文档库 最新最全的文档下载
当前位置:文档库 › 送风距离计算

送风距离计算

送风距离计算
送风距离计算

第10章 室内气流分布

10.1 对室内气流分布的要求与评价

10.1.1 概述

空气分布又称为气流组织。室内气流组织设计的任务就是合理的组织室内空气的流动与分布,使室内工作区空气的温度、湿度、速度和洁净度能更好的满足工艺要求及人们舒适感的要求。

空调房间内的气流分布与送风口的型式、数量和位置,回风口的位置,送风参数,风口尺寸,空间的几何尺寸及污染源的位置和性质有关。

下面介绍对气流分布的主要要求和常用评价指标。

10.1.2 对温度梯度的要求

在空调或通风房间内,送入与房间温度不同的空气,以及房间内有热源存在,在垂直方向通常有温度差异,即存在温度梯度。

在舒适的范围内,按照ISO7730标准,在工作区内的地面上方1.1m 和0.1m 之间的温差不应大于3℃(这实质上考虑了坐着工作情况);

美国ASHRAE55-92标准建议1.8m 和0.1m 之间的温差不大于3℃(这是考虑人站立工作情况)。

10.1.3 工作区的风速

工作区的风速也是影响热舒适的一个重要因素。在温度较高的场所通常可以用提高风速来改善热舒适环境。但大风速通常令人厌烦。

试验表明,风速<0.5m/s 时,人没有太明显的感觉。我国规范规定:舒适性空调冬季室内风速≯0.2m/s ,夏季≯0.3m/s 。工艺性空调冬季室内风速≯0.3m/s ,夏季宜采用0.2-0.5m/s 。

10.1.4 吹风感和气流分布性能指标

吹风感是由于空气温度和风速(房间的湿度和辐射温度假定不变)引起人体的局部地方有冷感,从而导致不舒适的感觉。

1.有效吹风温度EDT

美国ASHRAE 用有效吹风温度EDT(Effective Draft Temperature)来判断是否有吹风感,定义为

)15.0(8.7)(EDT ---=x m x t t ν (10-1) 式中 t x ,t m --室内某地点的温度和室内平均温度,℃; v x --室内某地点的风速,m/s 。

对于办公室,当EDT=-1.7~l ℃,v x <0.35m/s 时,大多数人感觉是舒适的,小于下限值时有冷吹风感。

EDT 用于判断工作区任何一点是否有吹风感。 2.气流分布性能指标ADPI

气流分布性能指标ADPI (Air Diffusion Perfomance Index ),定义为工作区内各点满足EDT 和风速要求的点占总点数的百分比。

对整个工作区的气流分布的评价用ADPI 来判断。

对已有房间,ADPI 可以通过实测各点的空气温度和风速来确定。 在气流分布设计时,可以利用计算流体力学的办法进行预测;或参考有关文献、手册提供的数值。

10.1.5 通风效率E v

通风效率E v (Ventilation efficiency)又称混合效率,定义为实际参与工作区内稀释污染物的风量与总送入风量之比,即

V

CV

V V V V V E -=

Ev 也表示通风或空调系统排出污染物的能力,因此Ev 也称为排污效率。 ⑴当送入房间空气与污染物混合均匀,排风的污染物浓度等于工作区浓度时,E v =1。

⑵一般的混合通风的气流分布形式,E V <1。若清洁空气由下部直接送到工作区时,工作区的污染物浓度可能小于排风的浓度,Ev>1。

E V 不仅与气流分布有着密切关系,而且还与污染物分布有关。污染源位于排风口处,Ev 增大。

以转移热量为目的的通风和空调系统,通风效率中浓度可以用温度来取代,并称之为温度效率E T ,或称为能量利用系数,表达式为

s

s e T t t t

t E --= (10-2)

式中 t e 、t 、t s --分别为排风、工作区和送风的温度,℃。

10.1.6 空气龄

⑴空气质点的空气龄:简称空气龄(Age of air),是指空气质点自进入房间至到达室内某点所经历的时间。

⑵局部平均空气龄:某一微小区域中各空气质点的空气龄的平均值。 空气龄的概念比较抽象,实际测量很困难,目前都是用测量示踪气体的浓度变化来确定局部平均空气龄。

由于测量方法不同,空气龄用示踪气体的浓度表达式也不同。 如用下降法(衰减法)测量,在房间内充以示踪气体,在A 点起始时的浓度为c(0),然后对房间进行送风(示踪气体的浓度为零),每隔一段时间,测量A 点的示踪气体浓度,由此获得A 点的示踪气体浓度的变化规律c(r),于是A 点的平均空气龄(单位为s)为

)

0()(0

c dr

c A

?∞

=

ττ (10-3)

⑶全室平均空气龄:全室各点的局部平均空气龄的平均值

?=V

dV V ττ1

(10-4)

式中V 为房间的容积。

如用示踪气体衰减法测量,根据排风口示踪气体浓度的变化规律确定全室平均空气龄,即

??∞∞

=0

)()(dr

c dr c e

e A

ττττ (10-5)

式中c e (τ)即为排风的示踪气体浓度随时间的变化规律。 ⑷局部平均滞留时间(Residence time):房间内某微小区域内气体离开房间前在室内的滞留时间,用τr 表示,单位为s 。

⑸空气流出室外的时间

微小区域的空气流出室外的时间:某一微小区域平均滞留时间减去空气龄。 全室平均滞留时间:全室各点的局部平均滞留时间的平均值,用于r τ表示。 全室平均滞留时间等于全室平均空气龄的2倍,即

ττ2=r (10-6)

理论上空气在室内的最短的滞留时间为

N V

V n 1

== τ (10-7)

式中 V 为房间体积,m 3;V 为送入房间的空气量,m 3/s ;N 为以秒计的换气次数,

1/s ;τn 又称为名义时间常数(Nominal time constant)。 空气从送风口进入室内后的流动过程中,不断掺混污染物,空气的清洁程度和新鲜程度将不断下降。

空气龄短,预示着到达该处的空气可能掺混的污染物少,排除污染物的能力愈强。显然,空气龄可用来评价空气流动状态的合理性。

10.1.7 换气效率

换气效率(Air exchange effciency)ηa 是评价换气效果优劣的一个指标,它是气流分布的特性参数,与污染物无关。

其定义为:空气最短的滞留时间ηn 与实际全室平均滞留时间于r τ之,即

τ

τττη2n

r n a =

=

(10-8) 式中 τ--实际全室平均空气龄,s 。τn /2--最理想的平均空气龄。

从式(10-8)可以看到:换气效率也可定义为最理想的平均空气龄τn /2与全室平均空气龄τ之比。

τa 是基于空气龄的指标,它反映了空气流动状态合理性。最理想的气流分布τa =1,一般的气流分布τa <l 。

1O.2 送风口和回风口

1.送风口的型式

⑴按安装位置分为

侧送风口、顶送风口(向下送)、地面风口(向上送)。

⑵按送出气流的流动状况分为

扩散型风口、轴向型风口和孔板送风口。

扩散型风口:具有较大的诱导室内空气的作用,送风温度衰减快,但射程较短;

轴向型风口:诱导室内气流的作用小,空气温度、速度的衰减慢,射程远;

孔板送风口:在孔板上满布小孔的送风口,速度分布均匀,衰减快。

⑶按形状分为

格栅、活动百叶窗、喷口、散流器、旋流式喷口和置换送风口。

①格栅送风口

叶片或空花图案的格栅,用于一般空调工程。

②活动百叶窗

如图10-1所示。通常装于侧墙上用作侧送风口。

双层百叶风口:有两层可调节角度的活动百叶,短叶片用于调节送风气流的扩散角,也可用于改变气流的方向;调节长叶片可以使送风气流贴附顶棚或下倾一定角度(当送热风时)。

单层百叶风口:只有一层可调节角度的活动百叶。

这两种风口也常用作回风口。

③喷口

如图10-2所示,有固定式喷口和可调角度喷口。用于远程送风,属于轴向型风口。射程(末端速度0.5m/s处)一般可达到10-30m,甚至更远。

通常在大空间(如体育馆、候机大厅)中用作侧送风口;送热风时可用作顶送风口。

如风口既送冷风又送热风,应选用可调角喷口。

调角喷口的喷嘴镶嵌在球形壳中,该球形壳(与喷嘴)在风口的外壳中可转动,最大转动角度30o。可人工调节,也可电动或气动调节。在送冷风时,风口水平或上倾;送热风时,风口下倾。

图10-1 活动百叶风口

(a)双层百叶风口 (b)单层百叶风口

图10-2 喷口

(a)固定式喷口 (b)可调角度喷口

④散流器

图10-3为三种比较典型的散流器。直接装于顶棚上,是顶送风口。

?平送流型的方形散流器

如图(a)所示,有多层同心的平行导向叶片,使空气流出后贴附于顶棚流动。

可以做成方形,也可做成矩形;可四面出风、三面出风、两面出风或一面出风。

平送流型的圆形散流器与方形散流器相类似。

平送流型散流器适宜用于送冷风。

?下送流型的圆形散流器

图(b)所示,又称为流线型散流器。

叶片间的竖向间距是可调的。增大叶片间的竖向间距,可以使气流边界与中心线的夹角减小。送风气流夹角一般为20o-30o,在散流器下方形成向下的气流。

?圆盘型散流器

如图(c)所示,射流以45o夹角喷出,流型介于平送与下送之间。

适宜于送冷、热风。

各类散流器的规格都按颈部尺寸A×B或直径D来标定。

图10-3 方形和圆形散流器

(a)平送流型方形散流器 (b)向下送流型的圆形散流器 (c)圆盘型散流器

⑤可调式条形散流器

如图10-4所示。条缝宽19mm,长度500-3000mm,据需要选用。

调节叶片的位置,可改变出风方向或关闭;可多组组合(2、3、4组)在一起使用,如图所示。

条形散流器用作顶送风口,也可用于侧送口。

图10-4 可调式条形散流器

(a)左出风 (b)下送风 (c)关闭 (d)多组左右出风 (e)多组右出风

⑥固定叶片条形散流器

如图10-5所示,颈宽50-150mm,长度500-3000mm。

根据叶片形状可有三种流型:直流式、单侧流和双侧流。

可以用于顶送、侧送和地板送风。

图10-5 固定叶片条形散流器

(a)直流式 (b)单侧流 (c)双侧流

⑦旋流式风口

如图10-6所示,有顶送式风口和地板送风的旋流式风口。

?顶送式风口

如图(a),风口中有起旋器,空气通过风口后成为旋转气流,并贴附于顶棚流动。

特点:诱导室内空气能力大、温度和风速衰减快。

适宜在送风温差大、层高低的空间中应用。

旋流式风口的起旋器位置可以上下调节,当起旋器下移时,可使气流变为吹出型。

?地板送风的旋流式风口

如图(b),工作原理与顶送形式相同。

图10-6 旋流式风口

1-起旋器 2-旋流叶片 3-集尘箱 4-出风格栅

⑧置换送风口

如图10-7所示。风口靠墙置于地上,风口的周边开有条缝,空气以很低的速度送出,诱导室内空气的能力很低,从而形成置换送风的流型。

送风口角度:靠墙上放置时,在180o范围内送风;置于墙角处,在90o范围内送风;置于厅中央,在360o范围内送风。图10-7所示为180o范围送风口。

图10-7 置换送风口图10-8 回风口

(a)格栅式回风口 (b)为可开式百叶回风口

1-铰链 2-过滤器挂钩

2.回风口

由于回风口的汇流流场对房间气流组织影响比较小,因此风口的形式比较简单。

上述活动百叶风口、固定叶片风口等都可以做回风口。也可用铝网或钢网做成回风口。图l0-8中示出了两种专用于回风的风口。

图(a)是格栅式风口,风口内用薄板隔成小方格,流通面积大,外形美观。

图(b)为可开式百叶回风口。

百叶风口可绕铰链转动,便于在风口内装卸过滤器。

适宜用作顶棚回风的风口,以减少灰尘进入回风顶棚。

还有一种固定百叶回风口,外形与可开式百叶风口相近,只是不能开启。

10.3 典型的气流分布模式

1.影响气流分布的流动模式的因素

气流分布的流动模式取决于送风口和回风口位置、送风口形式等因素。其中送风口(位置、形式、规格、出口风速等)是气流分布的主要影响因素。

2.房间内空气流动模式的类型

(1)单向流:空气流动方向始终保持不变;

(2)非单向流:空气流动的方向和速度都在变化;

(3)两种流态混合存在的情况。

下面介绍几种常见风口布置方式的气流分布模式。

10.3.1侧送风的气流分布

图l0-9给出了7种侧送风的气流分布模式。

1.上侧送,同侧下部回风

⑴气流分布

如图(a),送风气流贴附于顶棚,工作区处于回流区中。

⑵特点

?送风与室内空气混合充分,工作区风速较低,温湿度比较均匀。

?适用于恒温恒湿的空调房间。

排出空气的污染物浓度或温度基本上等于工作区的浓度和温度,因此通

风效率E

V 和温度效率E

T

接近于1。但换气效率ηa较低,大约小于0.5。

2.上侧送风,对侧下部回风

⑴气流分布

如图(b),工作区在回流和涡流区中。

⑵特点:回风的污染物浓度低于工作区的浓度,E v<1。

3.上侧送风,同侧上部回风

⑴气流分布

如图(c),气流分布形式与图(a)相类似。

⑵特点:E

V

比图(a)要稍低一些,ηa=0.2-0.55。

4.双侧送,双侧下回

如图(d),相当于图(a)中气流分布的并列模式。

5.上部两侧送,上回

如图(e),相当于图(c)中气流分布的并列模式。

图(d)、(e)适用于房间宽度大,单侧送风射流达不到对侧墙时的场合。

6.中部侧送风、下部回风、上部排风

对于高大厂房可采用此种气流分布,如图(f)所示。

当送冷风时,射流向下弯曲。这种送风方式在工作区的气流分布模式基本上与(d)相类似。

上部区域温湿度不需控制,可进行部分排风;尤其是热车间,上部排风可以有效排除室内的余热。

7.水平单向流

如图(g),两侧都应设静压箱,使气流在房间的断面上均匀分布。

回风口附近E

V =1;在气流的上游侧E

V

>1;在靠近送风口处E

V

=∞。

换气效率Va=l。

这种气流分布模式多用于洁净空调。

图10-9 侧送风的室内气流分布

(a)上侧送,同侧下回 (b)上侧送,对侧下回 (c)上侧送,上回

(d)双侧送,双侧下回 (e)上部两侧送,上回 (f)中侧送,下回,上排

(g)水平单向流

10.3.2 顶送风的气流分布

图10-10给出了四种典型的顶送风气流分布模式。

图l0-10 顶送风的室内气流分布

(a)散流器平送,顶棚回风 (b)散流器向下送风,下侧回风

(c)垂直单向流 (d)顶棚孔板送风,下侧回风

1.散流器平送,顶棚回风

⑴气流分布

如图(a)所示。散流器底面与顶棚在同一平面上,送出的气流为贴附于顶棚的射流。射流的下侧卷吸室内空气,射流在近墙下降。顶棚上的回风口应远离散流器。工作区基本上处于混合空气中。

⑵特点:通风效率E

V 低于侧送气流。换气效率η

a

约为0.3-0.6。

2.向下送风,下侧回风

⑴ 气流分布

如图(b)所示。散流器为向下送风口。射流在起始段不断卷吸周围空气,断面逐渐扩大,当相邻射流搭接后,气流呈向下流动模式。

工作区位于向下流动的气流中,在工作区上部是射流的混合区。

⑵ 特点:E

V 和η

a

都比图(a)的高。

3.垂直单向流

⑴ 气流分布

如图(c)所示。送风与回风都设静压箱。送风顶棚是孔板,下部是格栅地板,在横断面上气流速度均匀,方向一致。

⑵ 特点:E

V >1,η

a

=l。

4.顶棚孔板送风,下侧部回风

⑴ 气流分布

如图(d)所示,取消了格栅地板,改为一侧回风。不完全是单向流,气流在下部偏向回风口。

⑵ 特点:E

V >1,η

a

a

高。

10.3.3 下部送风的气流分布

图10-11为两种典型的下部送风的气流分布图。

1.地板送风

⑴ 气流分布

如图(a)所示。送出的气流可以是水平贴附射流或垂直射流。

射流卷吸下部的部分空气,在工作区形成许多小的混合气流。工作区内的人体和热物体周围的空气变热而形成“热射流”,卷吸周围的空气上升,污染热气流经上部回风口排出房间。

当“热射流”卷吸所需的空气量<下部的送风量时,该区域内的气流向上流动;当到达一定高度,卷吸所需的空气量〉下部送风量时,将卷吸顶棚返回的气流,上部形成回流的混合区(如图中虚线以上区域)。

当混合区在1.8m以上时,可保持工作区有较高空气品质。这种气流分布模式称之为置换通风(Dispiacement ventilation)。

⑵特点:工作区内气流近似于单向流;通风效率E

V 和温度效率E

T

都很高,

换气效率η

a

=0.5-0.6;节省冷量,有较高的室内空气品质。

不适用于送热风的场合。

图10-11 下部送风的室内气流分布

(a)地板送风 (b)下部低速侧送风

2.下部低速侧送

⑴ 气流分布

如图10-11图(b)所示。送风口速度很低,一般约为0.3m/s。

低温度送风气流沿地面扩散开来,在下部形成一层温度较低的送风气流,室内的人体和热物体使其周围的空气受热上升,污染热气流从上部的回风口排出室外。送风气流不断补充、置换上升的热气流,形成接近单向的向上气流。这种气流分布模式是置换通风的最基本形式。

约为0.5-0.67。

⑵特点:通风效率和温度效率都很高,换气效率η

a

下部送风还有座椅送风方式,即在座椅下或椅背处送风。通常用于影剧院、体育馆的观众厅。

注意:下部送风垂直温度梯度都较大,设计时应进行校核。

送风温度不应太低,避免足部有冷风感。

下部送风适用于计算机房、办公室、会议室、观众厅等场合。

10.4 室内气流分布的设计计算

气流分布设计(气流组织设计)的任务:选择气流分布形式,确定送、回风口的形式、数量、尺寸及布置,计算送风射流参数。

10.4.1 侧送风的计算

1.受限气流的基本概念

除高大空间中的侧送风气流可看作自由射流外,大部分房间的侧送风气流(如图10-9),都是受限射流。射流的边界受到房间顶棚、墙等限制影响。

⑴气流分布

前苏联学者研究表明:

气流从风口喷出后的开始阶段仍按自由射流的特性扩散,射流断面与流量逐渐增大,边界为一直线;

当射流断面扩展到房屋断面的20%-25%时,射流断面扩展的速度比自由射流要缓慢;

当射流断面扩展到房屋断面的40%-42%时,射流断面和流量都达到最大(图10-12中断面Ⅰ-Ⅰ),之后断面和流量逐渐减小,直到消失。

图10-12 受限射流断面图

⑵射流受限的程度

用射流自由度0d A 来表示,其中A 为房间的断面积,m 2,当有多股射流时,A 为射流服务区域的断面积;d 0为风口的直径,m ,当为矩形风口时按面积折算成圆的直径。

⑶回流最大平均速度

回流区中风速最大断面应在射流扩展到最大断面积的断面处(图10-12中I-I 断面),因这里是回流断面最小的地方。

试验结果表明,回流最大平均速度(即工作区的最大平均速度)v r,max (m/s)与风口出口风速v 0(m/s)有如下关系:

69.00

0,=d A

v v man r (10-9)

如果工作区允许最大风速为0.2-0.3m/s ,则允许最大的出口风速为 0

,0)

43.0~29.0(d A

v man = (10-10) 另外,出口风速还应考虑噪声的要求,一般宜在2-5m/s 内选取;对噪声控制要求高的场合,风速应取小值。

⑷温度衰减的变化规律

在空调房间内,射流在流动过程中,不断掺混室内空气,其温度逐渐接近室内温度。射流温度衰减与射流自由度、紊流系数、射程有关;对于室内温度波动允许大于1℃的空调房间,可认为只与射程有关。

温度衰减的变化规律,见表10-1。

⑸射流的贴附长度 当送冷风时,射流将较早地脱离顶棚而下落。射流的贴附长度与射流的阿基米得数Ar 有关,即

r

s

o T v t gd Ar 2

0?= (10-11) 式中 Δt s --送风温差,即室内工作区温度t r 与送风温度t s 之差,℃;Tr =273+t r ,

K ;

g--重力加速度,m/s 2。

Ar 数愈小,射流贴附长度愈长;Ar 愈大,贴附射程愈短。

⑹房间高度

在布置风口时,风口应尽量靠近顶棚,使射流贴附顶棚。另外,为了不使射流直接到达工作区,侧送风的房间高度H≮H′

3.007.0+++='s x h H (10-12)

式中 h--工作区高度,1.8-2.0m ;x 和s 见图9-12所示;0.3m 为安全裕度。 2.气流组织设计要求

⑴气流组织设计时,要求射流贴附长度达到对面墙0.5m 处;

⑵要求该处的射流温度与工作区温度之差为1℃左右;如果是恒温恒湿空调房间,应根据允许温度波动值来确定。

3.气流组织设计计算方法及计算步骤

(1)按允许的射流温度衰减值,求出射流最小相对射程x/d o 。对于舒适性空调,射流末端温差Δt x 可取1℃左右。

(2)根据射流的实际长度和最小相对射程,计算风口允许的最大直径d 0,max 。从风口样本中预选风口的规格尺寸。对于非圆形的风口,按面积折算风口直径,即

00128.1A d = (10-13) (3)设定风口数量n ,计算风口的出风速度,即

n

A V

v 00ψ =

(10-14) 式中ψ为风口有效断面系数,可根据实际情况计算确定,或从风口样本上查找,对于双层百叶风口约为0.72-0.82。出口风速一般不宜大于5m/s 。 (4)根据房间的宽度B 和风口数计算出射流服务区断面为

A=BH/n (10-15)

由此可以计算射流自由度0/d A ,max ,0v 。如0ma x ,0v v >,认为合适;如

0max ,0v v <,则表明回流区平均风速超过了规定值。超过太多时,应重新设置风口数和风口尺寸。 (5)计算Ar ,由表10-2确定射流贴附的射程x′,如x′≥x,认为设计合理,否则重新假设风口数和风口尺寸。重复上述计算。

以上的计算步骤与实例适用于对温度波动范围的控制要求并不严格的空调房间。

对于恒温恒湿空调房间的气流分布设计参阅文献[7]、[8]。

10.4.2 散流器送风的计算

1.多层平行叶片和盘式散流器送风

多层平行叶片散流器的气流分布模式如图10-10(a)所示,送出的气流贴附于顶棚。

盘式散流器送出的气流扩散角大,接近平送流型。

图10-13 散流器平面布置图 (a)对称布置 (b)梅花形布置

1-柱 2-方形散流器 3-三面送风散流器

⑴散流器的布置原则

①要考虑建筑结构的特点,散流器平送方向不得有障碍物(如柱)。 ②一般按对称布置或梅花形布置(如图10-13所示)。

③每个圆形或方形散流器所服务的区域最好为正方形或接近正方形;如果散流器服务区的长宽比大于1.25时,宜选用矩形散流器。 如果采用顶棚回风,则回风口应布置在距散流器最远处。 ⑵散流器射流的速度衰减方程

根据P.J 杰克曼(P.J.Jackman)对圆形多层锥面和盘式散流器的实验结果,散流器射流的速度衰减方程为

2

/10x x KA v v x +=

(10-16) 式中 x--以散流器中心为起点的射流水平距离,m ; v x --在x 处的最大风速,m/s ; v 0--散流器出口风速,m/s ;

x 0--平送射流原点与散流器中心的距离,多层锥面散流器取0.07m ; A--散流器的有效流通面积,m 2;

K--系数,多层锥面散流为1.4,盘式散流气为1.1。 室内平均风速v m (m/s)与房间大小、射流的射程有关,即

2

/122

)

4/(381.0H L rL

v m += (10-17) 式中 L--散流器服务区边长,m ; H--房间净高,m ;

r--射流射程与边长L 之比。

rL--射程,即为散流器中心到风速为0.5m/s 处的距离,通常把射程控制在到房间(区域)边缘之75%。

式(10-17)是等温射流的计算公式。当送冷风时,应增加20%,送热风时减少20%。

⑶气流分布设计步骤 ①布置散流器;

②预选散流器;

③校核射流的射程和室内平均风速。 2.流线型散流器送风

流线型散流器送风的空气分布见图10-10(b)。

⑴混合层的高度h m

为了使工作区位于向下的流动气流中,在布置散流器密度时,要使混合层的高度h m 不得延伸到工作区,即

H-h m ≥工作区高度 (10-18)

)2(210d L tg h m -=θ

(10-19)

式中 H--房间的净高,m ;工作区高度按工艺要求确定,一般为1.8-2m ;L--散流器的中心距,m ;d 0--散流器颈部直径,m ;θ--散流器射流边缘与中心线的夹角,取决于散流器叶片的竖向间距,查风口样本或手册。 ⑵射流轴心速度衰减的规律

)4d (Z /6.00

时>=d Z v v z (10-20) 式中 v--散流器颈部的风速,m/s ;Z--从散流器出口算起的射程,m ;v z --距风口Z 处的轴心速度,m/s 。 ⑶射流的温度衰减规律

/0

d Z C t t z

s z =?? (10-21) 式中 Δt s 为送风温差,℃;Δt z --射程Z 处的射流温度与工作区温度之差;C z --实验系数。

10.4.3 条形散流器送风

图lO-14为双条缝散流器平送风的气流分布模式。散流器可采用图10-4(d)的可调式散流器或固定叶片散流器。

1. 风口速度衰减方程

根据P .J 杰克曼的实验结果,条形风口速度衰减方程为

2

/10??

?

??=x b K v v x (10-22) 式中 x--从条缝中心为起点的射流水平距离,m ,由于条缝很小,射流原点与条缝中心很近,可视为同心;系数K =2.35;b--条形宽度,m ;其余符号同式(10-16)。

2.室内的平均风速

与房间尺寸、射流长度有关,可按下式计算:

2

/122

25.0?

?

?

??+=H L r L v m (10-23) 式中 L--风口中心到房间墙边或服务区域边缘的距离,m ;r--射流末端风速为0.5m/s 的射程与风口到墙边(或服务区域边缘)距离L 之比,一般取0.75。

式(10-23)为等温射流的公式。当送冷风时,v m 应增加20%;送热风时,减少20%。

3.设计步骤

同散流器的设计步骤。

注意:公式(10-22)、(10-23)是两个相反方向送风条缝的计算公式,也适用于两个条缝分别设在墙边相对送风的模式。

10.4.4 喷口送风

大空间空调或通风常用喷口送风,可以侧送,也可以垂直下送。喷口通常是平行布置的,当喷口相距较近时,射流达到一定射程时会互相重叠而汇合成一片气流。

对于这种多股平行非等温射流的计算可采用中国建筑科学研究院空调所实验研究综合的计算公式。

许多场合,多股射流在接近工作区附近重叠,为简单起见,可以利用单股自由射流计算公式进行计算。

1.喷口垂直向下送风 ⑴轴心速度衰减方程

3

/10009.11??

????±=d x K Ar x d K v v x (10-24) 式中 d 0--喷口出口直径,m ,对于矩形喷口,利用式(10-13)按面积进行折算;

Ar 按式(10-11)计算;x--离风口的距离,m ;K--射流常数。送冷风取“十”,送热风取“—”。

⑵轴心温度衰减方程

83.00

v v

t t x s x =?? (10-25) ⑶设计计算步骤

①根据建筑平面特点布置风口,确定每个风口的送风量。

②假定喷口出口直径d 0,按式(10-24)计算射流到工作区(即x =房间净高-工作区高度)的风速v x ,如果v x 符合设计要求的风速,则进行下一步计算;否则需重新假定d 0或重新布置风口,再进行计算。

③用式(10-25)校核区域温差Δt x 是否符合要求,如果不符合要求,也需重新假定d 0或重新布置风口。

2.喷口侧送风

设喷口与水平轴有一倾角α,向下倾为正,向上为负。倾角的大小根据射流预定的到达位置确定。通常送热风时下倾,而送冷风时α=0。

⑴射流中心线轨迹方程

图10-15 喷口侧送射流的轨迹

???

? ??±=ααcos 42.0000d x

K Ar tg d x d y (10-26) ⑵在(x,y)点处的射流轴心速度

x

d K v v x α

cos 0

0= (10-27) ⑶轴心温度衰减方程

83.00

v v

t t x s x =?? ⑷设计步骤

与垂直送风相同。

关于正压送风量计算方法

关于正压送风量计算方法 1、问题提出 1.1《高规》[1]第8.3.2条“高层建筑的防烟楼梯间及前室、合用前室和消防电梯前室的机械加压送风量应由计算确定,或按表8.3.2-1至表8.3.2-4的规定确定。当计算和本表不一致时,应按两者中较大值确定。”该条条文说明明确指出“采用机械加压送风时,由于建筑有各种不同条件,如开门数量、风速不同,满足机械加压送风条件亦不同,宜首先进行计算,但计算的加压送风量不能小于本规范表8.3.2-1~8.3.2-4的要求。”因是“宜”首先进行计算,现在大部分设计人员为避免繁杂的计算,在机械加压送风(以下简称正压送风)设计时不是首先进行计算,而是直接套用《高规》表8.3.2-1至表8.3.2-4的规定值,结果使许多工程 的正压送风量偏小。 1.2选用不同送风量计算公式所引起的误差 1.2.1《高规》在门缝漏风量计算时选用压差法计算公式: L=0.827×A×ΔP1/2×1.25=1.03375×A×ΔP1/2(1) 式中L—正压漏风量,m3/s;0.827—漏风系数;A—总有效漏风面积,m2;ΔP—压力差,Pa;1.25—不严密处附加系 数。 《高规》在通过门洞风量计算时选用流速法计算公式: Q=F×W×m(2) 式中Q—正压风量,m3/s;W—门洞断面风速,m/s;F—每档开启门的几何断面积,m2;m—同时开启门的数量。 1.2.2文献[2]在门缝漏风量计算时选用计算公式: L'=α'×A×(2×ΔP/ρ)1/2 =0.6×A×(2×ΔP/1.2)1/2=0.7746×A×ΔP1/2(3) 式中L'—文献[2]的正压漏风量;α'—流量系数,一般取α'=0.6~0.7;ρ—气体密度,1.2kg/m3;其它符号同前。 文献[2]在通过单个门洞风量计算时选用计算公式: Q'=F'×W 式中对双扇门,同时开门的楼层数或并列的门数≥2时F'=0.5×门宽×门高。 因此对文献[2]来讲,大多数状况下: Q'=0.5×F×W×m(4) 式中Q'—文献[2]的正压送风量,m3/s;其它符号同前。 以上二项和剩安全系数1.25得文献[2]总正压送风量。 1.2.3文献[3]在正压送风量计算时选用计算公式: Q''=Fj×W

正压送风系统(知识)

正压送风系统 一、正压送风的概述 1、什么是正压送风阀 就和打气筒原理一样!与止回阀是同理!假设此阀将空间分为A空间与B空间!当A 空间与B空间分别在不同时间受压,但只能有一面的气体可以进入另一面!而另一面再受压力气体是回不到原空间的!能释放压力的空间为A空间!当A受压时那么此时正压送风!当B空间气体增多,此时对A空间而言处于负压空间!不过此时由于阀的正向送风,B空间的气体始终回不到A空间! 2、什么是正压送风机? 向逃生楼道里送风的风机,在意外发生的时候向逃生楼道里送风,利于逃生,同时送风时楼道内处于正压,也就是说楼道的气压比别的地方高,烟雾不会渗进来而引起人员窒息, 以保证安全。 3、什么是排烟风机? 意外发生时候用来将建筑物内烟雾抽走的风机,以提高建筑物内视野,驱除烟雾,便于灭火。 4、、正压送风口的作用 当发生火灾时,其内部的电机会打开风口,温感烟感或者是手动火灾报警会开启,塔楼顶正压风机自动打开,对送风竖井进行加压送风,楼梯的前室通过正压送风口会源源不断的对前室进行送风,使前室维持正压,保证烟气不会再这个区域蔓延,而给人逃生的空间。当温度高于280°C时人已无逃生可能性,其内部熔断器会熔断,风口自动关闭,防止火势蔓延。 4、正压送风口是不是必须设置在疏散楼梯前室?

楼梯前室是不是必须设正压送风?这个工程由于楼梯一层前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊?哪个规范上规定的? 正压送风口是不是必须设置在疏散楼梯前室?---按规范要求,送风口应设于楼梯间、前室、封闭避难层。 楼梯前室是不是必须设正压送风?---不具备自然排烟条件的消防电梯间前室可合用前室必须设置。 这个工程由于楼梯一层前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊?---不允许。这样的情况下,只能增设一段风管,引到前室。 哪个规范上规定的?---《建筑设计防火规范》和《高层民用建筑设计防火规范》。 5、补风机和正压送风机的区别是什么? ●补风机:尤其在多层的地下室(如:-2、-3层),越靠下层与外界连通的空气 通道就越较少,单独使用排烟机,造成较大负压,降低了排烟效率,烟排出的比 较慢。采用补风机把外面的空气送进来,减小负压,从而使烟气更容易排出。 ●加压风机:一般用在楼梯间和电梯前室,使有毒烟气不能进入。楼梯间因为是 上下联通的,所以加压送风口可以同时开启,只要送风均匀即可,所以一般隔2 或者3层做自垂百叶送风。而前室却是不联通的,所以火灾时为了利于逃生,是 考虑打开着火层和相邻层的风口,所以要做成电动风口。一般用280度防火阀代 替,280度时熔断关闭。与消防系统的联动就是,发现火灾信号----打开加压风机 ---打开着火层及相邻层前室的风口。 二、正压送风与新风 1、正压送风与新风的区别

尺寸链计算方法

第十章装配精度与加工精度分析任何机械产品及其零部件的设计,都必须满足使用要求所限定的设计指标,如传动关系、几何结构及承载能力等等。此外,还必须进行几何精度设计。几何精度设计就是在充分考虑产品的装配技术要求与零件加工工艺要求的前提下,合理地确定零件的几何量公差。这样,产品才能获得尽可能高的性能价格比,创造出最佳的经济效益。进行装配精度与加工精度分析以及它们之间关系的分析,可以运用尺寸链原理及计算方法。我国业已发布这方面的国家标准GB5847—86《尺寸链计算方法》,供设计时参考使用。 第一节尺寸链的基本概念 一、有关尺寸链的术语及定义 1.尺寸链 在机器装配或零件加工过程中,由相互连接的尺寸形成的封闭尺寸组,称为尺寸链。尺寸链分为装配尺寸链和工艺尺寸链两种形式。 (a)齿轮部件(b)尺寸链图(c)尺寸链图 图10-1 装配尺寸链示例 图10-1a为某齿轮部件图。齿轮3在位置固定的轴1上回转。按装配技术规范,齿轮左右端面与挡环2和4之间应有间隙。现将此间隙集中于齿轮右端面与挡环4左端面之间,用符号A0表示。装配后,由齿轮3的宽度A1、挡环2的宽度A2、轴上轴肩到轴槽右侧面的距离A3、弹簧卡环5的宽度A4及挡环4的宽度A5、间隙A0依次相互连接,构成封闭尺寸组,形成一个尺寸链。这个尺寸链可表示为图10-1b与图10-1c两种形式。上述尺寸链由不同零件的设计尺寸所形成,称为装配尺寸链。 图10-2a为某轴零件图(局部)。该图上标注轴径B1与键槽深度B2。键槽加工顺序如图10-2b所示:车削轴外圆到尺寸C1,铣键槽深度到尺寸C2,磨削轴外圆到尺寸C3(即图10-2a中的尺寸B1),要求磨削后自然形成尺寸C0(即图10-2a 中的键槽深度尺寸B2)。在这个过程中,加工尺寸C1、C2、C3和完工后尺寸C0构成封闭尺寸组,形成一个尺寸链。该尺寸链由同一零件的几个工艺尺寸构成,称为工艺尺寸链。

正压送风原理

1、关于正压送风防烟系统的正压度问题 不论国内或国外的防火规范,都有一致的加压要求,即应使在火灾时,楼梯间压力>前室压力>走廊或室内压力。 所谓正压度,指防烟楼梯间的防火门、前室与走廊间的防火门两侧的压力差值。而正压度又可分为最大允许压差值与最小压差值。所谓最大允许压差值,是指所有防火门在关闭状态下防火门两侧允许的一般人力能推开的最大压差值,关于最大允许压差值,各国的取值不完全一致,多数国家均把50pa作为最大允许压差。所谓最小压差值,是指火灾时人员进行疏散。防火门一旦打开,楼梯间及开门前室的压力将瞬时下降,为了防止烟气侵入,要保持门洞处具有一定的反吹风速应有的最小的压力差值。关于火灾时防烟要求的最小压差值(或最小门洞风速),各国也有不同的规定与要求。 我国原《高规》对防烟的最小压差(或最小门洞风速)未提出明确的数值要求,仅指出“应保持正压,且楼梯间的压力应略高于前室的压力”。而新《高规》第8.3.2条中提出了开门时的门洞风速要求,即“开启门时,通过门风速不宜小于0.7m/s.”还在第8.3.7条中提出了防烟楼梯间与前室的余压要求,即其余压值应符合下列要求:防烟楼梯间为50pa;前室、全用前室、消防电梯前室、封闭避难层(间)为25pa。 2、关于加压送风口的形式问题 2.1楼梯间的加压送风口一般每2-3层设1个,均为常开百叶风口,具体形式可为单层百叶或双层百叶,双层百叶对送风量的调节与平衡更为有利些。 2.2前室的加压送风口一般每层设1个,而对送风口的形式,则有不同的选择与做法。2.2.1一般做法把前室(合用前室)的加压送风口选为常闭式(静电接点)。当发生火灾时立即启动加压送风机,同时仅打开着火层、着火层相邻层的前室之送风口。这种做法,把前室的送风量集中用于加压这3层(或4层)上,这些层的送风量基本不受其它层前室开门与否的影响,当然这对保证这3层(或4层)的防烟效果是有利的,但也存一定问题: 如果疏散人员尚未打开楼梯间、前室的防火门,则这些送风层前室内的压力将会急骤上升,出现这些层前室压力高于楼梯间压力(楼梯间压力一般不开门时可通过余压阀保持在50pa)的情况,如不采用足够的泄压措施,将影响走廊至前室门的开启,显然是非常危险的。因此这种做法要求每层前室均设泄压阀,若向室内泄压则还需接防火阀,以确保防火隔断。 常闭送风口一般都有一定的规格要求,在阀体的土建留洞受限制的情况下较难采用,另外,电气控制上也要求较高。常闭阀动作件多,控制较为复杂,长期不用,易生锈失灵。如果日常维护管理不善,要用是反而可能无法打开,影响使用,常闭阀及其电气控制 新市场营销法则助推企业成长电子商务营销食品餐饮营销建筑房产营销消费品营销 系统投资较高。> 2.2.2另一种做法,前室送风口与楼梯间一样也采用常开百叶风口(一般可采用双层百叶),这种做法有以下特点: 在楼梯间与前室(合用前室)的防火门全闭的情况下,前室送风量较均匀地分配在所有层,每个前室送风量不大(一般为600-1000m3/h),一般只要设计恰当,不会出现前室(合用前室)与走廊(或室内)的压差值超过最高允许压差值的情况。 在楼梯间及前开门的情况下,开门层前室的压力将迅速下降,楼梯间的送风量将基本流向

加压送风系统计算书

5、6、7#楼加压送风系统风量计算书 1.合用前室加压送风系统风量计算 按开启着火层疏散通道时要相对保持该门洞处的风速计算公式: L=F*V*N=1.2*2.1*3600*0.7*2*0.75(单扇门取0.75的系数)=9526立方/h. 5、6#楼共30层,着火时开启3层的正压送风口。正压送风系统送风量L=9526X3=28578立方/h.附加系数取1.1为L=28578X1.1=31435立方/h.根据高层民用建筑设计防火规范8.3.2-4 中20-32层正压送风量为28000-32000立方/h.合用前室正压送风系统屋顶正压送风机组风量为33158立方/h,每层风口送风量L=33158/3=11052立方/h。 8#楼加压送风系统风量计算书 1. 楼梯间加压送风系统风量计算 按开启着火层疏散通道时要相对保持该门洞处的风速计算公式:L=F*V*N=1.2*2.1*3600*0.7*=6350立方/h. 8#楼共20层,着火时开启2层的正压送风口。正压送风系统送风量L=6350X2=12700立方/h.附加系数取1.1为L=12700X1.1=13970立方/h.根据高层民用建筑设计防火规范8.3.2-2 中<20层正压送风量为16000-20000立方/h.防烟楼梯间正压送风系统屋顶正压送风机组风量为18036立方/h,每层风口送风量L=18036/6=3006立方/h。 2. 合用前室正压送风系统风量计算 按开启着火层疏散通道时要相对保持该门洞处的风速计算公式:L=F*V*N=1.2*2.1*3600*0.7*=6350立方/h. 8#楼共20层,着火时开启2层的正压送风口。正压送风系统送风量L=6350X2=12700立方

尺寸链典型案例计算分析报告

尺寸链分析报告 工艺过程: 1、橡胶圈由分离机构从直振中拉出到固定位置。 2、视觉拍照,找橡胶套中心位置。 3、机器人理线工位辅助理线,配合机器人夹具将探 头sensor 线理直好插入橡胶圈。 已知条件: 1、橡胶套的内圆公差中心半径公差(理论中心与实际安装中 心的差值)mm A 15.015.010+-=2、探头的外圆半径公差(理论中心与实际安装中心的差 值)mm A 05.005.020+-=3、机器手抓取重复放置精度(理论中心与实际安装中心的差 值)mm A 05.0030+=4、相机本身引导误差mm A 05.00 40+=5、人工示教的容差mm A 2.01.050++=问题描述: 已知安装探头sensor 时机器探头中心与硅胶套中心的偏差, 即半径差值0.5mm ,即(探头能够安装进去橡胶套的最大偏 差值0.5mm 能够安装成功) 求:安装探头sensor 时机器探头中心与硅胶套中心的偏差, 即半径差值0 A 求解:根据题意,增环:1A ,2A ,3A ,4A ,5A , 减环:无 封闭环:0 A 方法:尺寸链计算步骤及方法(统计法) 1.尺寸链的分析建立如图:

2.计算封闭环的基本尺寸: 封闭环的基本尺寸等于所有增环的基本尺寸和减去所有减环的基本尺寸和。 0=A 3.计算封闭环的公差: 批量生产条件下,组成环与封闭环的实际偏差均服从正态分布,且实际尺寸分布范围与公差带宽度一致。此时,封闭环的公差平方值等于所有组成环公差平方值之和。 4 .0, 16.01.005.005.01.03.0, 022222202 52423222120==++++=++++=T T T T T T T T 公差:公差:公差:4.计算封闭环的中间偏差。 封闭环中间偏差等于所有增环中间偏差之和减去所有减环中间偏差之和。 注:中间偏差等于上下偏差代数和再除以2.2 .0, 15.0025.0025.000, 00543210=?++++=??+?+?+?+?=?中间偏差:中间偏差:中间偏差:5.计算封闭环的极限偏差。 上偏差等于中间偏差加上二分之一公差值;下偏差等于中间偏差减去二分之一公差值。4.00 00000000, 02/4.02.02/)(, 4.02/4.02.02/)(+==-=-?==+=+?=A T A EI T A ES 偏差:下偏差:上偏差:答:满足装配精度要求,最大公差0.4mm,小于理论偏差0.5mm. 例2:感谢百度作者qq1473114691经验分享的方法: (2) (3)

谈加压送风系统风量和风压的计算

谈加压送风系统风量和风压的计算 发表时间:2018-04-23T11:31:06.183Z 来源:《建筑学研究前沿》2017年第33期作者:张光仁 [导读] 作为一位暖通设计师,建筑防排烟系统是最基本的功底,事关人民群众的生命安全。 海南省农垦设计院 摘要:建筑加压送风防烟系统中风量和风压的计算。 关键词:加压送风 一、加压送风系统风量的计算 作为一位暖通设计师,建筑防排烟系统是最基本的功底,事关人民群众的生命安全,马虎不得,以前浅谈加压送风系统中风量的计算问题。 由于《建筑设计防火规范GB50016-2014》中8.5.1条只说明设置防烟设施的场所,而具体的风量计算没有给出,而《建筑防烟排烟系统技术规范》迟迟没有出,对于加压送风系统风量的计算设计人员只能参考《建筑设计防火规范GB50016-2006》中表9.3.2及对应的条文说明,和《建筑设计防火规范GB50045-95-2005年版》中8.3.2条及对应的条文说明。 风速法计算加压送风风量时建规和高规对门洞风速的要求均为0.7-1.2m/s,而什么情况下具体取多少没有说明,这让设计人员在计算风量时有点愣。小编在几年设计中总结了以下风速取值表: 加压送风门洞风速取值表1 楼梯间前室合同前室风速取值m/s 送 ------ 送 0.7 送送 ------ 0.7 送 X ------ 1.0 自送 ------ 1.2 自 ------ 送 1.2 如对于低层建筑的防烟楼梯间,当对楼梯间加压送风,前室不送风时,按照建规表9.3.2取加压送风风量25000m3/h。 按照风速法计算,假定楼梯间的门为双扇门,规格为1.5m×2.1m。 计算如下: 加压送风风量=2×1.5×2.1×1.0×(1+0.1)×3600÷1.0=24948 m3/h。 经过计算对比加压送风风量取25000 m3/h。 在项目设计中按照表1给出的门洞风速,用风速法计算及压差法计算再和规范表格中的加压送风风量对比,取大值还是比较合理的。 二、加压送风系统风压的计算 加压送风系统多采用土建风道,其系统压力计算比较麻烦,在项目设计中多采用估算,小编在几年设计中总结了以下风压估算方法:方法一 △P=(△P1+△P2+△P3+△P4)×(1.05~1.1) △P:加压送风风压Pa。 △P1:风道阻力,△P1:=Rm×L,Rm为平均比摩阻取5.5Pa/m,L为风道长度。 △P2:考虑风机出口效应,取100Pa。 △P3:风口处的阻力,取30Pa。 △P4:余压,楼梯间余压40-50Pa,前室,合用前室及消防电梯间前室余压25-30Pa。 实例1如给地下室防烟楼梯间加压送风,风机设置在3层屋面,层高均为3.3m,计算加压送风系统风压如下: △P=(△P1+△P2+△P3+△P4)×(1.05~1.1) △P=(5.5×3.3×3+100+30+50)×(1.05~1.1) △P=234.45×1.1 △P=257.895Pa 实例2如给上18层防烟楼梯间加压送风,风机设置在18层屋面,层高均为3.3m,计算加压送风系统风压如下: △P=(△P1+△P2+△P3+△P4)×(1.05~1.1) △P=(5.5×3.3×17+100+30+50)×(1.05~1.1) △P=488.55×1.1 △P=537.405Pa 实例3如给上26层防烟楼梯间加压送风,风机设置在26层屋面,层高均为3.3m,计算加压送风系统风压如下: △P=(△P1+△P2+△P3+△P4)×(1.05~1.1) △P=(5.5×3.3×25+100+30+50)×(1.05~1.1) △P=633.75×1.1 △P=697.125Pa 方法二 在设计中按照经验加压送风系统的风压和系统高度有如下关系:

正压送风系统知识精选版

正压送风系统知识 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

正压送风系统 一、正压送风的概述 1、什么是正压送风阀 就和打气筒原理一样!与止回阀是同理!假设此阀将空间分为A空间与B 空间!当A 空间与B空间分别在不同时间受压,但只能有一面的气体可以进入另一面!而另一面再受压力气体是回不到原空间的!能释放压力的空间为A空间!当A受压时那么此时正压送风!当B空间气体增多,此时对A空间而言处于负压空间!不过此时由于阀的正向送风,B空间的气体始终回不到A空间! 2、什么是正压送风机? 向逃生楼道里送风的风机,在意外发生的时候向逃生楼道里送风,利于逃生,同时送风时楼道内处于正压,也就是说楼道的气压比别的地方高,烟雾不会渗进来而引起人员窒息,以保证安全。 3、什么是排烟风机? 意外发生时候用来将建筑物内烟雾抽走的风机,以提高建筑物内视野,驱除烟雾,便于灭火。 4、、正压送风口的作用

当发生火灾时,其内部的电机会打开风口,温感烟感或者是手动火灾报警会开启,塔楼顶正压风机自动打开,对送风竖井进行加压送风,楼梯的前室通过正压送风口会源源不断的对前室进行送风,使前室维持正压,保证烟气不会再这个区域蔓延,而给人逃生的空间。当温度高于280°C时人已无逃生可能性,其内部熔断器会熔断,风口自动关闭,防止火势蔓延。 4、正压送风口是不是必须设置在疏散楼梯前室? 楼梯前室是不是必须设正压送风这个工程由于楼梯一层前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊哪个规范上规定的 正压送风口是不是必须设置在疏散楼梯前室?---按规范要求,送风口应设于楼梯间、前室、封闭避难层。 楼梯前室是不是必须设正压送风?---不具备自然排烟条件的消防电梯间前室可合用前室必须设置。 这个工程由于楼梯一层前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊?---不允许。这样的情况下,只能增设一段风管,引到前室。 哪个规范上规定的?---《建筑设计防火规范》和《高层民用建筑设计防火规范》。 5、补风机和正压送风机的区别是什么?

正压送风系统

目录 一、正压送风的概述2 二、正压送风与新风4 三、正压送风系统4 四、高层建筑的正压送风系统 5 正压送风系统 一、???????正压送风的概述 1、什么是正压送风阀 就和打气筒原理一样!与止回阀是同理!假设此阀将空间分为A空间与B空间!当A 空间与B空间分别在不同时间受压,但只能有一面的气体可以进入另一面!而另一面再受压力气体是回不到原空间的!能释放压力的空间为A空间!当A受压时那么此时正压送风!当B空间气体增多,此时对A空间而言处于负压空间!不过此时由于阀的正向送风,B空间的气体始终回不到A空间! 2、什么是正压送风机? 向逃生楼道里送风的风机,在意外发生的时候向逃生楼道里送风,利于逃生,同时送风时楼道内处于正压,也就是说楼道的

气压比别的地方高,烟雾不会渗进来而引起人员窒息,以保证安全。 3、什么是排烟风机? 意外发生时候用来将建筑物内烟雾抽走的风机,以提高建筑物内视野,驱除烟雾,便于灭火。 4、、正压送风口的作用 当发生火灾时,其内部的电机会打开风口,温感烟感或者是手动火灾报警会开启,塔楼顶正压风机自动打开,对送风竖井进行加压送风,楼梯的前室通过正压送风口会源源不断的对前室进行送风,使前室维持正压,保证烟气不会再这个区域蔓延,而给人逃生的空间。当温度高于280°C时人已无逃生可能性,其内部熔断器会熔断,风口自动关闭,防止火势蔓延。 4、正压送风口是不是必须设置在疏散楼梯前室? 楼梯前室是不是必须设正压送风?这个工程由于楼梯一层 前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊?哪个规范上规定的? 正压送风口是不是必须设置在疏散楼梯前室?---按规范要求,送风口应设于楼梯间、前室、封闭避难层。

高层建筑正压送风设计

内容提示:正压送风作为一种行之有效的防烟楼梯间(以下简称“楼梯间”)与前室(合用前室)的防烟方式,在国内外高层建筑设计中已被广泛接受与采用。在进行正压送风系统的设计计算时,首先遇到的问题是如何确定与设计计算密切相关的一些因素,如火灾疏散时开启门的层数与数量、楼梯间与前室应保持的正压度、前室加压送风口的形式,等等。只有这些计算因素确定后,才能建立一定的计算模型,进行系统的设计计算。笔者根据近几年来的设计工作中的经验,提出个人看法,以供讨论。 1关于正压送风防烟系统的正压度问题 不论国内或国外的防火规范,都有一致的加压要求,即应使在火灾时,楼梯间压力>前室压力>走廊或室内压力。 所谓正压度,指防烟楼梯间的防火门、前室与走廊间的防火门两侧的压力差值。而正压度又可分为最大允许压差值与最小压差值。所谓最大允许压差值,是指所有防火门在关闭状态下防火门两侧允许的一般人力能推开的最大压差值,关于最大允许压差值,各国的取值不完全一致,多数国家均把50Pa作为最大允许压差。所谓最小压差值,是指火灾时人员进行疏散。防火门一旦打开,楼梯间及开门前室的压力将瞬时下降,为了防止烟气侵入,要保持门洞处具有一定的反吹风速应有的最小的压力差值。关于火灾时防烟要求的最小压差值(或最小门洞风速),各国也有不同的规定与要求。

我国原《高规》对防烟的最小压差(或最小门洞风速)未提出明确的数值要求,仅指出“应保持正压,且楼梯间的压力应略高于前室的压力”。而新《高规》第8.3.2条中提出了开门时的门洞风速要求,即“开启门时,通过门风速不宜小于0.7m/s。”还在第8.3.7条中提出了防烟楼梯间与前室的余压要求,即其余压值应符合下列要求:防烟楼梯间为50Pa;前室、全用前室、消防电梯前室、封闭避难层(间) 为25Pa。 2关于加压送风口的形式问题 2.1楼梯间的加压送风口一般每2-3层设1个,均为常开百叶风口,具体形式可为单层百叶或双层百叶,双层百叶对送风量的调节 与平衡更为有利些。 2.2前室的加压送风口一般每层设1个,而对送风口的形式,则 有不同的选择与做法。 2.2.1一般做法把前室(合用前室)的加压送风口选为常闭式(静电接点)。当发生火灾时立即启动加压送风机,同时仅打开着火层、着火层相邻层的前室之送风口。这种做法,把前室的送风量集中用于加压这3层(或4层)上,这些层的送风量基本不受其它层前室开门与否的影响,当然这对保证这3层(或4层)的防烟效果是有利 的,但也存一定问题:

正压送风量的计算分析

正压送风量的计算分析 1、前言 高层建筑的楼梯间、电梯井、管道井等竖向管井,如没有考虑防排烟措施,由于烟囱效应,在发生火灾时,将成为火势迅速蔓延的主要途径。高层建筑每一个水平防火分区根据人员的疏散流程,是从第一安全地带(走廊),到第二安全地带(楼梯间前室),到第三安全地带(疏散楼梯),再到室外的过程。所以,防烟楼梯间及其前室、消防电梯前室和合用前室,应设独立的防排烟设施。防排烟方式可分为自然排烟、机械排烟和机械加压送风方式。对此,《高层民用建筑设计防火规范》做出了明确的规定。但是,对于高层建筑防烟楼梯间及其前室、合用前室和消防电梯前室的机械加压送风量的计算方法,并没有做出明确规定,各个设计院、甚至每个人对规范的理解有所不同,在计算中也可能采用了不同的设计方法,笔者也曾对同样的工程采用不同的方法进行计算。资料表明,对防烟楼梯间及其前室、消防电梯前室和合用前室的正压送风量的计算方法统计起来约有二十多种,至今尚无统一。其原因主要是影响正压送风量的因素较复杂,而且各种计算公式的出发点不同,选用不同的计算公式,其结果差别较大。本文将对高层建筑防烟楼梯间及其前室、合用前室和消防电梯前室的机械加压送风量的计算方法进行分析。 2、计算模型的假定条件 由于在火灾发生时,门的开启状况,系统的运行控制方式多种多样,所以计算防烟楼梯间、消防电梯间前室或合用前室的正压送风量时,首先应该确定计算 模型的假定条件。根据《高层民用建筑设计防火规范》DB50045-95、《上海市民用建筑防排烟技术规程》DGJ08-88-2000,我们作出四个假设:(1)、任意一层着火时,当系统门(楼梯间开向前室、前室开向走廊的门)全闭时,正压送风系统应保证走廊→前室或合用前室→楼梯间的压力呈递增分布,防烟楼梯间压力值为40Pa至50Pa,前室或合用前室的压力值为25Pa至30Pa. (2)、同时打开任一模拟着火层及其上下一层的防火门,其它层的防火门均关闭,模拟火灾层各门洞处的风速应大于等于0.7m/s. (3)、楼梯间采用常开风口。

机械加压送风系统设计

第一章机械加压送风系统 在不具备自然通风条件时,机械加压送风系统就是确保火灾中建筑疏散楼梯间及前室(合用前室)安全的主要措施。 一、机械加压送风系统的组成 机械加压送风系统主要由送风口、送风管道、送风机与吸风口组成。 二、机械加压送风系统的工作原理 机械加压送风方式就是通过送风机所产生的气体流动与压力差来控制烟气的流动,即在建筑内发生火灾时,对着火区以外的有关区域进行送风加压,使其保持一定正压,以防止烟气侵入的防烟方式,如图3-10-7所示。 为保证疏散通道不受烟气侵害使人员安全疏散,发生火灾时,从安全性的角度出发,高层建筑内可分为四个安全区:第一类安全区为防烟楼梯间、避难层;第二类安全区为防烟楼梯间前室、消防电梯间前室或合用前室;第三类安全区为走道;第四类安全区为房间。依据上述原则,加压送风时应使防烟楼梯间压力>前室压力>走道压力>房间压力,同时还要保证各部分之间的压差不要过大,以免造成开门困难,从而影响疏散。当火灾发生时,机械加压送风系统应能够及时开启,防止烟气侵入作为疏散通道的走廊、楼梯间及其前室,以确保有一个安全可靠、畅通无阻的疏散通道与环境,为安全疏散提供足够的时间。

三、机械加压送风系统的选择 1)建筑高度小于等于50m的公共建筑、工业建筑与建筑高度小于等于100m的住宅建筑,当前室或合用前室采用机械加压送风系统,且其加压送风口设置在前室的顶部或正对前室入口的墙面上时,楼梯间可采用自然通风方式。当前室的加压送风口的设置不符合上述规定时,防烟楼梯间应采用机械加压送风系统。将前室的机械加压送风口设置在前室的顶部,其目的就是为了形成有效阻隔烟气的风幕;而将送风口设在正对前室入口的墙面上,就是为了形成正面阻挡烟气侵入前室的效果。 2)建筑高度大于50m的公共建筑、工业建筑与建筑高度大于100m的住宅建筑,其防烟楼梯间、消防电梯前室应采用机械加压送风方式的防烟系统。 3)当防烟楼梯间采用机械加压送风方式的防烟系统时,楼梯间应设置机械加压送风设施,独立前室可不设机械加压送风设施,但合用前室应设机械加压送风设施。防烟楼梯间的楼梯间与合用前室的机械加压送风系统应分别独立设置。剪刀楼梯的两个楼梯间、独立

空调房间送风状态的确定与送风量的计算

3.7空调房间送风状态的确定及送风量的计算 在已知空调区冷(热)、湿负荷的基础上,确定消除室内余热、余湿,维持室内所要求的空气参数所需的送风状态及送风量,是选择空气处理设备的重要依据。 3.7.1空调房间送风状态的变化过程 在空调设计中,经常采用空气质量平衡和能量守恒定律来进行空调系统的一些能量问题分析 图3-10表示一个空调房间的热湿平衡示意图,房间余热量(即房间冷负荷)为Q (kW),房间余湿量(即房间湿负荷)为W (kg /s),送入m q (kg/s)的空气,吸收室内余热余湿后,其状态由O(h O ,d O )变为室内空气状态N(h N ,d N ),然后排出室外。 图3-10 空调房间的热湿平衡 当系统达到平衡后,总热量、湿量均达到了平衡,即 总热量平衡 ?? ???-==+O N m N m O m h h Q q h q Q h q (3-43) 湿量平衡 ?? ???-==+O N m N m O m d d W q d q W d q (3-44) 式中 m q ——送入房间的风量(kg/s ); Q ——余热量(kW ); W ——余湿量(kg/s ); O O d h ,——送风状态空气的比焓值(kJ/ kg )和含湿量(kg/kg ); N N d h ,——室内空气比焓值(kJ/ kg )和含湿量(kg/kg )。 同理,可利用空调区的显热冷负荷和送风温差来确定送风量。 )(O N p m t t C Q q -= (3-45) 式中 Q ——显热冷负荷(kW ); C p ——空气的定压比热容[ 1.01 kJ/ (kg ?K)]。 上述公式均可用于确定消除室内负荷应送入室内的风量,即送风量的计算公式。图3-11 为送入室内的空气(送风)吸收热、湿负荷的状态变化过程在h-d 图上的表示。图中N 为室内状态点,O 为送风状态点。热湿比或变化过程的角系数为 s R O N d d h h W Q --==)(ε (3-46) 由上可得,送风状态O 在余热Q ,余湿W 作用下,在h-d 图上沿着过室内状态点N 点且/Q W ε=的过程线变化到N 点。

楼梯间及其前室机械加压送风量计算方法分析

楼梯间及其前室机械加压送风量计算方法分析

楼梯间及其前室机械加压送风量计算方法 分析

1、前言 高层建筑的楼梯间、电梯井、管道井等竖向管井,如没有考虑防排烟措施,由于烟囱效应,在发生火灾时,将成为火势迅速蔓延的主要途径。高层建筑每一个水平防火分区根据人员的疏散流程,是从第一安全地带(走廊),到第二安全地带(楼梯间前室),到第三安全地带(疏散楼梯),再到室外的过程。所以,防烟楼梯间及其前室、消防电梯前室和合用前室,应设独立的防排烟设施。防排烟方式可分为自然排烟、机械排烟和机械加压送风方式。对此,《高层民用建筑设计防火规范》做出了明确的规定。但是,对于高层建筑防烟楼梯间及其前室、合用前室和消防电梯前室的机械加压送风量的计算方法,并没有做出明确规定,各个设计院、甚至每个人对规范的理解有所不同,在计算中也可能采用了不同的设计方法,笔者也曾对同样的工程采用不同的方法进行计算。资料表明,对防烟楼梯间及其前室、消防电梯前室和合用前室的正压送风量的计算方法统计起来约有二十多种,至今尚无统一。其原因主要是影响正压送风量的因素较复杂,而且各种计算公式的出发点不同,选用不同的计算公式,其结果差别较大。本文将对高层建筑防烟楼梯间及其前室、合用前室和消防电梯前室的机械加压送风量的计算方法进

行分析。 2、计算模型的假定条件 由于在火灾发生时,门的开启状况,系统的运行控制方式多种多样,所以计算防烟楼梯间、消防电梯间前室或合用前室的正压送风量时,首先应该确定计算模型的假定条件。根据《高层民用建筑设计防火规范》DB50045-95、《上海市民用建筑防排烟技术规程》DGJ08-88-2000,我们作出四个假设: (1)、任意一层着火时,当系统门(楼梯间开向前室、前室开向走廊的门)全闭时,正压送风系统应保证走廊→前室或合用前室→楼梯间的压力呈递增分布,防烟楼梯间压力值为40Pa至50Pa,前室或合用前室的压力值为25Pa至30Pa. (2)、同时打开任一模拟着火层及其上下一层的防火门,其它层的防火门均关闭,模拟火灾层各门洞处的风速应大于等于0.7m/s. (3)、楼梯间采用常开风口。

楼梯间及其前室机械加压送风量计算方法分析(二)

楼梯间及其前室机械加压送风量计算方法分析(二) 3.2 上海规程计算方法 按照《上海市民用建筑防排烟技术规程》DGJ08-88-2000计算,加压送风机的送风量应由保持加压部位规定正压值所需的送风量,门开启时保持门洞处规定风速所需的送风量以及采用常闭送风阀门的总漏风量三部分组成。 (1)、保持加压部位规定正压值所需的送风量 L1=0.827 AΔP1/n×1.25×N1×3600 (3) A-每层电梯门及疏散门的总有效漏风面积m2.门缝宽度:疏散门,0.002-0.004m;电梯门0.005-0.006m.ΔP-压力差(Pa);楼梯间取40-50Pa,前室取25-30Pan-指数,一般取2. 1.25-不严密处附加系数N1-漏风门的数量,当采用常开风口时,取楼层数,当采用常闭风口时,取1. (2)、开启时保持门洞处规定风速所需的送风量 L2=FvN2×3600 (4) F-每层开启门的总断面积,m2 v-门洞断面风速m/s取0.7-1.2m/s N2-开启门的数量,当采用常开风口时,20层及以下取2,20层以上取3,当采用常闭风口时,取1. (3)。采用常闭送风阀门的总漏风量 L3=0.083AFN3×3600 (5) AF-每层送风阀门的总面积。 0.083-阀门单位面积的漏风量。 N3-漏风阀门的数量,当采用常开风口时,取0,当采用常闭风口时,取楼层数。 所以,加压送风机的送风量 L=L1+L2+L3 (6) 上海规程制定的理由是:因为门洞开启时,虽然加压送风开门区域中的压力会下降,但远离门洞开启楼层的加压送风区域或管井仍具有一定的压力,存在着门缝、阀门和管道的渗漏风,使实际开启门洞风速达不到设计要求。因此,按保持加压区域内一定正压值所需送风量、保持该区域门洞风速所需送风量以及采用常闭送风阀门的总漏风量三部分之和计算加压送风量是较合理、较安全的。

怎么计算洁净室正压送风量

在各种有关洁净室的设计手册中,对于洁净室正压的计算都列出了复杂的计算过程。那么对于那些从事洁净室建造的工程师们而言,是否有更为快速和简单的计算方法? 在过去的30年里,洁净室技术经历了快速的发展,在汽车工业,微系统技术,生物技术,表面技术,制药医疗,半导体工业等许多工业分支中,都已开发出了适合自己的洁净室技术。无论何种洁净室技术,都有些基本的原则和要求是大家所必须都要遵循的,比如说正压控制。所有的洁净室,可以有很多不同的标准和要求,但是如果没有正压,那么一切室内环境标准和要求都没有存在的基础。各种设计手册中复杂的计算方法并不适合现场施工技术人员的需求,在我所参加的洁净室建造项目中,基本上工程师们都在靠经验估算,并没有比较准确而且又简单的洁净室正压风量计算方法。 简单快速的正压送风量计算法 一个密闭良好的洁净室,在使用过程中,主要的漏风途径有以下四种: ?门、窗缝隙的漏风; ?开门时的漏风; ?风淋室、传递窗的漏风; ?室内工艺排风。 1、缝隙漏风量计算 计算方法一: v=1.29(△P)1/2 △V=S*v △P:洁净室内外压力差(Pa) v:从缝隙处流过的风速(m/s) S:缝隙面积(m2) V:通过缝隙的泄漏风量(m3/h) 例:假设条件:房间正压20pa,门缝长度3.6m,窗缝长度 40m,假设缝隙宽度0.01m 门缝隙面积S1=0.01*3.6=0.072m2,窗缝隙面积S2=0.002*40=0.08m2 泄漏风量V=s*v=(S1+S2)*3600*1.29*(△P)1/2=(0.072+0.08)*3600*1.29*(2 0) 1/2=3157m3/hr 计算方法二: 压差法计算方式: L=0.827×A×(ΔP)1/2×1.25=1.03375×A×(ΔP)1/2 式中 L—正压漏风量(m3/s);0.827—漏风系数;A—总有效漏风面积(m2);ΔP —压力差(Pa);1.25—不严密处附加系数 2、开门的泄漏风量 假设条件:房间正压ΔP=20Pa,门面积S3=0.9*2.00=1.8m2,风速v=1.29(△P) 1/2=5.77m/s, 开启次数n=1次/hr,开启时间t=5s 泄漏风量Q=S3*v*t*n=1.8*5.77*5*1*=51.93 m3/h 每小时开一次门,开5秒,泄漏空气量51.93 m3/h 3、风淋室与传递窗的空气泄漏量 假设条件:风淋室体积15m3,密闭无缝隙 开闭顺序为(1)开→ (1)关→ (2)开→ (2)关,如图1风淋室开闭顺序图

正压风量的计算

正压风量的计算 洁净室漏风原因分析及洁净室正压送风量计算方法 发布时间:10-11-17来源:广州金田瑞麟净化设备制造有限公司点击量:43336更多在有关各种净化工程洁净室的设计手册中,对于洁净室漏风原因分析及洁净室正压送风量计算方法都列出了复杂的计算过程公式,那么对于那些专业从事洁净室建造的工程师们,专业净化工程设计施工而言,是否有更为快速和简单的计算方法解决洁净室漏风原因分析及洁净室正压送风量计算方法呢在过去的38年里发展中,净化技术洁净室技术经历了快速的发展,在汽车工业,微系统技术,生物技术,表面技术,制药医疗,半导体工业等许多工业分支中,都已开发出了适合自己的洁净室技术。无论何种洁净室技术,都有哪些基本的原则和要求是大家所必须都要遵循的因素,比如说洁净室漏风原因分析及洁净室正压送风量计算方法。所有的洁净室,可以有很多不同的标准和要求,但是如果没有正压,那么一切室内环境标准和要求都没有存在的基础,没法达到净化洁净室室内空气洁净度要求。 各种设计手册中复杂的计算方法并不适合现场施工技术人员的需求,在洁净室建造项目中,基本上工程技术人员都在靠经验估算,并没有比较准确而且又简单的洁净室漏风原因分析及洁净室正压送风量计算方法. 一个密闭性能良好的洁净室,在使用过程中,主要的漏风途径有以下四种: ?高效送风口的漏风; ?高 ?室内门、窗缝隙的漏风; ?开门过程中的漏风; ?风淋室、传递窗各种净化设备的漏风; ?室内配套设备的工艺排风。 1、缝隙漏风量计算 计算方法一: v=(△P)1/2 △V=S*v △P:洁净室内外压力差(Pa) v:从缝隙处流过的风速(m/s) S:缝隙面积(m2) V:通过缝隙的泄漏风量(m3/h) 例:假设条件:房间正压20pa,门缝长度,窗缝长度40m,假设缝隙宽度

相关文档