文档库 最新最全的文档下载
当前位置:文档库 › 贪心算法解活动安排实验报告

贪心算法解活动安排实验报告

贪心算法解活动安排实验报告
贪心算法解活动安排实验报告

实验3 贪心算法解活动安排问题一、实验要求

1.要求按贪心法求解问题;

2.要求读文本文件输入活动安排时间区间数据;

3.要求显示结果。

二、实验仪器和软件平台

仪器:带usb接口微机

软件平台:WIN-XP + VC++6.0

三、源程序

#include "stdafx.h"

#include

#include

#include

#define N 50

#define TURE 1

#define FALSE 0

int s[N];/*开始时间*/

int f[N];/*结束时间*/

int A[N];/*用A存储所有的*/

int Partition(int *b,int *a,int p,int r);

void QuickSort(int *b,int *a,int p,int r);

void GreedySelector(int n,int *s,int *f,int *A);

int main()

{

int n=0,i;

while(n<=0||n>50)

{

printf("\n");

printf("请输入活动的个数,n=");

scanf("%d",&n);

if(n<=0) printf("请输入大于零的数!");

else if(n>50) printf("请输入小于50的数!");

}

printf("\n请分别输入开始时间s[i]和结束时间f[i]:\n\n");

for(i=1;i<=n;i++)

{

printf("s[%d]=",i,i);

scanf("%d",&s[i]);

printf("f[%d]=",i,i);

scanf("%d",&f[i]);

printf("\n");

}

QuickSort(s,f,1,n); //按结束时间非减序排列

printf("按结束时间非减序排列如下:\n"); /*输出排序结果*/ printf("\n 序号\t开始时间结束时间\n");

printf("-------------------------\n");

for(i=1;i<=n;i++)

printf(" %d\t %d\t %d\n",i,s[i],f[i]);

printf("-------------------------\n");

GreedySelector(n,s,f,A);//贪心算法实现活动安排

printf("安排的活动序号依次为:");

for(i=1;i<=n;i++)

{

if(A[i])

printf("\n%d %d-->%d",i,s[i],f[i]);

}

printf("\n");

system("pause");

return 0;

}

//快速排序

void QuickSort(int *b,int *a,int p,int r)

{

int q;

if(p

q=Partition(b,a,p,r);

QuickSort(b,a,p,q-1);/*对左半段排序*/

QuickSort(b,a,q+1,r);/*对右半段排序*/ }

}

//产生中间数

int Partition(int *b,int *a,int p,int r)

{

int k,m,y,i=p,j=r+1;

int x=a[p];y=b[p];

while(1)

{

while(a[++i]

while(a[--j]>x);

if(i>=j)

break;

else

{

k=a[i];a[i]=a[j];a[j]=k;

m=b[i];b[i]=b[j];b[j]=m;

}

a[p]=a[j];

b[p]=b[j];

a[j]=x;

b[j]=y;

return j;

}

//贪心算法实现活动安排

void GreedySelector(int n,int *s,int *f,int *A)

{

//用集合A来存储所选择的活动

A[1]=TURE; //默认从第一次活动开始执行

int j=1; //j记录最近一次加入到A中的活动

for(int i=2;i<=n;i++)

{

//f[j]为当前集合A中所有活动的最大结束时间

//活动i的开始时间不早于最近加入到集合A中的j的时间f[j]

if(s[i]>=f[j])

{

A[i]=TURE; //当A[i]=TURE时,活动i在集合A中

j=i;

}

else A[i]=FALSE;

}

}

四、运行结果

五、实验小结

贪心算法总是做出在当前看来最好的选择,也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合。该问题要求高效地安排一系列争用某一公共资源的活动。贪心算法提供了一个简单、漂亮的方法使得尽可能多的活动能兼容地使用公共资源。

算法设计与分析实验报告贪心算法

算法设计与分析实验报告 贪心算法 班级:2013156 学号:201315614 姓名:张春阳哈夫曼编码 代码 #include float small1,small2; int flag1,flag2,count; typedefstructHuffmanTree { float weight; intlchild,rchild,parent; }huffman; huffmanhuffmantree[100]; void CreatHuffmanTree(intn,int m) { inti; void select(); printf("请输入%d个节点的权值:",n); for(i=0;i

printf("\n"); for(i=0;i

算法实验报告

华北电力大学 实验报告| | 实验名称算法设计与分析综合实验 课程名称算法设计与分析 | | 专业班级软件12 学生姓名: 学号:成绩: 指导教师:胡朝举实验日期:

实验一分治策略—归并排序 一、实验要求 (1)编写一个模板函数:template ,MergeSort(T *a, int n); 以及相应的一系列函数,采用分治策略,对任意具有:bool operator<(const T&x,const T&y);比较运算符的类型进行排序。 (2)与STL库中的函数std::sort(..)进行运行时间上的比较,给出比较结果,如:动态生成100万个随机生成的附点数序列的排序列问题, 给出所用的时间比较。 二、实验代码 #include <> #include <> #include <> #include <> #define MAX 50 typedef struct { int arr[MAX+1]; int length; }SortArr; SortArr *CreateSortArr() { int i = 0; char buf[4*MAX] = ""; char *ptr = NULL; SortArr *sortArr = (SortArr *)malloc(sizeof(SortArr)); memset(sortArr, 0, sizeof(SortArr)); printf("请输入待排序数据,以逗号分隔,以分号结束\n" "input:"); scanf("%s", buf); ptr = buf; sortArr->arr[i] = 0; i = 1; while(*ptr != ';') { sortArr->arr[i] = atoi(ptr); i++; ptr = strstr(ptr, ","); if(!ptr) { break; } ptr++; } sortArr->length = (i - 1); return sortArr; } int merge(int arr[], int p, int q, int r) { int i = 0; int j = 0; int k = 0; int n1 = 0; int n2 = 0; int *leftArr = NULL; int *rightArr = NULL; n1 = q - p + 1; n2 = r - q;

北京理工大学《数据结构与算法设计》实验报告实验一

《数据结构与算法设计》 实验报告 ——实验一 学院: 班级: 学号: 姓名:

一、实验目的 1.通过实验实践、巩固线性表的相关操作; 2.熟悉VC环境,加强编程、调试的练习; 3.用C语言编写函数,实现循环链表的建立、插入、删除、取数据等基本操作; 4.理论知识与实际问题相结合,利用上述基本操作实现约瑟夫环。 二、实验内容 1、采用单向环表实现约瑟夫环。 请按以下要求编程实现: ①从键盘输入整数m,通过create函数生成一个具有m个结点的单向环表。环表中的 结点编号依次为1,2,……,m。 ②从键盘输入整数s(1<=s<=m)和n,从环表的第s个结点开始计数为1,当计数到 第n个结点时,输出该第n结点对应的编号,将该结点从环表中消除,从输出结点 的下一个结点开始重新计数到n,这样,不断进行计数,不断进行输出,直到输出 了这个环表的全部结点为止。 三、程序设计 1、概要设计 为实现上述程序功能,应用单向环表寄存编号,为此需要建立一个抽象数据类型:单向环表。 (1)、单向环表的抽象数据类型定义为: ADT Joseph{ 数据对象:D={ai|ai∈ElemSet,i=1,2,3……,n,n≥0} 数据关系:R1={ |ai∈D,i=1,2,……,n} 基本操作: create(&L,n) 操作结果:构造一个有n个结点的单向环表L。 show(L) 初始条件:单向环表L已存在。 操作结果:按顺序在屏幕上输出L的数据元素。 Josephf( L,m,s,n) 初始条件:单向环表L已存在, s>0,n>0,s

贪心算法 会场安排问题 算法设计分析

贪心算法会场安排问题算法设计分析Description 假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。设计一个有效的算法进行安排。(这个问题实际上是著名的图着色问题。若将每一个活动作为图的一个顶点,不相容活动间用边相连。使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。) 编程任务: 对于给定的k个待安排的活动,编程计算使用最少会场的时间表。 Input 输入数据是由多组测试数据组成。每组测试数据输入的第一行有1 个正整数k,表示有k个待安排的活动。接下来的k行中,每行有2个正整数,分别表示k 个待安排的活动开始时间和结束时间。时间以0 点开始的分钟计。 Output 对应每组输入,输出的每行是计算出的最少会场数。 Sample Input 5 1 23 12 28 25 35 27 80 3 6 50

Sample Output 3 程序: #include int fnPartition(int a[], int low, int high) { int i,j; int x = a[low]; i = low; j = high; while(i =a[i]) i++; if(i -1) { n = 1; for(; i <=e; i++) if(a[i]>=b[s]) s++; else n++; } return n; } int main(void) { int n,i; while(1 == scanf("%d",&n)) { int *st = new int [n]; int *et = new int [n]; for (i = 0; i

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真 指导教师:郝晓丽

2018年05月04 日 实验一递归与分治算法 1.1 实验目的与要求 1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 1.2 实验课时 2学时 1.3 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 1.4 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想:

根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011 010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计:

算法实验报告

贵州大学计算机科学与技术学院 计算机科学与技术系上机实验报告 课程名称:算法设计与分析班级:软件101 实验日期:2012-10-23 姓名:学号:指导教师: 实验序号:一实验成绩: 一、实验名称 分治算法实验- 棋盘覆盖问题 二、实验目的及要求 1、熟悉递归算法编写; 2、理解分治算法的特点; 3、掌握分治算法的基本结构。 三、实验环境 Visual C++ 四、实验内容 根据教材上分析的棋盘覆盖问题的求解思路,进行验证性实验; 要求完成棋盘覆盖问题的输入、分治求解、输出。有余力的同学尝试消去递归求解。 五、算法描述及实验步骤 分治算法原理: 分治算法将大的分解成形状结构相同的子问题,并且不断递归地分解,直到子问题规模小到可以直接求解。 棋盘覆盖问题描述: 在一个2k x 2k个方格组成的棋盘中恰有一个方格与其他的不同称为特殊方格,想要求利用四种L型骨牌(每个骨牌可覆盖三个方格)不相互重叠覆盖的将除了特殊方格外的其他方格覆盖。

实验步骤: 1、定义用于输入和输出的数据结构; 2、完成分治算法的编写; 3、测试记录结构; 4、有余力的同学尝试不改变输入输出结构,将递归消除,并说明能否不用栈,直接消除递归,为什么? 六、调试过程及实验结果 详细记录程序在调试过程中出现的问题及解决方法。 记录程序执行的结果。

七、总结 对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。 通过对本实验的学习,对分治算法有了进一步的认识,对棋盘覆盖问题和其他分治问题进行了对比。 八、附录 源程序(核心代码)清单或使用说明书,可另附纸 ① #include #include using namespace std; int board[100][100],tile=1; void chessboard(int tr,int tc,int dr,int dc,int size)//tr 棋盘左上角方格的行号,tc棋盘左上角方格的列号。dr特殊方格所在的行号。dc特殊方格所在的列号。size棋盘的大小2^k. { int s; if(size==1) return ; int t=tile++; s=size/2; //覆盖左上角棋盘 if(dr=tc+s) chessboard(tr,tc+s,dr,dc,s); else { board[tr+s-1][tc+s]=t; chessboard(tr,tc+s,tr+s-1,tc+s,s); } ② //覆盖左下角子棋盘 if(dr>=tr+s&&dc=tr+s&&dc>=tc+s) chessboard(tr+s,tc+s,dr,dc,s); else { board[tr+s][tc+s]=t; chessboard(tr+s,tc+s,tr+s,tc+s,s); } } int main() { int k,tr,tc,size,i,j; cin>>k>>tr>>tc; size=pow(2,k); chessboard(0,0,tr,tc,size); for(i=0;i

算法设计与实验报告讲解

算法设计与分析实验报告 学院:信息学院 专业:物联网1101 姓名:黄振亮 学号:20113379 2013年11月

目录 作业1 0-1背包问题的动态规划算法 (7) 1.1算法应用背景 (3) 1.2算法原理 (3) 1.3算法描述 (4) 1.4程序实现及程序截图 (4) 1.4.1程序源码 (4) 1.4.2程序截图 (5) 1.5学习或程序调试心得 (6) 作业2 0-1背包问题的回溯算法 (7) 2.1算法应用背景 (3) 2.2算法原理 (3) 2.3算法描述 (4) 2.4程序实现及程序截图 (4) 2.4.1程序源码 (4) 2.4.2程序截图 (5) 2.5学习或程序调试心得 (6) 作业3循环赛日程表的分治算法 (7) 3.1算法应用背景 (3) 3.2算法原理 (3) 3.3算法描述 (4) 3.4程序实现及程序截图 (4)

3.4.1程序源码 (4) 3.4.2程序截图 (5) 3.5学习或程序调试心得 (6) 作业4活动安排的贪心算法 (7) 4.1算法应用背景 (3) 4.2算法原理 (3) 4.3算法描述 (4) 4.4程序实现及程序截图 (4) 4.4.1程序源码 (4) 4.4.2程序截图 (5) 4.5学习或程序调试心得 (6)

作业1 0-1背包问题的动态规划算法 1.1算法应用背景 从计算复杂性来看,背包问题是一个NP难解问题。半个世纪以来,该问题一直是算法与复杂性研究的热点之一。另外,背包问题在信息加密、预算控制、项目选择、材料切割、货物装载、网络信息安全等应用中具有重要的价值。如果能够解决这个问题那么则具有很高的经济价值和决策价值,在上述领域可以获得最大的价值。本文从动态规划角度给出一种解决背包问题的算法。 1.2算法原理 1.2.1、问题描述: 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi ∈{0,1}, ?∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 1.2.2、最优性原理: 设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解: 证明:使用反证法。若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。显然有 ∑vizi > ∑viyi (i=2,…,n) 且 w1y1+ ∑wizi<= c 因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n) 说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。 1.2.3、递推关系:

算法程序设计实验报告

程序设计》课程设计 姓名:王 学号:20100034 班级:软件工程00 班 指导教师:王会青 成绩: 2010年 6 月 实验一.构造可以使n 个城市连接的最小生成树 专业:__软件工程___ 班级:__软件姓名:_王___ 学号:_20100034 完成日期:_2010/6/26 ________ 一、【问题描述】给定一个地区的n 个城市间的距离网,用Prim 算法或Kruskal 算法建立最小生成树,并计算得到的最小生成树的代价。 1 城市间的道路网采用邻接矩阵表示,邻接矩阵的存储结构定义采用课本中给出的定义,若两个城市之间不存在道

路,则将相应边的权值设为自己定义的无穷大值。 2 显示出城市间道路网的邻接矩阵。 3 最小生成树中包括的边及其权值,并显示得到的最小生成树的总代价。 4 输入城市数、道路数→输入城市名→输入道路信息→执行Kruskal 算法→执行Prim 算法→输出最小生成树 二、【问题分析】 1. 抽象数据类型结构体数组的定义: #ifnd ef ADJACENCYMATRIXED// 防止该头文件被重复引用 #define ADJACENCYMATRIXED // 而引起的数据重复定义 #define INFINITY 32767 // 最大值∞ #define MAX_VERTEX_NUM 20 // 最大顶点个数 typedef int VRType; // 权值,即边的值 typedef char InfoType; // 附加信息的类型,后面使用时会定义成一个指针 typedef char VertexType[MAX_VERTEX_NUM]; // 顶点类型 typedef enum {DG=1, DN, UDG, UDN} GraphKind; //{ 有向图,有向网,无向图,无向网} typedef struct ArcCell { VRType adj; //VRType 是顶点关系类型。对无权图,用1 或0 表示相邻否;对带权图,则为权值类型。 InfoType*info; // 该弧关系信息的指针

银行家算法设计实验报告

银行家算法设计实验报告

银行家算法设计实验报告 一.题目分析 1.银行家算法: 我们可以把操作系统看做是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求资源相当于客户向银行家贷款。操作系统按银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程尚需求的资源量,若是系统现存的资源可以满足它尚需求的资源量,则按当前的申请量来分配资源,否则就推迟分配。 当进程在执行中继续申请资源时,先测试该进程申请的资源量是否超过了它尚需的资源量。若超过则拒绝分配,若没有超过则再测试系统尚存的资源是否满足该进程尚需的资源量,若满足即可按当前的申请量来分配,若不满足亦推迟分配。 2.基本要求: (1)可以输入某系统的资源以及T0时刻进程对资源的占用及需求情况的表项,以及T0时刻系统的可利用资源数。 (2)对T0时刻的进行安全性检测,即检测在T0时刻该状态是否安全。

(3)进程申请资源,用银行家算法对其进行检测,分为以下三种情况: A. 所申请的资源大于其所需资源,提示分配不合理不予分配并返回 B. 所申请的资源未大于其所需资源, 但大于系统此时的可利用资源,提 示分配不合理不予分配并返回。 C. 所申请的资源未大于其所需资源, 亦未大于系统此时的可利用资源,预 分配并进行安全性检查: a. 预分配后系统是安全的,将该进 程所申请的资源予以实际分配并 打印后返回。 b. 与分配后系统进入不安全状态,提示系统不安全并返回。 (4)对输入进行检查,即若输入不符合条件,应当报错并返回重新输入。 3.目的: 根据设计题目的要求,充分地分析和理解题 目,叙述系统的要求,明确程序要求实现的功能以及限制条件。 明白自己需要用代码实现的功能,清楚编写每部分代码的目的,做到有的放矢,有条理不遗漏的用代码实现银行家算法。

算法设计(eclipse编写贪心算法设计活动安排)

陕西师大计科院2009级《算法设计与分析》课程论文集 算法设计(贪心算法解决活动安排) 设计者:朱亚君 贪心算法的计算过程如下图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。 图1贪心算法的计算过程图 若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。 贪心算法并不总能求得问题的整体最优解。但对于活动安排问题,贪心算法却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。

运用贪心算法解决活动安排问题 附录: 贪心算法的实现具体程序如下: // 贪心算法实现代码 n为活动个数 s为活动开始起始时间队列 f 为活动结束队列 A为已选入集合 import java.util.Scanner; public class a { /** * @param args */ static void GreedySelector(int s[],int f[],boolean A[]) { //第一个活动为结束时间最早进入选入队列 int n=s.length; A[1]=true; int j=2; for(int i=2;i=f[j]) { A[i]=true; j=i; } else A[i]=false; } } static void paixu(int s[],int f[])//进行以结束时间的大小排序 { int n=s.length; int m; for(int i=0;if[j+1]) { m=f[j]; f[j]=f[j+1]; f[j+1]=m;//终止时间如果前一个大于后一个就交换位置

Romberg龙贝格算法实验报告.

Romberg龙贝格算法实验报告 2017-08-09 课程实验报告 课程名称: 专业班级: CS1306班学号: U201314967 姓名:段沛云指导教师:报 告日期: 计算机科学与技术学院 目录 1 实验目的 (1) 2 实验原理 (1) 3 算法设计与流程框图 (2) 4 源程序 (4) 5 程序运行 (7) 6 结果分析 (7) 7 实验体会 (7) 1 实验目的 掌握Romberg公式的用法,适用范围及精度,熟悉Romberg算法的流程,并能够设计算法计算积分 31 得到结果并输出。 1x 2 实验原理 2.1 取k=0,h=b-a,求T0= 数)。 2.2 求梯形值T0( b-a

),即按递推公式(4.1)计算T0。 k 2 h [f(a)+f(b)],令1→k,(k记区间[a,b]的二分次2 2.3 求加速值,按公式(4.12)逐个求出T表的第k行其余各元素Tj(k-j) (j=1,2,….k)。 2.4 若|Tk+1-Tk| n-1 11T2n=[Tn+hn∑f(xi+)] 22i=0 1 Sn=T2n+(T2n-Tn) 31 Cn=S2n+(S2n-Sn) 151 Rn=C2n+(C2n-Cn) 63 3 算法设计与流程框图 算法设计:(先假定所求积分二分最大次数次数为20) 3.1 先求T[k][0] 3.2 再由公式T (k)m 4m(k+1)1)=mTm-1-mTm(k-1(k=1,2,) 求T[i][j] 4-14-1 3.3 在求出的同时比较T[k][k]与T[k-1][k-1]的大小,如果二者之差的绝对 值小于1e-5,就停止求T[k][k];此时的k就是所求的二分次数,而此时的T[k][k]就是最终的结果 3.4 打印出所有的T[i][j];程序流程图

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

贪心算法解汽车加油问题实验报告

计算机算法与分析 设计报告 班级:信管一班信管二班 姓名(学号):赵立贺(060340219) 赵艳(060340114)刘辉(060340125)王勇(060340116)万玉琪(060340213)刘旺(060340205)指导教师:赵晓峰姚天祥 设计地点:信息系统实验室 信息管理系 2008年12月13日

一、实验名称: 用贪心算法、回溯算法、动态规划等解决汽车加油次数最少问题。 二、实验目的: 课程设计是《计算机算法与设计》课程不可缺少的重要实践性环节。通过实践教学,要达到以下目的: (1)使学生掌握线性表、栈、队列、串、树、二叉树、图、集合等各种典型抽象数据类型的数学模型及其所支持基本运算的实现方法; (2)使学生掌握以抽象数据类型为模块的面向对象程序设计方法; (3)使学生提高对实际问题的分析、设计和实现能力; (4)为学生后续课程的学习及课程设计打下坚实的实践基础。 三、使用的策略: 贪心算法、回溯算法等。 四、实验内容: (一)问题描述 一辆汽车加满油后可以行驶N千米。旅途中有若干个加油站。指出若要使沿途的加油次数最少,设计一个有效的算法,指出应在那些加油站停靠加油。 给出N,并以数组的形式给出加油站的个数及相邻距离,指出若要使沿途的加油次数最少,设计一个有效的算法,指出应在那些加油站停靠加油。要求:算法执行的速度越快越好。 (二)问题分析(前提行驶前车里加满油) 对于这个问题我们有以下几种情况:设加油次数为k,每个加油站间距离为a[i];i=0,1,2,3……n 1.始点到终点的距离小于N,则加油次数k=0; 2.始点到终点的距离大于N, A 加油站间的距离相等,即a[i]=a[j]=L=N,则加油次数最少k=n; B 加油站间的距离相等,即a[i]=a[j]=L>N,则不可能到达终点; C 加油站间的距离相等,即a[i]=a[j]=L

算法与设计实验报告

算法与分析实验报告软件工程专业 安徽工业大学 指导老师:许精明

实验内容 1:杨辉三角 2:背包问题 3:汉诺塔问题 一:实验目的 1:掌握动态规划算法的基本思想,学会用其解决实际问题。 2:通过几个基本的实验,提高算法分析与设计能力,提高动手操作能力和培养良好的编程习惯。 二:实验内容 1:杨辉三角 2:背包问题 3:汉诺塔问题 实验一:杨辉三角

问题分析: ①每行数字左右对称,由1开始逐渐变大,然后变小,回到1。 ②第n行数之和为2^n。 ③下一行每个数字等于上一行的左右两个数字之和。 算法设计及相关源代码: public void yanghui(int n) { int[] a = new int[n]; if(n==1){ System.out.println(1); }else if(n==2) { System.out.print(1 + " " +1); }else{ a[1]=1; System.out.println(a[1]); a[2]=1;

System.out.println(a[1]+" "+a[2]); for(int i=3;i<=n;i++){ a[1]=a[i]=1; for(int j=i-1;j>1;j--){ a[j]=a[j]+a[j-1]; } for(int j=1;j<=i;j++){ System.out.print(a[j]+" "); } System.out.println(); } } } 实验结果:n=10 实验二:0-1背包问题 问题分析::令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就 j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) j

银行家算法_实验报告

课程设计报告课程设计名称共享资源分配与银行家算法 系(部) 专业班级 姓名 学号 指导教师 年月日

目录 一、课程设计目的和意义 (3) 二、方案设计及开发过程 (3) 1.课题设计背景 (3) 2.算法描述 (3) 3.数据结构 (4) 4.主要函数说明 (4) 5.算法流程图 (5) 三、调试记录与分析 四、运行结果及说明 (6) 1.执行结果 (6) 2.结果分析 (7) 五、课程设计总结 (8)

一、程设计目的和意义 计算机科学与技术专业学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,其目的在于加深催操作系统基础理论和基本知识的理解,加强学生的动手能力.银行家算法是避免死锁的一种重要方法。通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁、产生死锁的必要条件、安全状态等重要概念,并掌握避免死锁的具体实施方法 二、方案设计及开发过程 1.课题设计背景 银行家算法又称“资源分配拒绝”法,其基本思想是,系统中的所有进程放入进程集合,在安全状态下系统受到进程的请求后试探性的把资源分配给他,现在系统将剩下的资源和进程集合中其他进程还需要的资源数做比较,找出剩余资源能满足最大需求量的进程,从而保证进程运行完成后还回全部资源。这时系统将该进程从进程集合中将其清除。此时系统中的资源就更多了。反复执行上面的步骤,最后检查进程的集合为空时就表明本次申请可行,系统处于安全状态,可以实施本次分配,否则,只要进程集合非空,系统便处于不安全状态,本次不能分配给他。请进程等待 2.算法描述 1)如果Request[i] 是进程Pi的请求向量,如果Request[i,j]=K,表示进程Pi 需要K个Rj类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查: 如果Requesti[j]<= Need[i,j],便转向步骤2;否则认为出错,因为它所需要的资源数已超过它所宣布的最大值。 2)如果Requesti[j]<=Available[j],便转向步骤3,否则,表示尚无足够资源,进程Pi须等待。 3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值: Available[j]:=Available[j]-Requesti[j]; Allocation[i,j]:=Allocation[i,j]+Requesti[j]; Need[i,j]:=Need[i,j]-Requesti[j];

算法设计实验报告(川大陈瑜)

《算法设计》课程报告 课序号: 01 学号: 2012141461134 姓名:刘佳玉 任课教师:陈瑜 评阅成绩: 评阅意见: 提交报告时间:2014年 6 月 16 日

贪心算法 1、问题描述 (这是我在soj上找的一道题,以前没做出来,现在用贪心的思想做出来了) 约翰要去钓鱼。他有h小时可用(1≤h≤16),在这个地区有n个湖泊(2≤n≤25),所有的湖泊沿着一条单行道可到达。约翰从湖泊1开始,他可以在任何湖泊结束。他只能从一个湖,到下一个,但他没有必要停在任何湖除非他想停。对于每个i = 1,……,n-1,ti 表示从湖i到湖i+1的5分钟的时间间隔(0 < ti < = 192)。例如,t3 = 4意味着它从湖3湖4需要20分钟的时间。 为了帮助他们规划自己的钓鱼旅行,约翰已经收集了一些关于湖泊信息。对于每个湖泊的i,能钓到的鱼在最初的5分钟的数量,用fi表示(fi > = 0),是已知的。每钓5分钟的鱼,能钓到的鱼在接下来的5分钟的间隔降低一个恒定的数di(di>=0)。如果能钓到的鱼在一个时间区的数量小于或等于di,将不会有更多的鱼留在湖里在下一个时间间隔。为了简化规划,约翰认为没有人会在影响他期待钓到的鱼的数量的湖里钓鱼。 写一个程序来帮助约翰计划他的最大化期望钓到的鱼的数量的钓鱼之旅。在每个湖花费的时间数必须是5的倍数。 这个问题包含多个测试案例! 一个多输入的第一行是一个整数N,然后一个空白行后的N个输入块。每个输入块由问题描述中的格式表示的。每个输入块之间有一个空行。 输出格式包含N个输出块。输出块之间要有一个空白行。 输入 在输入中,会给你一个案例输入的数量。每一种情况下,以n开始,其次是h,接下来有一行n个整数指定fi(1 < =i< = n),然后有一行n个整数di(1≤i<=n),最后,有一行n - 1的整数ti(1≤i<=n-1)。输入在n=0的情况下终止。 输出

0021算法笔记——【贪心算法】贪心算法与活动安排问题

0021算法笔记——【贪心算法】贪心算法与活动安排问题 1、贪心算法 (1)原理:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 (2)特性:贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。能够用贪心算法求解的问题一般具有两个重要特性:贪心选择性质和最优子结构性质。 1)贪心选择性质 所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局 部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素。贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。证明的大致过程为:

首先考察问题的一个整体最优解,并证明可修改这个最优解,使其以贪心选择开始。做了贪心选择后,原问题简化为规模更小的类似子问题。然后用数学归纳法证明通过每一步做贪心选择,最终可得到问题的整体最优解。其中,证明贪心选择后的问题简化为规模更小的类似子问题的关键在于利用该问题的最优子结构性质。 2)最优子结构性质 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。 (3)贪心算法与动态规划算法的差异: 动态规划和贪心算法都是一种递推算法,均有最优子结构性质,通过局部最优解来推导全局最优解。两者之间的区别在于:贪心算法中作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留,贪心算法每一步的最优解一定包含上一步的最优解。动态规划算法中全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解。 (4)基本思路: 1)建立数学模型来描述问题。 2)把求解的问题分成若干个子问题。 3)对每一子问题求解,得到子问题的局部最优解。 4)把子问题的解局部最优解合成原来解问题的一个解。 2、活动安排问题

数据结构与算法实验报告册

. . 河南工程学院 理学院学院 实验报告 (数据结构与算法) 学期: 课程: 专业: 班级: 学号: 姓名: 指导教师:

. . 目录 实验一线性表1(顺序表及单链表的合并) (1) 实验二线性表2(循环链表实现约瑟夫环) (1) 实验三栈和队列的应用(表达式求值和杨辉三角) (1) 实验四赫夫曼编码 实验五最小生成树 (1) 实验六排序算法

. . 实验一线性表1 一、实验学时:2学时 二、实验目的 1.了解线性表的逻辑结构特性是数据元素之间存在着线性关系。在计算机中 表示这种关系的两类不同的存储结构是顺序存储结构和链式存储结构。 2.熟练掌握这两类存储结构的描述方法以及线性表的基本操作在这两种存储 结构上的实现。 三、实验内容 1. 编写程序,实现顺序表的合并。 2. 编写程序,实现单链表的合并。 四、主要仪器设备及耗材 硬件:计算机一台 软件:VC++ 6.0,MSDN2003或者以上版本 五、算法设计 1. 顺序表合并的基本思想 程序流程图: 2. 单链表合并的基本思想 程序流程图 六、程序清单

. 七、实现结果 .

. 八、实验体会或对改进实验的建议.

. . 实验二线性表2 一、实验学时:2学时 二、实验目的 1.了解双向循环链表的逻辑结构特性,理解与单链表的区别与联系。 2.熟练掌握双向循环链表的存储结构以及基本操作。 三、实验内容 编写程序,采用循环链表实现约瑟夫环。 设有编号为1,2,……,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,……,如此下去,直到所有人全部出圈为止。当任意给定n和m后,设计算法求n个人出圈的次序。 四、主要仪器设备及耗材 硬件:计算机一台 软件:VC++ 6.0,MSDN2003或者以上版本 五、算法设计 约瑟夫环实现的基本思想 程序流程图: 六、程序清单

《算法设计与分析》实验报告

算法设计与分析课程实验项目目录 学生:学号: *实验项目类型:演示性、验证性、综合性、设计性实验。 *此表由学生按顺序填写。

本科实验报告专用纸 课程名称算法设计与分析成绩评定 实验项目名称蛮力法指导教师 实验项目编号实验项目类型设计实验地点机房 学生学号 学院信息科学技术学院数学系信息与计算科学专业级 实验时间2012年3月1 日~6月30日温度24℃ 1.实验目的和要求: 熟悉蛮力法的设计思想。 2.实验原理和主要容: 实验原理:蛮力法常直接基于问题的描述和所涉及的概念解决问题。 实验容:以下题目任选其一 1).为蛮力字符串匹配写一段可视化程序。 2).写一个程序,实现凸包问题的蛮力算法。 3).最著名的算式谜题是由大名鼎鼎的英国谜人 H.E.Dudeney(1857-1930)给出的: S END +MORE MONEY . 这里有两个前提假设: 第一,字母和十进制数字之间一一对应,也就是每个字母只代表一个数字,而且不同的字母代表不同的数字;第二,数字0不出现在任何数的最左边。求解一个字母算术意味着找到每个字母代表的是哪个数字。请注意,解可能并不是唯一的,不同人的解可能并不相同。3.实验结果及分析: (将程序和实验结果粘贴,程序能够注释清楚更好。)

该算法程序代码如下: #include "stdafx.h" #include "time.h" int main(int argc, char* argv[]) { int x[100],y[100]; int a,b,c,i,j,k,l,m,n=0,p,t1[100],num; int xsat[100],ysat[100]; printf("请输入点的个数:\n"); scanf("%d",&num); getchar(); clock_t start,end; start=clock(); printf("请输入各点坐标:\n"); for(l=0;l

相关文档
相关文档 最新文档