文档库 最新最全的文档下载
当前位置:文档库 › 贴片机视觉系统构成原理及其视觉定位

贴片机视觉系统构成原理及其视觉定位

贴片机视觉系统构成原理及其视觉定位
贴片机视觉系统构成原理及其视觉定位

1 贴片机视觉系统构成及实现原理

如图1所示,贴片机视觉系统一般由两类CCD摄像机组成。其一是安装在吸头上并随之作x-y 方向移动的基准(MARK)摄像机,它通过拍摄PCB上的基准点来确定PCB板在系统坐标系中的坐标;其二是检测对中摄像机,用来获取元件中心相对于吸嘴中心的偏差值和元件相对于应贴装位置的转角θ。最后通过摄像机之间的坐标变换找出元件与贴装位置之间的精确差值,完成贴装任务。

1.1 系统的基本组成

视觉系统的基本组成如图2所示。该系统由三台相互独立的CCD成像单元、光源、图像采集卡、图像处理专用计算机、主控计算机系统等单元组成,为了提高视觉系统的精度和速度,把检测对中像机设计成为针对小型Chip元件的低分辨力摄像机CCD1和针对大型IC的高分辨力摄像机CCD2,CCD3为MARK点搜寻摄像机。当吸嘴中心到达检测对中像机的视野中心位置时发出触发信号获取图像,在触发的同时对应光源闪亮一次。

鮯 [ e

1.2 系统各坐标系的关系

为了能够精确的找出待贴元件与目标位置之间的实际偏差,必须对景物、CCD摄像机、CCD成像平面和显示屏上像素坐标之间的关系进行分析,以便将显示屏幕像素坐标系的点与场景坐标系中的点联系起来;并通过图像处理软件分析计算出待贴元件中心相对于吸嘴中心的偏差值。

对于单台摄像机,针孔模型是适合于很多计算机视觉应用的最简单的近似模型[3]。摄像机完成的是从3D射影空间P3到2D射影空间P2的线性变换,其几何关系如图3所示,为便于进一步解释,定义如下4个坐标系统:棤咞

脮朩1?

(1)欧氏场景坐标系(下标为w):原点在OW,点X和U用场景坐标系来表示。

(2)欧氏摄像机坐标系(下标为c),原点在焦点C=Oc,坐标轴Zc与光轴重合并指向图像平面外。在场景坐标系和摄像机坐标系之间存在着唯一的关系,可以通过一个平移t和一个旋转R 构成的欧氏变换将场景坐标系转化为摄像机坐标。其关系如式(1)所示:垡

(3)欧氏图像坐标系(下标为i),坐标轴与摄像机坐标系一致,Xi和Yi位于图像平面上,Oi 像素坐标系的坐标为(xp0,yp0)。

(4)像素坐标系(下标为P),它是图像处理过程中使用的坐标系。在本系统中与欧氏图像坐标系方向相同,但原点坐标不同,尺度不同。

场景点Xc投影到图像平面π上是点Uc(uc,vc,-f)。通过相似三角形来可以导出它们之间的坐标关系:

由于视野小,采用的镜头畸变非常低,可将Uc直接简化为等于欧氏图像坐标系下的坐标,让uc =ui,vc=vi,而ui=(up-xp0)δ,vi=(vp-yp0)δ,δ为单个像素的大小。

这样可以得到欧氏场景坐标系和欧氏图像坐标系之间的映射关系:

郠??

由于在该系统中各摄像机之间是相互独立的,所以各路成像出来的坐标都可以转换为同一场景坐标下的坐标。 狇

1.3 系统实现原理韻

贴片机视觉系统工作原理如图4所示。当一块新的待贴装PCB板通过送板机构传送到指定位置固定起来,安装在贴片头上的基准摄像机CCD3在相应的区域通过图像识别算法搜寻出MARK 点,并通过(3)式计算出其在欧氏场景坐标系中的坐标。接下来将相应的元器件应贴装的位置数据送给主控计算机。利用对中检测摄像机(CCD1,CCD2)对元器件检测,得到其在显示屏幕坐标系下的坐标及转角值,再通过(3)式转换为场景坐标系下的坐标,与目标位置比较,得到贴装头应移动的位置和转角。

2 图像处理

2.1 图像预处理

图像预处理的目的是改善图像数据,抑制不需要的变形或者增强某些对于后续处理重要的图像特征。由于SMT生产现场的非洁净因素造成CCD镜头上的尘埃等,易给图像带来较大的外界噪声。另外,图像的采集过程中也不可避免地引入了来自光路扰动、系统电路失真等噪声。因此,对图像进行预处理以消除这些噪声的影响是非常必要的。

对噪声平滑方法主要的要求是:既能有效地减少噪声,又不致引起边缘轮廓的模糊,同时还要求

运算速度快。常规的方法有高斯滤波、均值滤波、Lee滤波、中值滤波、边缘保持滤波等。笋饦

中值滤波是一种较少边缘模糊的非线性平滑方法,它的基本思想是用邻域中亮度的中值代替图像的当前点,是一种能够在去除脉冲噪声、椒盐噪声的同时又能保留图像边缘细节的平滑方法。并且由于中值滤波不会明显的模糊边缘,因此可以迭代使用。显然,在每个像素上都要对一个矩阵(通常是3×3)内部的所有像素进行排序,这样开销会很大。一个更有效的算法[4](由T S Huang 等人提出)是注意到当窗口沿着行移动一列时,窗口内容的变化只是丢掉了最左边的列而取代为在右侧的一个新的列。对于m行n列的中值窗口,m×n-2×m个像素没有变化,并不需要重新排序,具体的算法为:湁

杰芙逳

(1)设置th=mn/2;

(2)将窗口移至一个新的行的开始,对其内容排序,建立窗口像素的直方图H,确定其中值Med,记下亮度等于或小于Med的像素数目LMed;

(3)对于最左列亮度是Pg的每个像素P做:H[Pg]=H[Pg]-1;

(4)将窗口右移一列,对于最右列亮度是Pg的每个像素P做:H[Pg]=H[Pg]+1,如果Pg<Med,置LMed=LEed+1;

语鹰

(5)如果LMed>th 侧转(6),重复LMed=LMed+H[Med] Med=Med+1直到LMed≥th,则转(7);

(6)重复Med=Med-1,LMed=LMed-H[Med]直到LMed≤th;

(7)如果窗口的右侧列不是图像的右边界转(3);

(8)如果窗口的底行不是图像的下边界转(2);

2.2 图像分割

阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术,已被应用于很多的领域。在这些应用中,分割是对图像进一步分析、识别的前提,分割的准确性直接影响后续任务的有效性,其中阈值的选取是图像阈值分割方法中的关键技术。

由Otsu于1978年提出的最大类间方差法[5]以其计算简单、稳定有效,一直广为使用。从模式识别的角度看,最佳阈值应当产生最佳的目标类与背景类的分离性能,此性能用类别方差来表征,为此引入类内方差σ2W、类间方差σ2B和总体方差σ2T ,并定义3个等效的准则测量:楙

鉴于计算量的考虑,一般通过优化第三个准则获取阈值。在实际运用中,使用以下简化计算公式:

其中:σ2为两类间最大方差,WA为A类概率,μa为A类平均灰度,WB为B类概率,μb为B类平均灰度,μ为图像总体平均灰度。

即阈值T将图像分成A、B两部分,使得两类总方差σ2(T)取最大值的T,即为最佳分割阈值。

2.3 图像识别定位啎!S3

区域的矩表示把一个归一化的灰度级图像函数理解为一个二维随机变量的概率密度。这个随机变量的属性可以用统计特征--矩(Moment)[6]来描述。通过假设非零的像素值表示区域,矩可以用于二值或灰度的区域描述。数字图像的(p+q)阶矩可以通过下式来计算:

其中i,j是区域点的像素坐标,f(i,j)是图像区域的灰度值。那么图像区域的质心(对二值化后图形区域即为中心)的坐标可以通过下面的关系来得到。

濽荞

Chip元件的长宽比2:1,因此二值化后的区域是细长的,定义区域的方向为最小外接矩形的最长边方向。根据图像中心矩可以通过下式来计算区域方向。

其中:

2.4 实验结果

针对本文提出的贴片视觉系统Chip元件对中校准图像处理方法,在VC++6.0环境下进行了实验,表1是对0402的片式元件在同一位置下,不同光照的4次仿真试验结果,可以看出图像处理取得了满意的结果,误差范围在允许范围内,图像处理的时间在100ms以内,能够满足贴片机对实时性的要求。

3 结语

本文在阐述了贴片机视觉系统构成的基础上,提出了一种非常简单的针对Chip元件的对中方法,实验证明,该方法能够满足中速贴片机实时性和精度方面的要求具有先进和实用的特点。

全视觉贴片机研制解析

全视觉贴片机研制解析 Parse the Research and Manufacture of Full Visual Mounter 广州市羊城科技实业有限公司宋福民张小丽马如震 Guangzhou Yangcheng Science&Technology Enterprises co.,ltd SONG Fu-min ZHANG Xiao-li MA Ru-zhen 摘要:本文以全视觉贴片机的研制为例,全面深层次揭示了中小企业在研制具有自主知识产权的电子装备产品中,应该如何正确选择研发策略和建立研发平台、研发管理机制等问题。 Abstract: This paper takes the R&D of the full visual Monuter as the example and explains deeply how to correctly choose strategies of R&D and establish platform、management system of R&D. Small and middle corporations should pay attention on this when they research and manufacture themselves electronic equipment. 关键词:SMT;贴片机;全视觉;电子贴装;系统集成;模块化;研发策略; 研发平台;研发管理 Key word: SMT;Surface Pick and Place equipment;Mounter;Full vision ;Integrate system ; Modularize;Method of R&D ;Platform of R&D;Management of R&D 随着网络时代的到来和人们生活水准的不断提高,电子信息产业得到了飞速的发展,而高速发展的电子信息产业又引导着电子元器件以及电子装配技术的发展。 自从第一块片式电子元器件诞生以来,SMT技术得到了迅速的发展。如今的片式元件越来越小型化和异型化,其规格从0402已发展到0201,0101也正在研究中,同时BGA、CSP、FC、MCM等封装形式的元器件也大量涌现并推广应用。这些表面贴装元件(SMC)/表面贴装器件(SMD)必须依靠SMT贴片机才能把它们贴装在印刷电路板(PCB)上。 贴片机是SMT生产设备中最关键的设备之一,能够自动地将片状元器件快速、准确地贴放在印制电路板(PCB)上的指定位置,在电子贴装行业中占有举足轻重的地位。作为SMT 设备的龙头,贴片机的发展历来备受设备厂家的重视。在国外,经过几十年的发展,SMT贴片机技术发展已经十分成熟,从最初的机械定位到图像识别位置补偿,从爪式定心到飞行对中检测,贴片机的发展经历了质的飞跃。 长期以来,国外贴片机一统国内SMT市场,其中,2001年全国进口3千多台贴片机,金额近40亿人民币,2002年进口4千多台,金额接近50亿人民币。多年来,为了促进国内电子信息产业的发展,国家也花了大力气研制贴片机,但由于技术以及体制等多方面的原因,一直没有国产全视觉贴片机问世。

基于机器视觉的工件识别和定位文献综述

基于机器视觉的工件识别和定位文献综述 1.前言 1.1工业机器人的现状与发展趋势 机器人作为一种最典型的应用范围广、技术附加值高的数字控制装备,在现代先进生产制造业中发挥的作用越来越重要,机器人技术的发展将会对未来生产和社会发展起到强有力的推动作用。《2l 世纪日本创建机器人社会技术发展战略报告》指出,“机器人技术与信息技术一样,在强化产业竞争力方面是极为重要的战略高技术领域。培育未来机器人产业是支撑2l 世纪日本产业竞争力的产业战略之一,具有非常重要的意义。” 研发工业机器人的初衷是为了使工人能够从单调重复作业、危险恶劣环境作业中解脱出来,但近些年来,工厂和企业引进工业机器人的主要目的则更多地是为了提高生产效率和保证产品质量。因为机器人的使用寿命很长,大都在10 年以上,并且可以全天后不间断的保持连续、高效地工作状态,因此被广泛应用于各行各业,主要进行焊接、装配、搬运、加工、喷涂、码垛等复杂作业。伴随着工业机器人研究技术的成熟和现代制造业对自动生产的需要,工业机器人越来越被广泛的应用到现代化的生产中。 现在机器人的价格相比过去已经下降很多,并且以后还会继续下降,但目前全世界范围的劳动力成本都有所上涨,个别国家和地区劳动力成本又很高,这就给工业机器人的需求提供了广阔的市场空间,工业机器人销量的保持着较快速度的增长。工业机器人在生产中主要有机器人工作单元和机器人工作生产线这两种应用方式,并且在国外,机器人工作生产线已经成为工业机器人主要的应用方式。以机器人为核心的自动化生产线适应了现代制造业多品种、少批量的柔性生产发展方向,具有广阔的市场发展前景和强劲生命力,已开发出多种面向汽车、电气机械等行业的自动化成套装备和生产线产品。在发达国家,机器人自动化生产线已经应用到了各行各业,并且已经形成一个庞大的产业链。像日本的FANUC、MOTOMAN,瑞典的ABB、德国的KUKA、意大利的COMAU 等都是国际上知名的被广泛用于自动化生产线的工业机器人。这些产品代表着当今世界工业机器人的最高水平。 我国的工业机器人前期发展比较缓慢。当将被研发列入国家有关计划后,发展速度就明显加快。特别是在每次国家的五年规划和“863”计划的重点支持下,我国机器人技术的研究取得了重大发展。在机器人基础技术和关键技术方面都取得了巨大进展,科技成果已经在实际工作中得到转化。以沈阳新松机器人为代表的国内机器人自主品牌已迅速崛起并逐步缩小与国际品牌的技术差距。 机器人涉及到多学科的交叉融合,涉及到机械、电子、计算机、通讯、控制等多个方面。在现代制造业中,伴随着工业机器人应用范围的扩大和机器人技术的发展,机器人的自动化、智能化和网络化的程度也越来越高,所能实现的功能也越来越多,性能越来越好。机器人技术的内涵已变为“灵活应用机器人技术的、具有实在动作功能的智能化系统。”目前,工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC 化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面。 1.2机器视觉在工业机器人中的应用 工业机器人是FMS(柔性加工)加工单元的主要组成部分,它的灵活性和柔性使其成为自动化物流系统中必不可少的设备,主要用于物料、工件的装卸、分捡和贮运。目前在全世界有数以百万的各种类型的工业机器人应用在机械制造、零件加工和装配及运输等领域,

视觉定位软件VisionKit软件说明书完整版

视觉定位软件 V i s i o n K i t软件说明书 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

文件名称:视觉定位软件VisionKit使用说明书文件版本:中文简体版 文件页数:共 42 页(含此页) 编制: 审核: 标准化: 批准: 日期: 大族激光科技产业集团股份有限公司 视觉定位软件VisionKit 使用说明书 (版本:中文简体版) 大族激光科技产业集团股份有限公司

声明 版权所有 ? 大族激光科技产业集团股份有限公司保留一切权利。 未经大族激光科技股份有限公司的许可,任何组织和个人不得擅自摘抄、复制文档内容的部分或全部,并不得以任何形式传播。 商标声明 和其它大族商标均为大族激光科技产业集团股份有限公司的注册商标,并对其享有独占使用、许可使用、转让、续展等各项法定权利,未经大族激光科技产业集团股份有限公司允许,任何组织或个人不得在商品上使用相同或类似的商标。 注意 在所规定的支持保修范围内,大族激光科技产业集团股份有限公司履行承诺的保修服务,超出所在规定的保修范围的,恕不承担保修服务。对于在使用本产品过程中可能造成的损失,大族激光科技产业集团股份有限公司不承担相关责任。如发生任何争议,应按中华人民共和国的相关法律解 决。 大族激光科技产业集团股份有限公司随时可能因为软件或硬件升级对使用说明书的内容进行更新,所有这些更新都将纳入使用说明书新的版本中,恕不另行通知。 目录

一、软件概述 视觉定位软件VIsionKit是大族激光科技产业集团股份有限公司光纤打标产品线开发的一款定制的机器视觉定位软件,通过CCD视觉定位后将位置偏差数据发送至打标软件系统进行补偿校正打标,实现产品精确定位打标功能。视觉定位打标系统通常由CCD定位软件、具有数据通讯和偏位补偿功能的打标软件系统、以及数据通讯网络(COM232或IP/TCP网络)等三大模块组成。二、环境安装 环境要求 操作系统:Windows XP以上,推荐Windows 7(32)位系统,暂不支持64位系统。 最低硬件配置: CPU:赛扬1G以上; 内存:至少1GB,建议2GB以上; 硬盘:至少500MB可用空间,建议预留更多的可用空间。 软件安装 安装halcon基础软件

机器人视觉系统

机器人视觉系统 ——人脸识别技术 优势 1 不被察觉,不会引起人的反感。 2 非接触性,不需要和设备接触即可识别 3 自然性 4 准确,可靠,灵活。 原理 在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。 主要过程 一般分三步: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(智械科技) (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。 实现方法 基于OpenCv人脸识别设计方案 1 系统组成 以OpenCV 图像处理库为基础,利用库中提供的相关功能函数进行各种处理:通过相机对图像数据进行采集,人脸检测主要是调用已训练好的Haar 分类器来对采集的图像进行模

式匹配,检测结果利用PCA 算法可进行人脸图像训练与身份识别,而人脸表情识别则利用了Camshift 跟踪算法和Lucas–Kanade 光流算法。

视觉定位软件VisionKit 软件说明书

VisionKit 文件名称:视觉定位软件VisionKit使用说明书文件版本:中文简体版 文件页数:共42 页(含此页) 编制: 审核: 标准化: 批准: 日期: 大族激光科技产业集团股份有限公司

VisionKit 视觉定位软件VisionKit 使用说明书 (版本:中文简体版) 大族激光科技产业集团股份有限公司 https://www.wendangku.net/doc/e95248772.html,

声明 版权所有? 大族激光科技产业集团股份有限公司保留一切权利。 未经大族激光科技股份有限公司的许可,任何组织和个人不得擅自摘抄、复制文档内容的部分或全部,并不得以任何形式传播。 商标声明 和其它大族商标均为大族激光科技产业集团股份有限公司的注册商标,并对其享有独占使用、许可使用、转让、续展等各项法定权利,未经大族激光科技产业集团股份有限公司允许,任何组织或个人不得在商品上使用相同或类似的商标。 注意 在所规定的支持保修范围内,大族激光科技产业集团股份有限公司履行承诺的保修服务,超出所在规定的保修范围的,恕不承担保修服务。对于在使用本产品过程中可能造成的损失,大族激光科技产业集团股份有限公司不承担相关责任。如发生任何争议,应按中华人民共和国的相关法律解决。 大族激光科技产业集团股份有限公司随时可能因为软件或硬件升级对使用说明书的内容进行更新,所有这些更新都将纳入使用说明书新的版本中,恕不另行通知。

目录 声明 (3) 一、软件概述 (5) 二、环境安装 (5) 2.1环境要求 (5) 2.2软件安装 (5) 2.2.1 安装halcon基础软件 (5) 2.2.2 安装相机驱动软件 (6) 2.2.3注册串口通讯组件 (10) 2.2.4 VIsionKit软件 (10) 三、软件界面介绍 (10) 3.1主界面 (10) 3.1.1 主界面介绍 (10) 3.1运行界面 (13) 3.1.1 运行界面介绍 (13) 3.2设置界面 (15) 3.2.1 图像标定 (16) 3.2.2 ROI设置 (18) 3.2.3通信设置 (20) 3.2.4 LED设置 (21) 3.3参数界面 (22) 3.3.1编辑定位集 (23) 3.3.2定位模板下拉框 (23) 3.3.3测试 (24) 3.4诊断界面 (25) 3.4.1图像操作 (25) 3.4.2验证补偿 (27) 3.4.3整体补偿 (27) 四、CCD工作流程 (28) 4.1相机标定 (28) 4.2模板制作 (34) 4.3生产运行 (38) 4.4 误差校正 (40) 五、软件操作注意事项 (42) 附录A:软件定制功能 (42) 附录B:术语解释 (42) 附录C:技术支持与服务 (42)

贴片机视觉系统构成原理及其视觉定位

1 贴片机视觉系统构成及实现原理 如图1所示,贴片机视觉系统一般由两类CCD摄像机组成。其一是安装在吸头上并随之作x-y 方向移动的基准(MARK)摄像机,它通过拍摄PCB上的基准点来确定PCB板在系统坐标系中的坐标;其二是检测对中摄像机,用来获取元件中心相对于吸嘴中心的偏差值和元件相对于应贴装位置的转角θ。最后通过摄像机之间的坐标变换找出元件与贴装位置之间的精确差值,完成贴装任务。 龌 傒 鮯 [ e 1.2 系统各坐标系的关系 韕 为了能够精确的找出待贴元件与目标位置之间的实际偏差,必须对景物、CCD摄像机、CCD成像平面和显示屏上像素坐标之间的关系进行分析,以便将显示屏幕像素坐标系的点与场景坐标系中的点联系起来;并通过图像处理软件分析计算出待贴元件中心相对于吸嘴中心的偏差值。

对于单台摄像机,针孔模型是适合于很多计算机视觉应用的最简单的近似模型[3]。摄像机完成的是从3D射影空间P3到2D射影空间P2的线性变换,其几何关系如图3所示,为便于进一步解释,定义如下4个坐标系统:棤咞 脮朩1? 垡々 } ?犹 坐标关系: 狨 由于视野小,采用的镜头畸变非常低,可将Uc直接简化为等于欧氏图像坐标系下的坐标,让uc =ui,vc=vi,而ui=(up-xp0)δ,vi=(vp-yp0)δ,δ为单个像素的大小。

这样可以得到欧氏场景坐标系和欧氏图像坐标系之间的映射关系: 郠?? 由于在该系统中各摄像机之间是相互独立的,所以各路成像出来的坐标都可以转换为同一场景坐标下的坐标。 狇 韻 姹R+逿 2.1 图像预处理 图像预处理的目的是改善图像数据,抑制不需要的变形或者增强某些对于后续处理重要的图像特征。由于SMT生产现场的非洁净因素造成CCD镜头上的尘埃等,易给图像带来较大的外界噪声。另外,图像的采集过程中也不可避免地引入了来自光路扰动、系统电路失真等噪声。因此,对图像进行预处理以消除这些噪声的影响是非常必要的。 对噪声平滑方法主要的要求是:既能有效地减少噪声,又不致引起边缘轮廓的模糊,同时还要求

机器人视觉物体定位方法

机器人视觉物体定位方法 本次设计的题目是机器人视觉物体定位。伴随社会发展,机器人的利用越来越普及,出现了多种多样的智能机器人,由此也引发了对机器视觉的研究热潮。文章首先介绍了机器视觉的发展历程,并详细说明了各阶段的特点。接着概述了机器视觉技术的原理,深入剖析了主流视觉物体定位方法。然后介绍了机器人视觉物体定位方法常用的几种应用。最后介绍了几种新颖的视觉物体定位方法,并猜想机器人视觉物体定位技术未来发展方向。 关键词:机器视觉 SLAM技术单目视觉双目视觉多目视觉 第一章:绪论 1.1选题的背景及意义 在我国持续爆发的2019新型冠状病毒(即2019-nCoV)事件中,自动化食品仓储配送系统服务包括机器人、无人驾驶、无人机等再次成为讨论的焦点。配送机器人如何实现自动取货送货?无人驾驶汽车是怎么躲避行人?无人机巡航中怎么确定物体之间的距离?当我们谈到相关的话题时,机器视觉定位是无论如何也绕不开的问题。 自被誉为“机器人之父”的恩格尔伯格先生1959年发明第一台机器人以来,科学家一直把对机器人的研究作为研究的重点方向。传统的机器人缺乏环境感知能力和自动应变能力,仅仅只能在严格的预定义的环境中完成一些预定义和指令下的动作,应用非常有限局限。随着机器人逐渐走进人们的生产和生活中,人们也对机器人提出了更高的要求,希望实现在生产加工中对物体的自动加工、对自身运动轨迹实时的随动检测,节省对其运动轨迹的预先编程,提高生产效率。要达到这些要求,必须同时满足图像信息的获取、采集、处理和输出,这就是本文的研究重点:机器人视觉物体定位方法。

机器人视觉物体定位系统的设计和研发是为了更好地为工业机器人服务,它的本质是发挥摄像机定位以及跟踪性功能,很多企业在自身生产环节依赖于机器人,生产效率明显得到改善。然而很多的机器人是半自动的工作模式,只有在人工操控的指引下才能完成工作任务,这样的机器人实用性很差,无法彻底解放人工,实现自动化操作。为了提高机器人接收外界信息、感知外界信息的能力,进一步提高机器人的工作效率,保障工业生产的精度和质量,在以往的机器人系统中新增全新的计算机图像视觉获取系统,通过视觉图像获取系统中所捕捉的图像和外界信息,对捕捉的图像信息进行处理和分析识别,继而让机器人能够识别外界信息,然后再全面分析图像的基础上完成后续的重建和精准化计算,通过一系列的重建以及精准化的计算全面应用机器人控制柜通讯等等设备,掌控全面的工作,实现机器人对外界信息的跟踪和定位。 1.2国内外研究现状 国外研究现状 国外最先开始视觉物体定位技术的研究,应用领域也相对广泛,并且占据绝对的技术优势,其主要涉及机器人移动导航、三维立体测量、虚拟现实VR技术等。 20世纪60年代,美国mit的robert研究人员提出三维景物分析,标志着立体视觉和影像技术的结合点而诞生。立体视觉在此后20年的时间迅速地发展成为一门新的影像技术学科。到70年代时,以marr为主要代表的一批视觉物体定位方法研究学者已经整理和发展出了一整套关于视觉计算的理论基础。到80 年代后,大量利用空间几何研究双目立体视觉的学者提出了一系列理论与实际成果。 卡内基梅隆大学的Tomasi 和Kanade 等人对立体视觉的研究建立在摄像机为正交投影模型的假设下,分解出了三维结构和相机运行,成功研究出了基于图像的三维重建技术。但是,这项技术存在明显的缺点,由于假设相机为正交投影模型,而这个假设仅仅在物体深度远远大于物体尺寸时才是合理假设。美国

一种基于摄像机视觉定位的触控系统初步设计

仲恺农业工程学院 《物联网技术》 课程论文 一种基于摄像机视觉定位的触控系统初步设计 姓名黄国盛 专业班级工化144班 学号201421714406 日期2017年4月18日 评语: 成绩:

一种基于摄像机视觉定位的触控系统初步设计 黄国盛 (仲恺农业工程学院工化144班06号201421714406) 摘要:本文的工作是通过屏幕边缘正上发和屏幕前方有一定角度的两个摄像头实现对触摸动作的跟踪,设计了一个种从摄像头获取的图像中实时定位触摸点的触摸系统。基本原理是为系统建立状态模型,根据屏幕正面摄像头获取的图像捕捉触摸实体的边缘点(指尖或笔尖)相对于屏幕的坐标,以及根据屏幕上方摄像头图像中成像来确认触摸动作是否有效。 关键词:摄像机;视觉定位;;触控;边缘检测; 0引言 目前人们在用中的笔记本或外接显示器大都不具备触控功能,为了满足高端产品消费者的需求,现在很多新款笔记本都将触控屏幕作为了标准装备,一台带触控的笔记本至少3999元,支持触控的显示器也要2999元起,对绝大多数普通用户而言,触控的成本实在太高。因此市场上出现了可覆盖在笔记本屏幕表面的电阻屏,但DIY改造有一定的技术门槛,涉及到拆卸笔记本屏幕、固定屏幕液晶面板、走线、控制板和USB口的焊线等技术,电阻屏及其组装的费用也要200元左右。2015年底,初创科技公司Neonode研发了一款名为“Airbar”的电脑配件,通过USB接口连接放置于屏幕下方,利用发射红外线光并接收光折射率来感应其触控点即可实现触摸屏效果。AirBar兼容性强、功能强大并且操作简单,但其售价49美元(约合人民币317元)。当然也有基于超声波传感技术的触摸点位置坐标检测技术,但超声波在近距离的误差比较大,精度不够,也难以发现和排除干扰,而且至少需要一个超声波发射器和三个接收器,所以实用性不大。因此,我们需要一个成本不高但又可以把非触控屏转换成触控屏的方法。我将在此探求采用低成本USB电脑外置摄像头(最多不超过100元)实现非触控屏转触控屏的方法及其可行性。顺便解决现有交互平面触摸技术存在的缺陷——常见的触摸技术需要特定的材料支持,因此不能有效适应交互平面的尺寸变化,材料的透明度也会影响投影的显示效果。 1方案论证 方案一 利用放置于显示平面两个顶角的摄像机获取图像,通过图像处理提取笔成像的中心点,然后使用三角定位法和坐标变换计算得到笔的坐标位置,实现对一支笔运动的实时跟踪[1]。 缺点1、有盲区,对处于两摄像头连线之间的所有点无法用三角定位法定位(连线上的所有点在两个摄像头的成像角度都是一样的)。若要改进则需在显示平面下端再加一个摄像头以辨别出现在顶角两摄像头连线上的点。但笔记本电脑要同时供三个摄像头需要增加视频采集卡或者PCI-USB 拓展卡,这样占用了CPU资源,不仅耗电也增加了成本,且需要电脑有较高的显卡配置。或者摄像头可应用虚焦测距法或散焦测距法对笔的深度信息进行采集,但又增加了变量; 缺点2、只能在特定尺寸屏幕的特定位置同时安装两个摄像头,及其不便也不方便移植。 方案二 采用双目立体视觉的目标识别与定位,即在显示平面前方区域放置两个摄像头,对手或笔进行三维定位。 缺点1:无法准确捕捉到笔和显示平面的接触的时刻,也就不能确认接触点。所以就算是立体定位,在此也不太实用。 缺点2:两个摄像头、显示屏幕的相对位置都需要已知,也就是整个触摸系统一旦设定后不能有位置变动,也不方便移植应用。 结合以上两种方案,我们采用两个USB摄像头(成本少于20元),一个摄像头位于屏幕前方(一

机器视觉检测

机器视觉检测 一、概念 视觉检测是指通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉检测的特点是提高生产的柔性和自动化程度。 2、典型结构 五大块:照明、镜头、相机、图像采集卡、软件 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。目前没有通用的照明设备,具体应用场景选择相应的照明装置。照射方法可分为: 分类具体说明优点 背向照明被测物放在光源和摄像机之 间能获得高对比度的图像 前向照明光源和摄像机位于被测物的 同侧 便于安装 结构光将光栅或线光源等投射到被 测物上,根据它们产生的畸 变,解调出被测物的三维信 息 频闪光照明将高频率的光脉冲照射到物

体上,摄像机拍摄要求与光 源同步 2.镜头 镜头的选择应注意以下几点:焦距、目标高度、影像高度、放大倍数、影响至目标的距离、中心点/节点、畸变。 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。 要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD 和面阵CCD;单色相机和彩色相机。 为优化捕捉到的图像,需要对光圈、对比度和快门速度进行调整。 4.图像采集卡 图像采集卡是图像采集部分和图像处理部分的接口。将图像信号采集到电脑中,以数据文件的形式保存在硬盘上。通过它,可以把摄像机拍摄的视频信号从摄像带上转存到计算机中。 5.软件 视觉检测系统使用软件处理图像。软件采用算法工具帮助分析图像。视觉检测解决方案使用此类工具组合来完成所需要的检测。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。常用的包括,搜索工具,边界工具,特征分析工具,过程工具,视觉打印工具等。 3、关键——光源的选择 1.光源选型基本要素: 对比度机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特

视觉定位软件visionkit软件说明书

文件名称:视觉定位软件VisionKit使用说明书文件版本:中文简体版 文件页数:共 42 页(含此页) 编制: 审核: 标准化: 批准: 日期:

大族激光科技产业集团股份有限公司 视觉定位软件VisionKit 使用说明书 (版本:中文简体版)

大族激光科技产业集团股份有限公司 声明 版权所有?大族激光科技产业集团股份有限公司保留一切权利。 未经大族激光科技股份有限公司的许可,任何组织和个人不得擅自摘抄、复制文档内容的部分或全部,并不得以任何形式传播。 商标声明 和其它大族商标均为大族激光科技产业集团股份有限公司的注册商标,并对其享有独占使用、许可使用、转让、续展等各项法定权利,未经大族激光科技产业集团股份有限公司允许,任何组织或个人不得在商品上使用相同或类似的商标。 注意 在所规定的支持保修范围内,大族激光科技产业集团股份有限公

司履行承诺的保修服务,超出所在规定的保修范围的,恕不承担保修服务。对于在使用本产品过程中可能造成的损失,大族激光科技产业集团股份有限公司不承担相关责任。如发生任何争议,应按中华人民共和国的相关法律解决。 大族激光科技产业集团股份有限公司随时可能因为软件或硬件升级对使用说明书的内容进行更新,所有这些更新都将纳入使用说明书新的版本中,恕不另行通知。 目录 声明 (3) 一、软件概述 (5) 二、环境安装 (5)

软件安装 (5) 安装halcon基础软件 (5) 安装相机驱动软件 (6) 注册串口通讯组件 (10) VIsionKit软件 (10) 三、软件界面介绍 (10) 主界面 (10) 主界面介绍 (10) 运行界面 (13) 运行界面介绍 (13) 设置界面 (15) 图像标定 (16) ROI设置 (18) 通信设置 (20)

基于机器视觉的工业机器人定位系统

基于机器视觉的工业机器人定位系统 基于机器视觉的工业机器人定位系统 类别:传感与控制 摘要:建立了一个主动机器视觉定位系统,用于工业机器人对零件工位的精确定位。采用基于区域的匹配和形状特征识别相结合的图像处理方法,该方法经过阈值和形状判据,识别出物体特征。经实验验证,该方法能够快速准确地得到物体的边界和质心,进行数据识别和计算,再结合机器人运动学原理控制机器人实时运动以消除此误差,满足工业机器人自定位的要求。 1.引言目前工业机器人仅能在严格定义的结构化环境中执行预定指令动作,缺乏对环境的感知与应变能力,这极大地限制了机器人的应用。利用机器人的视觉控制,不需要预先对工业机器人的运动轨迹进行示教或离线编程,可节约大量的编程时间,提高生产效率和加工质量。Hagger 等人提出通过基于机器人末端与目标物体之间的误差进行视觉反馈的方法;Mezouar 等人提出通过图像空间的路径规划和基于图像的控制方法。国内这方面主要应用于焊接机器人对焊缝的跟踪。本文利用基于位置的视觉伺服思想,以六自由度垂直关节型喷涂机器人为载体,提出一种基于机器视觉的工业机器人自定位控制方法,解决了机器人末端实际位置与期望位置相距较远的问题,改善了喷涂机器人的定位精度。 2.视觉定位系统的组成机器人视觉定位系统构成如图 1 所示,在关节型机器人末端安装喷涂工具、单个摄像机,使工件能完全出现在摄像机的图像中。系统包括摄像机系统和控制系统:(1)摄像机系统:由单个摄像机和计算机(包括图像采集卡)组成,负责视觉图像的采集和机器视觉算法;(2)控制系统:由计算机和控制箱组成,用来控制机器人末端的实际位置;经 CCD 摄像机对工作区进行拍摄,计算机通过本文使用的图像识别方法,提取跟踪特征,进行数据识别和计算,通过逆运动学求解得到机器人各关节位置误差值,最后控制高精度的末端执行机构,调整机器人的位姿。 图1 喷涂机器人视觉定位系统组成 3.视觉定位系统工作原理 3.1 视觉定位系统的工作原理使用 CCD 摄像机和1394 系列采集卡,将视频信号输入计算机,并对其快速处理。首先选取被跟踪物体的局部图像,该步骤相当于离线学习的过程,在图像中建立坐标系以及训练系统寻找跟踪物。学习结束后,图像卡不停地采集图像,提取跟踪特征,进行数据识别和计算,通过逆运动学求解得到机器人各关节位置给定值,最后控制高精度的末端执行机构,调整机器人的位姿。工作流程如图2 所示。图 2 视觉定位系统软件流程图 3.2 基于区域的匹配本文采用的就是基于区域的相关匹配方法。它是把一幅图像中的某一点的灰度领域作为模板,在另一幅图像中搜索具有相同(或相似)灰度值分布的对应点领域,从而实现两幅图像的匹配。在基于区域相关的算法中,要匹配的元素是固定尺寸的图像窗口,相似准则是两幅图像中窗口间的相关性度量。当搜索区域中的元素使相似性准则最大化时,则认为元素是匹配的。定义P (i, j) P 是模板图像中一点,取以P (i, j) P 为中心的某一邻域作为相关窗口K ,大小为(2w +1),假设K 在原始图中,水

焊线机视觉系统

全自动晶片焊线机视觉检测系统的研究 摘要:全自动晶片焊线机是晶片生产的关键设备之一,其视觉系统是设备的核心技术所在。视觉系统决定了晶片的检测和定位精度。本文详细介绍了基于机器视觉的全自动晶片焊线机的专用芯片视觉检测系统的工作原理和设计结构,着重阐述了视觉系统的软件和硬件设计过程,以及用于晶片检测定位的图像处理算法。实验表明系统在速度和精度上都可满足焊线生产的需求,对于自动晶片焊接设备的自动化、智能化和产业化有一定的参考意义。 关键词:自动焊线机,视觉检测,图像处理,晶片检测定位 Design on Vision Detection System of Automatic IC Wire Bonder Duan Jin,Wang Feng,Lu Jian, Zhu Yong, Jing Wenbo (Changchun University of Science & Technology, Changchun, 130022, China, Duanjin: duanjin@https://www.wendangku.net/doc/e95248772.html, ) (Jilin Kaichuang Electric technology Company, Changchun,130023,China) Abstract: The Wire bonding machine is one of the primary equipment for chip production. The machine vision system is very crucial in the process of wire-bonding. The structure and principle of vision detection system in high precision chip wire-bonder are introduced in this paper. The design of the hardware and software of the system are discussed, at the same time the arithmetic of image processing is presented. Experiment results shows that the method can effectively detecte and locate the chip. The speed and accuracy of the system are good enough to meet the practical application requirement. Key words:Wire bonder, Vision detection, Image processing, Chip detection & location 0.引言 表面组装技术(SMT Surface Mounting Technology)使现代电子组装的重量减轻,体积缩小,成本降低,是目前电子组装行业最流行的技术和工艺,具有重要的应用价值。目前,我国已经成为世界最大的IC晶片消费国之一。但是我国现在80%的IC晶片却是依赖国外进口的,其主要原因是表面组装设备依赖进口,没有自主知识产权。由于国外厂商都对核心技术采取严密的技术保密,我国表面自动组装技术与国外先进水平相比有着明显差距,特别是在组装设备的精度和速度等的重要指标上[1][2][3]。 SMT生产线通常由表面涂敷设备、贴片机、焊接机、丝印机、清洗机、测试设备等表面组装设备组成。其中关键设备——焊接机(Wire Bonder),更是国外各大电子设备公司激烈竞争的对象[4]。国内已有技术成熟的商品化贴片机[1,5,6],但是国产的晶片焊线机基本还停留在半自动或较低的全自动水平,且产业化水平较低。

机器视觉定位技术应用

机器视觉技术应用--视觉定位系统 (编辑:李军单位:无锡创视新科技有限公司) 当前,工业产品种类繁多,在工业产品的生产过程中,都可能涉及到自动定位。如自动化生产线中要求对各零件快速、准确的安装到位。但目前还有部分加工厂还都采用传统的人工定位方法,此方法存在以下缺点: (1)长时间定位单一产品,检测工人眼睛容易疲劳,并且容易受情绪的影响,定位结果难以保证; (2)每个工人对同种被定位准确性的判断标准有轻微的浮动,定位标准不一致,因此很难保证高质量的产品; (3)人工定位的速度相对很慢,定位准确一个产品就需要很长时间,人工定位无法满足高速生产线的在线定位需求。 随着科技的发展,市场及用户对产品的精密程度和质量的要求越来越高,传统的定位方法已经不能满足用户的需求,因此,行业便相继引进机器视觉技术。 机器视觉就是用机器代替人眼来做测量和判断,通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉技术具备定位功能,能够自动判断物体的位置,并将位置信息通过一定的通讯协议输出。此功能多用于全自动装配和生产,譬如自动组装、自动焊接、自动包装、自动灌装、自动喷涂,多配合自动执行机构(机械手、焊枪、喷嘴等)。 基于机器视觉的视觉定位技术得到了广大加工厂商的普遍关注,全自动视觉定位方法不但克服了传统人工定位方法的缺点,同时也发挥了自己快速准确的优点:(1)定位精度高,定位结果可靠、稳定; (2)定位速度快,并且可以长时间工作,可以达到24小时全天运行。 在视觉定位检测系统中,能够准确识别产品的方向和位置是系统的核心。定位检测可分为两个步骤,一是制作标准模板,二是搜索。视觉定位系统采用先进的图像视觉检测技术,实现对高速运动的工业产品进行实时全面的视觉定位分析。当系统配备一台高性能彩

贴片机视觉系统

. 随着电子设备对小型,轻型,薄型和可靠性的需求,促使各种新型器件特别是细微间距器件得到迅速发展,被越来越多的用在各类电子设备上,于是对SMT中的关键设备----贴片机的贴片精度提出了更高的要求.本文从应用角度对FUJI(主要是IP3和CP6)和SIEMENS(S80F)贴片机的视觉系统进行了详细对比. 1,机器视觉系统的原理 贴片机视觉系统是以计算机为主体的图象观察,识别和分析系统.它主要采用摄象机为计算机感觉的传感部件,或称探测部件.摄象机感觉到在给定视内目的物的光强度分布,然后将其转换成模拟电信号,再通过A/D转换器被数字化成离散的数值,这些数值表示视野内给定的平均光强度,这样得到的数字影象被规则的空间网格覆盖,每个网格叫做一个像元.显然,在像元阵列中目的物影象占据一定的网格数.计算机对包含目的物数字图象的像元阵列进行处理,将图象特征与事先输入计算机的参考图象进行比较和分析判断,根据其计算结果计算机向执行机构发生指令. 在机器视觉系统中灰度分辨率.灰度值法是用图象多级亮度来表示分辨的大小,灰度分辨率规定在多大的离散值是机器给定的测量光强度,需要处理的光强越小,灰度分辨率就越高. 2,视觉系统的构成 贴片机视觉系统由视觉硬件和软件组成.硬件一般由影象探测,影象存储和处理以及影象显示3部分组成. 摄象机是视觉系统的传感部件,用于贴片机的视觉采用固态摄象机,CCD摄象机.固态摄象机的主要部分是一块集成电路,集成电路芯片上制作有许多细小光敏元件组成的CCD阵列,每个光敏元件输出的电信号与被观察目标上相应反射光强度成反比,这一电信号作为一像元的灰度被记录下来.象元件坐标决定了该点在图象中的位置. 摄象机获取大量信息有微处理机处理.处理结果由工业电视显示.摄象机与微处理机,微处理机与执行机构及显示器之间有通讯电缆连接,一般采用RS232串行通讯接口. 3,视觉系统的精度 影响视觉系统精度的主要因素是摄象机的像元数和光学放大倍数.摄象机的像元数越多,精度就越高;图象的放大倍数越高,精度就越高.因为图象的光学放大倍数越大,对于给定面积的象元数就越多,所以精度就越高.在FUJI的IP3上,在贴脚宽0.15MM的器件时就采用了精密的需要.不过,放大倍数过大,寻找器件更加困难,容易丢件,降低了帖装率.所以要根据实际需要选择合适的光学放大倍数. 4,FUJI和SIEMENS视觉系统的比较 1,PCB的精确定位 FUJI的IP和CP均有一个专用的MARK CAMERA,用来获取PCB上的标是点位置,大小和形状,读取中心位置.在PCB进行定位时,PCB上需要至少2个表示点(基于X,Y TABLE水平的状态下)依次围绕每个表示点中心,在一定范围内搜索,如未发现目标,就扩大搜索范围(程序中可设定).确定表示点位置后,与程序中的坐标比较,判断的出偏差,具体反映在X,Y,Q3个值只能感,然后来修正贴装坐标,SIEMENS也大致相同. 2,器件检测和定心 FUJI使用一大一小2个摄象机进行不同元件的识别和对中,同时执行检测功能.对于不同的器件使用不同的照射方式,J型脚(PLCC,SOJ,BGA)采用前灯

单目视觉定位方法研究综述

万方数据

万方数据

万方数据

万方数据

单目视觉定位方法研究综述 作者:李荣明, 芦利斌, 金国栋 作者单位:第二炮兵工程学院602教研室,西安,710025 刊名: 现代计算机:下半月版 英文刊名:Modem Computer 年,卷(期):2011(11) 参考文献(29条) 1.R.Horaud;B.Conio;O.Leboullcux An Analytic Solution for the Perspective 4-Point Problem 1989(01) 2.任沁源基于视觉信息的微小型无人直升机地标识别与位姿估计研究 2008 3.徐筱龙;徐国华;陈俊水下机器人的单目视觉定位系统[期刊论文]-传感器与微系统 2010(07) 4.邹伟;喻俊志;徐德基于ARM处理器的单目视觉测距定位系统[期刊论文]-控制工程 2010(04) 5.胡占义;雷成;吴福朝关于P4P问题的一点讨论[期刊论文]-自动化学报 2001(06) 6.Abdel-Aziz Y;Karara H Direct Linear Transformation from Comparator to Object Space Coordinates in Close-Range Ph- togrammetry 1971 7.Fishier M A;Bolles R C Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analy-s~s anu Automated tartograpny 1981(06) 8.祝世平;强锡富用于摄像机定位的单目视觉方法研究[期刊论文]-光学学报 2001(03) 9.沈慧杰基于单目视觉的摄像机定位方法的研究 2009 10.任沁源;李平;韩波基于视觉信息的微型无人直升机位姿估计[期刊论文]-浙江大学学报(工学版) 2009(01) 11.刘立基于多尺度特征的图像匹配与目标定位研究[学位论文] 2008 12.张治国基于单目视觉的定位系统研究[学位论文] 2009 13.张广军;周富强基于双圆特征的无人机着陆位置姿态视觉测量方法[期刊论文]-航空学报 2005(03) 14.Zen Chen;JenBin Huang A Vision-Based Method for theCircle Pose Determination with a Direct Geometric Interpre- tation[外文期刊] 1999(06) 15.Safaee-Rad;I.Tchoukanov;K.C.Smith Three-Dimension of Circular Features for Machine Vision 1992 16.S.D.Ma;S.H.Si;Z.Y.Chen Quadric Curve Based Stereo 1992 17.D.A.Forsyth;J.L.Munday;A.Zisserman Projective In- variant Representation Using Implicit Algebraic Curves 1991(02) 18.吴朝福;胡占义PNP问题的线性求解算法[期刊论文]-软件学报 2003(03) 19.降丽娟;胡玉兰;魏英姿一种基于平面四边形的视觉定位算法[期刊论文]-沈阳理工大学学报 2009(02) 20.Sun Fengmei;Wang Weining Pose Determination from a Single Image of a Single Parallelogram[期刊论文]-Acta Automatica Sinica 2006(05) 21.吴福朝;王光辉;胡占义由矩形确定摄像机内参数与位置的线性方法[期刊论文]-软件学报 2003(03) 22.王晓剑;潘顺良;邱力为基于双平行线特征的位姿估计解析算法[期刊论文]-仪器仪表学报 2008(03) 23.刘晓杰基于视觉的微小型四旋翼飞行器位姿估计研究与实现 2009 24.刘士清;胡春华;朱纪洪一种基于灭影线的无人直升机位姿估计方法[期刊论文]-计算机工程与应用 2004(9) 25.Mukundan R;Raghu Narayanan R V;Philip N K A Vision Based Attitude and Position Estimation Algorithm for Rendezvous and Docking 1994(02)

相关文档