附时,两个活性中心粒子脱出,所以速度V 吸附平衡V =V 得出 (1)分子解离吸附方程) 当压力较低时,(),得 4物理吸附与化学吸附的区别 物理吸附是表面质点和吸附分子之间的分子力而引起的。具体地是由永久偶极、诱导偶极、色散力等三种范德华引力。物理吸附就好像蒸汽的液化,只是液化发生在固体表面上罢了。分子在发生物理吸附后分子没有发生显著变化。 化学吸附是在催化剂表面质点吸附分子间的化学作用力而引起的,如同化学反应一样,而两者之间发生电子转移并形成离子型,共价型,自由基型,络合型等新的化学键。吸附分子往往会解离成原子、基团或离子。这种吸附粒子具有比原来的分子较强的化学吸附能力。因此化学吸附是多相催化反应过程不可缺少的基本因素。 物理吸附与化学吸附区别 物理吸附 化学吸附 吸附力 范德华力 化学键力 吸附层 单层或多层 单层 选择性 无 有 热效应 较小,近于液化热 较大,近于化学反应热 吸附速度 较快,不需活化能 较慢,温度升高速度加快,需活化能 第四章 1 1通用酸碱定义 .凡是能给出质子或者接受电子对的物质称为酸(B 酸或L 酸) .凡是能接受质子或者给出电子对的物质称为碱(B 碱或L 碱)

自己对工业以太网交换机的归纳总结

工业以太网交换机 一、工业以太网交换机组成 普通的以太网交换机的内部组成: 与普通的以太网交换机相比,工业以太网交换机,还需要满足: 1、工业宽温设计 2、4级电磁兼容设计 3、冗余交直流电源输入 4、另外PCB板一般做“三防”处理。 工业现场的环境比普通环境都要恶劣,至少在震动,湿气,温度上都要比普通环境恶劣,普通交换机在设计上没有抵御在工业环境中出现的各种情况的能力,普通交换机不能长时间工作在这种恶劣环境下,经常容易出现故障,更使维护成本上升,一般不建议在工业环境中使用商业交换机,为了能使交换机在这种恶劣环境中使用,故生产出能适应这种环境的交换机,工业级别的交换机的可靠性有电源故障,端口中断,可由继电器输出报警,冗余双直流电源输入,主动式电路保护,过压、欠压自动断路保护。 二、工业以太网交换机设计 目前的一些工业以太网交换机在以上基础上进行设计。 2.1 硬件部分设计 如图1是《基于IEC61850的光纤工业以太网交换机的设计及应用》中的ZYJ-860F 智能型光纤工业以太网交换机硬件部分设计实例,由许继昌南通信设备有限公司按照IEC 61850标准自主研发。 图1 工业以太网交换机方案 ZYJ-860F交换机均采用工业级、高性能的元器件,硬件部分主要由CPU模块和交换模块组成,如图2所示。CPU芯片是基于ARM9的32位嵌入式处理器,实现交换机的高级管理

功能配置、远程管理以及对故障的诊断监测。SDRAM和FLASH实现交换机中程序和数据的存储管理。 交换模块选用工业级、高速芯片,支持VLAN、QoS,Trunk,IGMP Snooping,STP/RSTP,Mirroring,SNMP等功能:提供4个千兆的光/电接口,24个10/100 M光/电接口和一个RS232管理口;采用存储转发、无阻塞全线速交换;具有-40℃-85℃宽温范围等。为了提高硬件电路的质量采取了许多技术措施:如印制电路板使用CAD技术;元器件的焊接大规模采用表面贴装生产工艺等。 2.2 软件部分设计 参见《基于IEC61850的光纤工业以太网交换机的设计及应用》。

工业催化原理英文常用专业词汇(精)

工业催化原理常用英文专用词汇(1 Impregnation 浸渍 Support (-ed 负载 Dispersion 分散 Crystal 晶体 Titration 滴定 Mechanism 机理 Precipitation 沉淀 Co- precipitation 共沉 Reform – ing 重整 Activity 活性 Stability 稳定性 Deposition 沉淀,沉积 Resistance 抵抗(抗 to Hydrogen 氢 Atmospheric pressure 常压 Reducibility 还原性,还原能力 Comprehensive 综合的Performance 性能 Rare earth 稀土 Adding method 添加方法 Evaluation unit 评价单元 Reactor 反应器 Micro-reactor 微型反应器(微反 Sequioxide Prepared (preparation 制备,准备 Kinetic (s 动力学的,动力学 Composition 组分,成分 Hydrodesulfurization HDS加氢脱硫 Hydrodenitrogention HDN加氢脱氮Hydrodearomazation HAD加氢脱芳 Structure 结构 Calcination 煅烧,焙烧 Species 种类,物种 Atomic ratio 原子比 Sequence 顺序 Impregnation Sequence 浸渍顺序 Relate to 与… .. 相关 Pore structure 孔结构

Intraparticle diffusion 内扩散 Pore radius distribution 孔径分布Pellet 球形 Active center 活性中心 sol-gel method 溶胶凝胶法 Photocatalytic 光催化Degradation 降解 Doped 掺杂的 Dopant 杂质,搀杂物 Promote 促进 Characterization 表征 Migration 迁移 浓度,浓缩 Concentration range 浓度范围 Shallow surface 浅层 Superficial layer 表层 Electron trap 电子捕获 Reduced state 还原态 Inhibition 禁止 Valency state价态 Hole 空穴 Photoinduce 光透导 Efficiency 功效 Derivation towards 有利于。。。出现 Threshold value极限值,阀值

相关文档
相关文档 最新文档