文档库 最新最全的文档下载
当前位置:文档库 › 发光材料

发光材料

发光材料
发光材料

发光材料

一、发光材料简介

人类很早就注意到存在于自然界中的发光材料,从17世纪开始,发光现象才逐渐成为实验科学的研究对象。1852年,斯托克斯(Stocks)提出关于光致发光的第一个规律:发射光波长恒大于激光光波长,即发射光相对于激发光出现斯托克斯位移(荧光光谱较相应的吸收光谱红移)。1867年Becquerel研究了红宝石的光谱特性。1878年,有人报道了低气压下正空放电引起的玻璃管壁发光的现象,由此引发了对阴极射线发光的研究。19世纪末20世纪初,对于发光的研究引发了物理学两个重大发现:X射线和天然放射性。伦琴通过对BaPt(CN)4的研究发现了X射线,贝壳勒则通过硫酸钾铀发现了核辐射。以后,1905年爱因斯坦用光子的概念揭示了斯托克斯规律的意义。1913年玻尔提出了原子结构的量子理论,为发光物理奠定了理论基础。

X射线激发的荧光材料CaWO4已被长期应用于医用X射线照相中。此外人们还利用CaWO4的发光特性寻找钨矿,这可以认为是发光材料最早的实际应用。目前,发光材料任广泛地应用于荧光灯(查看与荧光灯有关的内容)领域,它是利用充于玻璃管中的低压汞放电产生的紫外线,激发涂于玻璃管壁的发光粉,而将紫外辐射转换为可见光的照明器件。近年来,稀土离子的引入使得荧光粉的流明效率和显色性能得到显著提高,促进了荧光灯的飞速发展。发光材料用量占第二位的是电视机、计算机等显示器件。除此以外,发光材料还用于示波器和雷达荧光屏,以及电子-光学转换器、核辐射显示器和X射线屏。发光材料对于制作瞬时发光和永久发光涂料也是必要的材料,还可用于事故及隐蔽发光指示器上,同样也可用于装饰,涉及各个领域,应用范围十分广阔。

发光材料又称发光体,是一种能够把从外界吸收的各种形式的能量转换为非平衡光辐射的功能材料。光辐射有平衡辐射和非平衡辐射两大类,即热辐射和发光。任何物体只要具有一定的温度,则该物体必定具有与此温度下处于热平衡状态的辐射(红光、红外辐射)。非平衡辐射是指在某种外界作用的激发下,体系偏离原来的平衡态,如果物体在回复到平衡态的过程中,其多余的能量以光辐射的形式释放出来,则称为发光。因此发光是一种叠加在热辐射背景上的非平衡辐射,其持续时间要超过光的振动周期。

固体发光有以下两个基本特征:(1)、任何物体在一定温度下都具有平衡热辐射,而发光是指吸收外来能量后,发出的总辐射中超出平衡热辐射的部分。(2)、当外界激发源对材料的作用停止后,发光还会持续一段时间,称为余辉。这是固体发光与其他光发射现象的根本区别。一般以持续时间10-8s为分界,短于10-8s的成为荧光,长于10-8s的成为磷光。目前已不再把发光划分为这样两个不同的过程,因为经研究了解到,所谓余辉现象即物质发光的衰减。衰减过程有的很短,可短于10-8s:有的则很长,可达数分钟甚至数小时。

——资料张中大、张俊英.无机光致发光材料及应用.北京:化学工业出版社,2005.3:68,69

二、发光材料的发光方式

发光材料的发光方式是多种多样的,主要有:光致发光(Photoluminescence)、阴极射线发光(Cathodeluminescence)、电致发光(Electroluminescence) 、热释发光(Thermoluminescence)、光释发光、辐射发光、声致发光(Sonoluminescence)、应力发

光等。

1、光致发光(Photoluminescence)

光致发光是指用紫外光、可见光活红外光激发发光材料而产生的发光现象。它大致经历吸收、能量传递和光发射三个主要阶段。吸收:当物质从外界吸收能量(光、电、高能粒子等),基态的电子将被激发到激发态,这个过程叫做吸收。激发光辐射的能量可直接被发光中心(激活剂活杂质)吸收,也可以被发光材料的基质吸收。在第一种情况下,发光中心吸收能量向较高能级跃迁,随后跃迁回到较低能级活基态能级而产生发光。在第二种情况下,基质吸收光能,在基质中形成电子—空穴对,他们可能在晶体中运动,被束缚在各个发光中心上,发光是由于电子与空穴的复合而引起的。当发光中心离子处于基质的能带中时,会形成一个局域能级,处在基质导带和价带之间,即位于基质的禁带中。不同的基质结构,发光中心离子在禁带中形成的局域能级的位置不同,从而在光激发下,会产生不同的跃迁,导致不同的发光色。发射:被激发到激发态的电子为非平衡态载流子,它们可能自发或受激从激发态回到基态,恢复到平衡态,并将吸收的能量以光的形式辐射出来,这一过程叫做发射。

2、阴极射线发光(Cathodeluminescence)

阴极射线发光是用电子束激发而发光的物质。电子射入发光材料的晶格,由于一系列的非弹性碰撞而形成二次电子,其中一部分由于二次发射而损失掉,而大部分电子激发发光中心,以辐射或无辐射跃迁形式释放出所吸收的能量,这些跃迁间的比例决定了发光的效率。阴极射线发光材料再电视机显像管等方面有着重要的应用。

3、电致发光(Electroluminescence)

电致发光是由电场直接作用再物质上所产生的发光现象,电能转变为光能,且无热辐射产生,是一种主动发光型冷光源。固体的电致反光现象是苏联科学家再1927年研究碳化硅晶体检波器时发现并做出初步理论解释的。电致发光器件可分为两类:注入式发光和本征型发光。注入式发光是由电子-空穴对再p-n结附近复合而产生的发光现象;而本征型发光是通过高能电子碰撞激发发光中心所产生的发光现象。

4、热释发光(Thermoluminescence)

某些发光材料早较低的温度现被激发,激发停止后,发光很快消失,当温度升高时,其发光强度又逐渐增强,这种现象被称为热释发光(简称热释光)。长余辉材料(查看与其相关的内容)从基态跃迁到激发态,一部分电子会立即返回基态而产生发光。又一部分位于基态的空穴可以通过价带被缺陷陷阱俘获,如果陷阱很浅,空穴再室温下可以较容易地返回基态,与电子结合而发光。如果陷阱很深,则需要外部能量如加热,才能把空穴释放出来,和发光中心复合发光,这就是热释发光。

材料之所以出现热释发光现象,是因为材料禁带中存在的陷阱能够俘获电子或空穴。随温度升高,电子(或空穴)获释概率增大,发光随之增加。然而由于电子(或空穴)的释出,陷阱中的电子(或空穴)数逐渐减少,达到某一温度后,发光强度开始减弱,这样就在热释光谱上形成了一个热释光峰。

5、光释发光(Optical luminescence)

光释发光不同于光致发光而与热释发光的机制类似,不同的是发光材料是在长波长光的作用下,使被陷阱捕获的电子释放到导带,然后与电离中心复合而发光。

6、辐射发光

辐射发光是指高能光子(如X射线和γ射线)和粒子(如α粒子、β粒子、质子、中子)辐射发光材料,与其中的原子、分子碰撞,使之发生电离,电离出的电子有很大的动能,可继续引起其他原子的激发和电离,产生二次电子,通过电子空穴复合或激子(exciton)【激子简介:在光跃迁过程中,被激发到导带中的电子和在价带中的空穴由于库仑相互作用,将形成一个束缚态,称为激子。通常可分为万尼尔(Wannier)激子和弗伦克尔(Frenkel)激子,

前者电子和空穴分布在较大的空间范围,库仑束缚较弱,电子“感受”到的是平均晶格势与空穴的库仑静电势,这种激子主要是半导体中;后者电子和空穴束缚在体元胞范围内,库仑作用较强,这种激子主要是在绝缘体中。】的迁移,把激发能传递给激活剂而发光。X 射线发光材料最宜采用含有重元素例如Cd 、Ba 、W 等的化合物。

7、 声致发光(Sonoluminescence )

声致发光的原理在于声波通过水时,若液体重某些地方形成的声压超过某一阀值,液体中将或产生大量的气泡,当气泡处于声场膨胀相时,内部充满了水蒸气和其他气体;而处于声场的压缩相时,整个起泡将发生爆炸性的塌缩而导致发光。如下图:

声致发光的物理机制可归纳为二大类,即电学机制与热学机制。电学机制的理论模型认为,在声空化过程中产生的电荷在一定条件下通过微放电而发光。热学机制主要包括黑体辐射模型及化学发光模型。

8、 应力发光

应力发光是将机械应力加在某种固体材料上而导致的发光现象。这种机械应力可以是断裂、摩擦、挤压、撞击等形式。应力发光可以分为三种类型:断裂发光、弹性形变发光、非弹性形变发光。

一个盛满水的容器被加热水中产生大量气泡。一束人耳

无法听到的约25千赫的超声波撞击在气泡上,气泡开始振

荡,依据空化效应,气泡直径可以缩小为5微米,随后(图

A )又膨胀至50微米,在这种气泡膨胀的情况下气泡内部几

乎是真空的因此气泡周围受到极大的压力(图B )这时,当

气泡被一束速度为每秒1.4公里的超声波击中时会发生爆裂

(图C ).它的温度一般可以达到7万K ,并且骤然发出强光

(图D ):这样,我们便获得了声致发光。

上转换发光机理与发光材料整理

上转换发光机理与发光材料 一、背景 早在1959年就出现了上转换发光的报道,Bloemberge在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年,Auzel在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、H03+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。 二、上转换发光机理 上转换材料的发光机理是基于双光子或者多光子过程。发光中心相继吸收两个或多个光子,再经过无辐射弛豫达到发光能级,由此跃迁到基态放出一可见光子。为了有效实现双光子或者多光子效应,发光中心的亚稳态需要有较长的能及寿命。稀土离子能级之间的跃迁属于禁戒的f-f 跃迁,因此有长的寿命,符合此条件。迄今为止,所有上转换材料只限于稀土化合物。 三、上转换材料 上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换为可见光的材料。其特点是所吸收的光子能量低于发射的光子能量。这种现象违背了Stokes定律,因此又称反Stokes定律发光材料。 1、掺杂Yb3+和Er3+的材料Yb3+(2F7/2→2F5/2)吸收近红外辐射,并将其传

递给Er3+,因为Er3+的4I11/2能级上的离子被积累,在4I11/2能级的寿命为内,又一个光子被Yb3+吸收,并将其能量传递给Er3+,使Er3+离子从4I11/2能级跃迁到4F7/2能级。快速衰减,无辐射跃迁到4S3/2,然后由 4S 3/2能级产生绿色发射( 4S 3/2 → 4I 15/2 ) ,实现以近红外光激发得到绿 色发射。 2、掺杂Yb3+和Tm3+的材料 通过三光子上转换过程,可以将红外辐射转换为蓝光发射。第一步传递之后,Tm3+的3H5能级上的粒子数被积累,他又迅速衰减到3F4能级。在第二部传递过程中,Tm3+从3F4能级跃迁到3F2能级,并又快速衰减到3H4。紧接着,在第三步传递中,Tm3+从3H4能几月前到1G4能级,并最终由此产生蓝色发射。 3、掺杂Er3+或Tm3+的材料 仅掺杂有一种离子的材料,是通过两步或者更多不的光子吸收实现上转换过程。单掺Er3+的材料,吸收800nm的辐射,跃迁至可产生绿色发射的4S3/2能级。单掺Tm3+的材料吸收650nm的辐射,被激发到可产生蓝色发射的1D2能级和1G4能级。 四、优点 上转换发光具有如下优点:①可以有效降低光致电离作用引起基质材料的衰退;②不需要严格的相位匹配,对激发波长的稳定性要求不高;③输出波长具有一定的可调谐性。 五、稀土上转换材料的应用 随着频率上转换材料研究的深入和激光技术的发展,人们在考虑

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

几种新型半导体发光材料的研究进展(精)

几种新型半导体发光材料的研究进展 摘要:概述了三种新型半导体发光材料氮化镓、碳化硅、氧化锌各自的特性,评述了它 们在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。 关键词:LED发光二极管;发光材料;ZnO, SiC,GaN 1引言 在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。半导体照明是一种基于半导 体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。发展固态照明产业可以大规模节约能源,对有效地保护环境,有利 于实现我国的可持续发展具有重大的战略意义。从长远来看,新材料的开发是重 中之重。发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。 本文综述了近几年来对ZnQ SiC, GaN三种新型半导体发光材料的研究进展。 2几种新型半导体发光材料的特征及发展现状 在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅(包括锗)材料为主元素半导体占统治地位?但随着信息时代的来临,以砷化镓(GaAS 为代表的第二代化合物半导体材料显示了其巨大的优越性?而以氮化物(包括SiC、ZnO等宽禁带半导体)为第三代半导体材料,由于其优越的发光特征正成为最重要的半导体材料之一.以下对几种很有发展前景的新型发光材料做简要介绍? 2.1氮化傢(GaN) 2.1.1氮化镓的一般特征 GaN是一种宽禁带半导体(Eg=3.4 ev),自由激子束缚能为25mev,具有宽的直接带隙,川族氮化物半导体InN、GaN和A lN的能带都是直接跃迁型,在性质上相互接近,它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围?实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙? GaN!优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaNM有较高的电离度,在川-V的化合物中是最高的(0.5或0.43).在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS勺一半.GaN是极稳定的化合物,又是坚硬的高熔点材 :1

发光材料

发光材料 连新宇豆岁阳董江涛陈阳郭欣高玮婧 北京交通大学材料化学专业100044 摘要:本文简要介绍了发光材料的发光机理,并根据机理分类介绍了几种典型的发光材料。补充介绍了新型发光材料并对发光材料的现状进行了介绍对其应用和发展前景做了展望。 关键词:发光材料分类新型展望 1 引言 发光材料已成为人们日常生活中不可缺少的材料,被广泛地用在各种显示、照明和医疗等领域,如电视屏幕、电脑显示器、X射线透射仪等。目前发光材料主要是无机发光材料,从形态上分,有粉末状多晶、薄膜和单晶等。最近,有机材料在电致发光上获得了重要应用。[1] 2 发光材料 发光是一种物体把吸收的能量,不经过热的阶段,直接转换为特征辐射的现象。发光现象广泛存在于各种材料中,在半导体、绝缘体、有机物和生物中都有不同形式的发光。 发光材料分为有机和无机两大类。通常把能在可见光和紫外光谱区发光的无机晶体称为晶态磷光体,而将粉末状的发光材料称为荧光粉。[2] 常用的发光材料按激发方式分为: (1) 光致发光材料,由紫外光、可见光以及红外光激发而发光,按照发光性能、应用范 围的不同,又分为长余辉发光材料、灯用发光材料和多光子发光材料。 (2) 阴极射线发光材料,由电子束流激发而发光的材料,又称电子束激发发光材料。 (3) 电致发光材料,由电场激发而发光的材料,又称为场致发光材料。 (4) X射线发光材料,由X射线辐射而发光的材料。 (5) 化学发光材料,两种或两种以上的化学物质之间的化学反应而引起发光的材料。 (6) 放射性发光材料,用天然或人造放射性物质辐照而发光的材料。 2.1光致发光材料 2.1.1光致发光材料的定义 发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。光致发光材料一个主要的应用领域是照明光源,包括低压汞灯、高压汞灯、彩色荧光灯、三基色灯和紫外灯等。其另一个重要的应用领域是等离子体显示。

有机电致发光材料的新进展

有机电致发光材料的新进展 唐杰 (湖南工程学院化学化工学院,湘潭,411101) 摘要:介绍了有机电致发光材料的最新进展,对有机电致发光材料进行分类和评述,重点介绍载流子传输材料和发光材料(小分子发光材料,金属配合物发光材料和聚合物发光材料)的国内外研究现状,并对有机电致发光材料的应用前景进行评述。 关键词:有机电致发光;发光材料;有机小分子;金属配合物;聚合物 Abstract:The recent progress of organic electroluminescent materials was introduced. Various kinds of organic molecular materials and polymer materials used for organic electroluminescence at present were mainly described. The future application of the materials was described. Key words:organic electroluminescence;luminescent material;small organic molecule;organometallic complex;polymer 前言 有机电致发光(organic electro-luminescence ),也叫有机发光二极管(organic light-emitting diode),简称为OLED[1],是指有机物在电场作用下,受到电流电压的激发而发光的现象,是一种直接将电能转化光能的过程。该类材料具有低成本、制作简单、驱动电压低、体积小、响应时间短、重量轻、高导电性、良好的成膜性、视角宽、可大面积使用、柔韧性及可塑性好、自身可发光等显著优点,能够满足照明和显示技术高的需求,已经吸引了科学界和商业界的高度关注。目前国内外对OLED的研究主要集中在发光材料的研究,器件的制作和产品研发上。 在20世纪30年代的时候,人类就开始对有机电致发光材料进行研究了。最初的是1936年Destriau发现的,他将化合物不集中在聚合物中制备了薄膜。1963年,Pope、Lohmann、Helfrich和Willams等人都接连研究了稠环芳香族的蒽、萘等化合物,但大都由于诸多因素而使其发展受到限制。1982年,美国柯达集团的Vincett[2]等人,用真空沉积有机薄膜的这样方法得到有机电致发光材料。从此,对有机发光材料研究的帷幕拉开了。1987年,C.W.Tang[2,3]利用超薄薄膜技术,得到了有机电致发光的材料这一进展对有机发光材料研究的影响很大,全世界都

发光材料

发光材料 发光与发光材料的定义 什么是发光: 1、当某种物质受到激发(射线、高能粒子、电子束、外电场等)后,物质将处于激发态,激发态的能量会通过光或热的形式释放出来。如果这部分的能量是位于可见、紫外或是近红外的电磁辐射,此过程称之为发光过程。 2、发光就是物质在热辐射之外以光的形式发射出多余的能量,这种发射过程具有一定的持续时间。 什么是发光材料: 能够实现上述过程的物质叫做发光材料。物质内部以某种方式吸收能量,将其转化成光辐射(非平衡辐射)的过程称为发光;在实际应用中,将受外界激发而发光的固体称为发光材料。它们可以粉末、单晶、薄膜或非晶体等形态使用,主要组分是稀土金属的化合物和半导体材料,与有色金属关系很密切。 高纯稀土氧化物Y2O3、Eu2O3、Gd2O3、La2O3、Tb4O7等制成的各种荧光体,广泛应用于彩色电视机、彩色和黑白大屏幕投影电视、航空显示器、X射线增感屏,以及用于制作超短余辉材料、各种灯用荧光粉等。 半导体发光材料有ZnS、CdS、ZnSe和GaP、GaAs1-xPx、GaAlAs、GaN等。主要用于制造各色大中型数字符号、图案显示器、数字显示钟、X 射线图像增强屏和长寿命各色发光二极管、数码管等。可见光发光二极管,因显示响应速度快而广泛应用于仪表、计算机,年产量成倍增长,不断取代其他显示器件

固体能带基本理论 固体中的光学跃迁 固体发光材料基本知识 发光的表征 光致发光材料的应用 1.反光材料这种材料可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,因此必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。光致发光材料是向外发光,而不是反射光。 2.荧光材料吸收一定波长的光,立刻向外发出不同波长的光,称为荧光,当入射光消失时,荧光材料就会立刻停止发光。更确切地讲,荧光是指在外界光照下,人眼见到的一些相当亮的颜色光,如绿色、橘黄色、黄色,人们也常称它们为霓虹光。 荧光材料分无机荧光材料和有机荧光材料。 无机发光材料 无机荧光材料的代表为稀土离子发光及稀土荧光材料,其优点是吸收能力强,转换率高,稀土配合物中心离子的窄带发射有利于全色显示,且物理化学性质稳定。由于稀土离子具有丰富的能级和 4f 电子跃迁特性,使稀土成为发光宝库,为高科技领域特别是信息通讯领域提供了性能优越的发光材料。目前, 常见的无机荧光材料是以碱土金属的硫化物(如 ZnS、CaS)铝酸盐(SrAl2O4, CaAl2O4, BaAl2O4)等作为发光基质,以稀土镧系元素[铕(Eu) 、钐( Sm) 、铒(Er) 、钕(Nd)等] 作为激活剂和助激活剂。 无机荧光体的传统制备方法是高温固相法,但随着新技术的快速更新,发光材料性能指标的提高需要克服经典合成方法所固有的缺陷,一些新的方法应运而生,如燃烧法、溶胶—凝胶法[、水热沉淀法、微波法等。 有机发光材料 在发光领域中,有机材料的研究日益受到人们的重视。因为有机化合物的种类繁多,可调性好,色彩丰富,色纯度高,分子设计相对比较灵活。根据不同的分子结构,有机发光材料可分为:(1) 有机小分子发光材料;(2) 有机高分子发光材料;(3) 有机配合物发光材料。这些发光材料无论在发光机理、物理化学性能上,还是在应用上都有各自的特点。 有机小分子发光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

粉末电致发光材料晶体生长和发光特性(精)

粉末电致发光材料晶体生长和发光特性 本论文研究了Cu~+对ZnS:Cu电致发光材料发光特性的影响;讨论了晶体生长过程中灼烧温度、助熔剂的作用及对发光材料结构、粒度、发光特性的影响;采取相变技术和采用掺入两种激活剂的方法较大地提高了粉末电致发光材料的发光性能。研究表明,随着Cu+掺入量的增加,材料发光亮度随之增加,Cu+掺入浓度为0.15%时,发光材料的亮度达到最大,但发光亮度并不会随着Cu+掺杂浓度的增加一直增大。同时借助光致发光光谱进一步研究了ZnS:Cu的发光机理及发光特性,Cu+浓度小于0.15%时,光致发光光谱的峰值随Cu+浓度增加而逐渐增大,当Cu+浓度为0.15%时,光致发光光谱的峰值达到最大, Cu+浓度大于0.15%时,光致发光光谱的峰值开始迅速下降。通过改变灼烧温度及灼烧气氛达到改变晶体粒度的大小,随着焙烧温度的提高,ZnS:Cu的平均粒度增大,在800℃到1250℃之间可以获得平均粒度在5/μm-22/μm的发光材料,发光材料的亮度也呈增大的趋势。虽然助熔剂Br-、Cl-的加入对发光材料的粒度影响较小,但Br-、C1-起电荷补偿作用,可增加Cu+在晶体中的溶解度。我们采用晶体相变技术,获得了以立方相结构为主、结晶好、亮度高的绿色发光材料。本文提出在ZnS基质材料中同时掺入Cu+、Au+两种激活剂,通过改变掺杂比例来探索提高粉末电致发光材料发光性能的方法,在ZnS晶体中它们以一价阳离子形式进入ZnS晶格中,形成更多的发光中心。通过在基质ZnS材料中掺入Cu+和Au+两种不同浓度的激活剂,在不影响材料颜色的前提下,较大地提高了电致发光材料的亮度。论文的完成对改善绿色交流粉末电致发光材料ZnS:Cu的发光特性,获得优质的ZnS:Cu绿色发光材料及拓宽材料的应用领域有着重要的经济和现实意义。 同主题文章 [1]. Aron ,Vecht ,朱自熙. 八十年代粉末电致发光(EL)技术' [J]. 发光学报. 1981.(03) [2]. 近期外文资料索引' [J]. 液晶与显示. 1986.(06) [3]. 周连祥. 一种研究粉末电致发光(EL)器件频率特性的新方法' [J]. 发光学报. 1992.(01) [4]. 王金忠,杜国同,王新强,闫玮,马燕,姜秀英,杨树人,高鼎 三,Chang ,R ,P ,H. 退火对ZnO薄膜结构及发光特性的影响' [J]. 光学学报. 2002.(02) [5]. 谢伦军,陈光德,竹有章,汪,屿. ZnO薄膜表面和边缘的发光特性(英文)' [J]. 发光学报. 2006.(06)

发光二极管的作用及分类详细资料

发光二极管的作用及分类详细资料 关键字:LED(2891) 发光二极管的作用及分类详细资料 发光二极管的作用 发光二极管(LED)是一种由磷化镓(GaP)等半导体材料制成的、能直接将电能转变成光能的发光显示器件。当其内部有一定电流通过时,它就会发光。图4-21是共电路图形符号。 发光二极管也与普通二极管一样由PN结构成,也具有单向导电性。它广泛应用于各种电子电路、家电、仪表等设备中、作电源指示或电平指示。 2.发光二极管的分类 发光二极管有多种分类方法。 按其使用材料可分为磷化镓(GaP)发光二极管、磷砷化镓(GaAsP)发光二极管、砷化镓(GaAs)发光二极管、磷铟砷化镓(GaAsInP)发光二极管和砷铝化镓(GaAlAs)发光二极管等多种。 按其封装结构及封装形式除可分为金属封装、陶瓷封装、塑料封装、树脂封装和无引线表面封装外,还可分为加色散射封装(D)、无色散射封装(W)、有色透明封装(C)和无色透明封装(T)。 按其封装外形可分为圆形、方形、矩形、三角形和组合形等多种,图4-22为几种发光二极管的外形。

塑封发光二极管按管体颜色又分为红色、琥珀色、黄色、橙色、浅蓝色、绿色、黑色、白色、透明无色等多种。而圆形发光二极管的外径从¢2~¢20mm,分为多种规格。 按发光二极管的发光颜色又可人发为有色光和红外光。有色光又分为红色光、黄色光、橙色光、绿色光等。 另外,发光二极管还可分为普通单色发光二极管、高亮度发光二极管、超高亮度发光二极管、变色发光二极管、闪烁发光二极管、电压控制型发光二极管、红外发光二极管和负阻发光二极管等。 3.普通单色发光二极管 普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮。它属于电流控制型半导体器件,使用时需串接合适的限流电阻。 图4-23是普通发光二极管的应用电路。 普通单色发光二极管的发光颜色与发光的波长有关,而发光的波长又取决于制造发光二极管所用的半导体材料。红色发光二极管的波长一般为650~700nm,琥珀色发光二极管的波长一般为630~650 nm ,橙色发光二极管的波长一般为610~630 nm左右,黄色发光二极管的波长一般为585 nm左右,绿色发光二极管的波长一般为555~570 nm。

上转换发光材料

上转换发光材料 上转换发光的概念: 上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。 上转换发光技术的发展: 早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。 80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。近几年,人们对上转换材料的组成与其上转换特性的对应关系作了系统的研究,得到了一些优质的上转换材料。 上转换发光的机理:

有机电致发光材料研究现状

<有机化学进展>结课论文 题目:有机电致发光材料的研究现状 院系: 专业: 班级: 学号: 姓名:

有机电致发光材料的研究现状 摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。 关键词:小分子有机电致发光有机高分子聚合物电致发光 Research and development of organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper. Key words OLED, organic luminescent materials, evaporated molecules and polymers 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 一、发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger探索了合成金属[1]。1987年Kodak 公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED 器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个

发光地功能化MOF材料

发光的功能化MOF材料 1.简介 金属-有机框架(MOFs)是近二十年来被学术界广泛关注的一种多孔材料[1-3],这种材料是利用有机配体与金属离子间的金属-配体配位作用而自组装形成的超分子网络结构。在MOFs 发展的早期,美国加州大学伯克利分校的O. M. Yaghi 教授、日本京都大学的S. Kitagawa 教授和美国北卡大学教堂山分校的Wenbin Lin 教授等分别对其做了更为详细的定义[4-6],通过归纳总结具体定义如下:MOFs 作为一类稳定的、可设计的、晶态的类沸石材料需具备以下条件:(1)通过配位键形成稳定结构;(2)通过设计变换有机配体(linker)和金属次级构筑单元(SBU)类型可以调控材料的空间结构;(3)具有良好的结晶性因而可精确定义其配位结构及空间构型。顾名思义,微孔金属-有机框架(MOFs)指框架中具有一定的被游离溶剂分子填充的孔道(孔径在 2 nm 以内)并能通过后续处理方法将孔道中客体分子除去而不影响框架结构的多孔材料。 MOF材料由于具有网状结构、均一孔道、孔径可调且具有巨大比表面积,以及独特的光、电、磁等性质引起了研究者的广泛关注。与传统发光材料相比,MOF发光材料具有不可比拟的优势,这些优势主要体现在它的组成、合成和性质上。 (1)组成方面 传统的发光材料,组成成分或者是有机化合物或者是无机化合物,所以其发光形式单一。而金属有机骨架是由金属离子与有机配体配位构筑而成的材料,兼具了有机材料与无机材料两种性能,从而增加了发光形式的多样性。同时易于引入功能化的组成成分,可以将发光性质、磁学特性、电学特性、催化特性等各种功能都整合到同一个MOFs材料中来实现MOFs结构的多功能设计,从而拓宽其应用范围。 (2)合成方面 无机发光材料在生产上采用的方法仍能是高温固相法。这种方法需要很高的锻烧温度,甚至高达几千摄氏度,并且保温时间比较长(24小时以上),对设备要

夜光发光材料

夜光发光材料Glow in the Dark Material 一、发光形式: 夜光材料可于黑暗处自动发光的材料,主要成分为稀土,属于无机类颜料。 长效夜光发光颜料先吸收各种光和热,转换成光能储存,然后在黑暗中自动发光,通过吸收各种可见光实现发光功能,该品不含放射性元素,并可无限次数循环使用,,尤其对450纳米以下的短波可见光、阳光和紫外线光(UV光)具有很强的吸收能力。 二、基本型态: 长效夜光粉有长效型6色,普通型 1 色,可添加各色荧光剂调色,各色夜光粉可相互混合调色。 三、应用参考颜色: 黄绿光,蓝绿光,天蓝光、紫光、白光、红光、可利用荧光颜料、染料,调整发光前后的颜色,荧光剂添加比例约为夜光粉的的 1%~5%,也可使用一般染、颜料调色,但会减低发光效果。 四、产品特性: ●长效型夜光粉,余辉发光时间比普通型夜光粉多10倍以上,耐候性好 ,户内、户外都可使用。 ●长效型夜光粉仗用的主要禁忌有三: 1. 避免与水份接触。 2. 避免与金属直接接触。 3. 避免高温直接摩擦,普通型夜光粉则无此禁忌。 ●长效型夜光粉比重为3.6,材料为稀土元素,材料本身无毒无害,不含 放射性物质,吸光时间长,放光时间也长。 ●普通型夜光粉比重为 4.1,材料为硫化锌:铜(ZnS:Cu),吸光和放光时 间较短。 ●夜光粉可适用于显示夜间物体、钟表、电话按键、按钮、野外仪器或 指示器、收音机、照相机、电影院座位号码、交通指示牌、一般饰品 、服装制品、电源开关、钓鱼器具、建筑装潢,消防紧急逃生系统辨 识、军事设备、运输工具使用……等等。 五、在涂料与网印油墨应用注意事项: ●使用中性或弱碱性透明树脂。

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

发光材料与LED综述

功能材料课报告 发光材料与LED 摘要:发光材料是一种功能材料,广泛应用于我们日常生活中,例如电视机、日光灯、发光二极管等。本文就应用于LED的两种发光方式,光致发光和电致发光,作了简单的介绍和说明,并着重介绍了LED的原理、发展历史、优点以及应用。在未来的几十年里,发光材料将继续快速向前发展,给我们的生活带来更大的变化。 关键词:发光材料;光致发光;电致发光;LED

功能材料是指通过光、电、磁、热、化学、生化等作用后具有特定功能的材料。随着时代的发展,人类将进入一个信息时代。为了解决生产告诉发展以及由此所产生的能源、环境等等一系列问题,更需要用高科技的方法和手段来生产新型的、功能性的产品,以获得各种优良的综合性能。近年来新型功能材料层出不穷,得到了突破性的进展,功能材料正在渗透到现代生活和生产的各个领域。 本文所论述的发光材料即为在不同的能量激发方式下可以发出不同波长的可见光的一种功能材料。 一.概述 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态,在返回到基态的过程中以光的形式放出能量。热辐射发光最常见的例子是太阳和白炽灯,而后一种发光方式应用也很广泛,比如阴极射线管、日光灯、发光二极管等,如图1。 图1 两种发光方式的典型例子:白炽灯和日光灯 按照激发能量方式的不同,发光材料的分类如下: 1.紫外光、可见光以及红外光激发而发光的为光致发光材料; 2.电子束流激发而发光的为阴极射线发光材料; 3.电场激发而发光的为电致发光材料; 4.X射线辐射而发光的为X射线发光材料; 5.用天然或人造放射性物质辐射而发光的为放射性发光材料。

常见发光材料

一.常见发光种类 光致发光 灯用材料 日光灯,节能灯,黑光灯,高压汞灯,低压汞灯,LED转换组合白光 长余辉材料 放射性永久发光,超长余辉,长余辉 紫外发光材料 长波3650发光,短波2537发光,真空紫外发光,量子点发光…… 红外线发光材料 上转换发光,红外释光,热释发光, 多光子材料 荧光染料\颜料 稀土荧光,有机荧光 电致发光 高场发光 直流粉末DCEL,交流粉末ACEL,薄膜发光,厚膜发光,有机发光 低场发光 发光二极管(LED),有机发光(OEL-OLED),硅基发光,半导体激光 阴极射线发光 彩色电视发光材料 黑白电视发光材料 像素管材料 低压荧光材料 超短余辉材料 放射线发光 α射线发光材料,β射线发光材料,γ射线发光材料,氚放射发光材料,闪烁晶体材料 X射线发光 X存储发光材料 X增感发光材料 CT扫描发光材料 摩擦发光 单晶发光,微晶发光 化学发光 有机化合物发光(荧光染料) 液体发光 有机稀土发光 生物发光 酶发光,有机发光, 反射发光(几何光学) 光学镀膜反射材料,玻璃微珠反射材料 二.常见发光材料成份 物质发光过程有激励、能量传输和发光三个过程。激励方式主要有电子束激发,光激发和电场激发。电子束激发有阴极射线(CRT)发光材料,真空荧光(VFD)材料,场发射(FED)显示材料;光激发有荧光灯用发光材料,等离子显示(PDP)发光材料,X射线激发光材料等;电场激发有电致发光(EL)材料,发光二极管(LED)材料。 1 .阴极射线(CRT)稀土发光材料

表1 阴极射线稀土发光材料 组份发光色余辉用途 Y2O2S:Eu3+ 红 M 彩电,终端显示 Y2O2S:Eu3+ 红 M 投影电视 Y3(Al,Ga)5O12:Tb3+ 绿 M 投影电视 Y2SiO5:Tb3+ 绿 M 投影电视 InBO3:Tb3+ 绿 M 终端显示 InBO3:Eu3+ 红 M 终端显示 Y2SiO5:Ce3+ 415nm S 束电子引示管 (Beam index tube) Y3Al3Ga2O12:Ce3+ 520nm S 束电子引示管 (Beam index tube) YAlO3:Ce3+ 370nm S 束电子引示管 (Beam index tube) Y3Al5O12:Ce3+ 535nm S 飞点扫描管 2 .真空荧光显示(VFD)稀土发光材料 VFD用稀土发光材料较少,效率也不高,如SnO2:Eu3+, Y2O2S:Eu3+,很少使用。 3. 场发射显示(FED)稀土发光材料 FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度(寻址时间)非常快,而功耗仅是LCD的1/3,其应用前景令人关注。FED稀土发光材料如表2所示。 表2 FED稀土发光材料 组成颜色发光效率 SrTiO3:Pr 红 0.4 Y2O3:Eu 红 0.7 Y2O2S:Eu 红 0.57 Y3(Al,Ga)5O12:Tb 绿 0.7 Y2SiO5:Tb 绿 1.1 SrGa2S4:Eu[1] 绿 4.0 ZnS:Cu,Al 绿 2.6 Y2SiO5:Ce 兰 0.4 SrGa2S4:Ce[1] 兰 1.5 ZnS:Ag,Cl 兰 0.75 4 .灯用稀土发光材料 使用稀土三基色荧光粉的节能灯流明效率高,显色性好,是欧美、日和我国大力推广的绿色照明。灯用稀土发光材料如表3所示。 表3 灯用稀土发光材料 组成颜色用途 Y2O3:Eu 红节能灯 Y(V,P)O4:Eu 红高压汞灯 MgAl11O19:Ce,Tb 绿节能灯 LaPO4:Ce,Tb 绿节能灯 GdMgB5O10:Ce,Tb 绿节能灯 BaMgAl10O17:Eu,Mn 兰绿节能灯

量子点发光材料简介

量子点发光材料综述 1.1 量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm 左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2 量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又称为宏观量子隧道效应[6][7]。 1.2.4 介电限域效应

长余辉发光材料概述

长余辉发光材料概述 摘要 本文综述了长余辉材料的发光机理及制备方法,并简单介绍了硫化物长余辉发光材料、铝酸盐长余辉发光材料及硅酸盐长余辉发光材料。 关键词:长余辉;发光材料 1.长余辉发光材料简介 长余辉发光材料简称长余辉材料,又称夜光材料、蓄光材料。它是一类吸收太阳光或人工光源所产生的光的能量后,将部分能量储存起来,然后缓慢地把储存的能量以可见光的形式释放出来,在光源撤除后仍然可以长时间发出可见光的物质[1]。 2.长余辉发光材料的基本机理 长余辉材料被激发以后,能长时间持续发光,其关键在于有适当深度的陷阱能态(即能量存储器)。光激发时产生的自由电子(或自由空穴)落入陷阱中储存起来,激发停止后,靠常温下的热扰动而释放出被俘的陷阱电子(或陷阱空穴)与发光中心复合产生余辉光。随着陷阱逐渐被腾空,余辉光也逐渐衰减至消失。而陷阱态来源于晶体的结构缺陷,换言之,寻求最佳的晶体缺陷以形成最佳陷阱(种类、深度、浓度等)是获得长余辉的主要因素。余辉时间的长短决定于陷阱深度与余辉强度,余辉光的强度依赖于陷阱浓度、容量与释放电子(或空穴)的速率。而晶体缺陷的产生除了材料制备过程中自然形成的结构缺陷外,主要是掺杂。 长余辉发光机理实际是发光中心与缺陷中心间如何进行能量传递的过程,具体的长余辉材料有不同的发光模型,但最流行的是两类:一是载流子传输;二是隧穿效应。前者包含电子传输、空穴传输和电子空穴共传输,后者包括激发、能量存储与热激励产生发射的全程隧穿和仅是“热激励”发射的半程隧穿。除这两类外,学术界还有学者提出位形坐标[2]、能量传递、双光子吸收和Vk传输模型。至今为止,上述模型都是根据已有的实验结果提出的假设,可以解释一定的实验现象,但缺乏足够的论据,也存在若干不确定因素,难以让人信服,而发光机理的研究又是为新材料设计提供物理依据所必须的,有待进一步深入。

相关文档