文档库 最新最全的文档下载
当前位置:文档库 › 牛顿第二定律的应用超重与失重

牛顿第二定律的应用超重与失重

牛顿第二定律的应用超重与失重
牛顿第二定律的应用超重与失重

牛顿第二定律的应用――― 超重失重问题学案

超重和失重

(1)超重和失重的定义

超重:物体对支持物的压力(或对悬绳的拉力)_______物体所受重力的现象. 失重:物体对支持物的压力(或对悬绳的拉力)_______物体所受重力的现象. 完全失重:物体对支持物的压力(或对悬绳的拉力)_______物体所受重力的现象.

(2)发生超重或失重现象的条件

发生超重现象的条件:具有向_____的加速度.如物体向上做______运动或向下做_____运动. 发生失重现象的条件:具有向_____的加速度.如物体向上做______运动或向下做_____运动.

【典型例题】

例1.电梯内有一弹簧秤挂着一个重5N 的物体。当电梯运动时,看到弹簧秤的读数为6N ,则可能是( )

A.电梯加速向上运动

B.电梯减速向上运动

C.电梯加速向下运动

D.电梯减速向下运动

例2.在以加速度a 匀加速上升的电梯中,有一个质量为m 的人,站在磅秤上,则此人称得自己的“重量”为( )

A.ma

B.m(a+g)

C.m(g -a)

D.mg

例3.如图所示,一根细线一端固定在容器的底部,另一端系一木球,木球浸没在水中,整个装置在台秤上,现将细线割断,在木球上浮的过程中(不计水的阻力),则台秤上的示数( )

A.增大

B.减小

C.不变

D.无法确定

例1.AD 析:由于物体超重,故物体具有向上的加速度。

例2.解析:首先应清楚,磅秤称得的“重量”实际上是人对磅秤的压力,也即磅秤对人的支持力F N 。取人为研究对象,做力图如图所示,依牛顿第二定律有: F N F N -mg =ma F N =m (g+a )

即磅秤此时称得的人的“重量”大于人的实际重力,人处于超重状

态,故选B 。

例3.解析:系统中球加速上升,相应体积的水加速下降,因为相应体积水的质量大于球的质量,整体效果相当于失重,所以台秤示数减小。故选B 。

针对训练:

1.

(单选)下列关于超重和失重的说法中,正确的是( )

A .物体处于超重状态时,其重力增加了

B .物体处于完全失重状态时,其重力为零

C .物体处于超重或者失重状态时,其惯性比物体处于静止状态时增加或减小了

D .物体处于超重或者失重状态时,其质量和受到的重力都没有发生变化

2.(单选)某同学站在体重计上,在他迅速下蹲的过程中体重计示数将()

A .始终变小

B .始终变大

C .先变大,后变小,最后等于他的重力

D .先变小,后变大,最后等于他的重力 3、(2012山东卷).将地面上静止的货物竖直向上吊

起,货物由地面运动至最高点的过程中,v t 图像如

图所示。以下判断正确的是

A .前3s 内货物处于超重状态

B .最后2s 内货物只受重力作用

a 人

C .前3s 内与最后2s 内货物的平均速度相同

D .第3s 末至第5s 末的过程中,货物的机械能守恒

4、(2012广东卷)图4是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,滑道底部B 处安装一个压力传感器,其示数N 表示该处所受压力的大小,某滑块从斜面上不同高度h 处由静止下滑,通过B

是,下列表述正确的有

A .N 小于滑块重力

B .N 大于滑块重力

C .N 越大表明h 越大

D .N 越大表明h 越小

5、(双选)(广东六校 2011 届高三联考)如图所示,

轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬

挂一个小铁球,在电梯运行时,乘客发现弹簧的伸长量比电梯静止时的伸长量大了,这一现象表明( )

A .电梯一定是在下降

B .电梯可能是在上升

C .电梯的加速度方向一定是向下

D .乘客一定处在超重状态

6、(2012北京高考卷).

摩天大楼中一部直通高层的客运电梯,行程超过百米.电梯的简化模型如图1所示.考虑安全、舒适、省时等因素,电梯的加速度a 是随时间t 变化的,已知电梯在t =0时由静止开始上升,a ─t 图像如图2所示.

电梯总质量m =2.0×103kg .忽略一切阻力,重力加速度g 取10m /s 2.

(1)求电梯在上升过程中受到的最大拉力F 1和最小拉力F 2;

(2)类比是一种常用的研究方法.对于直线运动,教科书中讲解了由υ─t 图像

求位移的方法.请你借鉴此方法,对比加速度和速度的定义,根据图2所示a ─t 图像,求电梯在第1s 内的速度改变量Δυ1和第2s 末的速率υ2;

(3)求电梯以最大速率上升时,拉力做功的功率P ;再求在0─11s 时间内,

拉力和重力对电梯所做的总功W .

答案:1、D 2、D 3、AC 答案:4、BC 5、BD

6、

(1)由牛顿第二定律,有 F -mg = ma

由a ─t 图像可知,F 1和F 2对应的加速度分别是a 1=1.0m/s 2,a 2=-1.0m/s 2

F 1= m (g +a 1)=2.0×103×(10+1.0)N=2.2×104N

F 2= m (g +a 2)=2.0×103×(10-1.0)N=1.8×104

N

图1

(2)类比可得,所求速度变化量等于第1s内a─t图线下的面积

Δυ1=0.50m/s

同理可得,Δυ2=υ2-υ0=1.5m/s

υ0=0,第2s末的速率υ2=1.5m/s

(3)由a─t图像可知,11s~30s内速率最大,其值等于0~11s内a─t图线下的面积,有

υm=10m/s

此时电梯做匀速运动,拉力F等于重力mg,所求功率

P=Fυm=mg υm=2.0×103×10×10W=2.0×105W 由动能定理,总功

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与 运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。

牛顿第二定律的应用

牛顿第二定律的应用 Prepared on 22 November 2020

寒假作业4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则 () A. 2a>a′ B. 2a

下载高一物理牛顿第二定律应用

课题:牛顿第二定律应用(一) 目的:1、掌握应用牛顿定律分析力和运动关系问题的基本方法。 2、培养学生分析解决问题的能力。 重点:受力分析、运动和力关系的分析。 难点:受力分析、运动和力关系的分析。 方法:启发思考总结归纳、讲练结合。 过程:一、知识点析: 1.牛顿第二定律是在实验基础上总结出的定量揭示了物体的加速度与力和质量的关系。数学表达式:ΣF=ma或ΣFx=Ma x ΣF y =ma y 理解该定律在注意: (1)。瞬时对应关系;(2)矢量关系;(3)。 2.力、加速度、速度的关系: (1)加速度与力的关系遵循牛顿第二定律。 (2)加速度一与速度的关系:速度是描述物体运动的一个状态量,它与物体运动的加速度没有直接联系,但速度变化量的大小加速度有关,速度变化量与加速度(力)方向一致。 (3)力与加速度是瞬时对应关系,而力与物体的速度,及速度的变化均无直接关系。Δv=at,v=v +at,速度的变化需要时间的积累,速度的大小还需考虑初始情况。 二、例题分析: 例1。一位工人沿水平方向推一质量为45mg的运料车,所用的推力为90N,此时运料车的加速度是1.8m/s2,当这位工人不再推车时,车的加速度。 【例2】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小 D、物体在B点时,所受合力为零 【解析】本题主要研究a与F 合 的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。对物体运动过程及状态分析清楚,同时对物体 正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 =0,由A→C 的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置

2020高考物理一轮复习专题3-2 牛顿第二定律及其应用(精讲)含答案

专题3.2 牛顿第二定律及其应用(精讲) 1.理解牛顿第二定律的内容、表达式及性质。 2.应用牛顿第二定律解决瞬时问题和两类动力学问题。 知识点一牛顿第二定律、单位制 1.牛顿第二定律 (1)内容 物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。加速度的方向与作用力的方向相同。 (2)表达式a=F m或F=ma。 (3)适用范围 ①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。 ②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。 2.单位制 (1)单位制由基本单位和导出单位组成。 (2)基本单位 基本量的单位。力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。 (3)导出单位 由基本量根据物理关系推导出的其他物理量的单位。 知识点二动力学中的两类问题 1.两类动力学问题 (1)已知受力情况求物体的运动情况。 (2)已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:

【方法技巧】两类动力学问题的解题步骤 知识点三超重和失重 1.实重和视重 (1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。 (2)视重 ①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。 ②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。 2.超重、失重和完全失重的比较 超重现象失重现象完全失重 概念 物体对支持物的压力 (或对悬挂物的拉力)大于 物体所受重力的现象 物体对支持物的压力 (或对悬挂物的拉力)小于物 体所受重力的现象 物体对支持物的压力 (或对悬挂物的拉力)等于零 的现象 产生条件物体的加速度方向向上物体的加速度方向向下 物体的加速度方向向 下,大小a=g 原理方程 F-mg=ma F=m(g+a) mg-F=ma F=m(g-a) mg-F=mg F=0 运动状态加速上升或减速下降加速下降或减速上升 无阻力的抛体运动;绕 地球匀速圆周运动

16牛顿第二定律及其应用 知识讲解 基础

物理总复习:牛顿第二定律及其应用 【考纲要求】 1、理解牛顿第二定律,掌握解决动力学两大基本问题的基本方法; 2、了解力学单位制; 3、掌握验证牛顿第二定律的基本方法,掌握实验中图像法的处理方法。 【知识网络】 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 解决动力学两大基本问题 (1)已知受力情况求运动情况。 (2)已知物体的运动情况,求物体的受力情况。 运动=F ma ???→←??? 合力 加速度是运动和力之间联系的纽带和桥梁 【考点梳理】 要点一、牛顿第二定律 1、牛顿第二定律 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 要点诠释:牛顿第二定律的比例式为F ma ∝;表达式为F ma =。1 N 力的物理意义是使质量为m=1kg 的物体产生21/a m s =的加速度的力。 几点特性:(1)瞬时性:牛顿第二定律是力的瞬时作用规律,力是加速度产生的根本原因,加速度与力同时存在、同时变化、同时消失。 (2)矢量性: F ma =是一个矢量方程,加速度a 与力F 方向相同。 (3)独立性:物体受到几个力的作用,一个力产生的加速度只与此力有关,与其他力无关。 (4)同体性:指作用于物体上的力使该物体产生加速度。 要点二、力学单位制 1、基本物理量与基本单位 力学中的基本物理量共有三个,分别是质量、时间、长度;其单位分别是千克、秒、米;其表示的符号分别是kg 、s 、m 。 在物理学中,以质量、长度、时间、电流、热力学温度、发光强度、物质的量共七个物理量 作为基本物理量。以它们的单位千克(kg )、米(m )、秒(s )、安培(A )、开尔文(K )、坎 德拉(cd )、摩尔(mol )为基本单位。 2、 基本单位的选定原则 (1)基本单位必须具有较高的精确度,并且具有长期的稳定性与重复性。 (2)必须满足由最少的基本单位构成最多的导出单位。 (3)必须具备相互的独立性。 在力学单位制中选取米、千克、秒作为基本单位,其原因在于“米”是一个空间概念;“千克”是一个表述质量的单位;而“秒”是一个时间概念。三者各自独立,不可替代。 例、关于力学单位制,下列说法正确的是( ) A .kg 、m/s 、N 是导出单位 B .kg 、m 、s 是基本单位 C .在国际单位制中,质量的单位可以是kg ,也可以是g D .只有在国际单位制中,牛顿第二定律的表达式才是 F ma =

关于系统牛顿第二定律的应用

关于系统牛顿第二定律的应用 眉山中学邓学军 牛顿第二定律是动力学的核心内容,它深刻揭示了物体产生的加速度与其质量、所受到的力之间的定量关系,在科研、 生产、实际生活中有着极其广泛的应用。本文就牛顿第二定律在物理解题中的应用作些分析总结, 以加深学生对该定律的认 识与理解,从而达到熟练应用的效果目的。对于连接体问题,牛顿第二定律应用于系统,主要表现在以下两方面: 其一,系统内各物体的加速度相同。 则表达式为:F =( m i +m 2+…)a ,这种情况往往以整个系统为研究对象,分析 系统的合外力,求岀共同的加速度。 例1 ?质量为m i 、m 2的两个物体用一轻质细绳连接,现对 m i 施加一个外力F ,在如下几种情况下运动,试求绳上的拉 力大小。 m 1 m 2 m i m 2 ⑶m i 、m 2放在光滑斜面上向上作加速直线运动 解析:对整体:F —( m i + m 2) g sin a=( m i + m 2) a 对 m 2: T — m 2g sin a = m 2 a 解得:T = m i m 2 ⑷m i 、m 2放在粗糙斜面上向上作加速直线运动 解析:对整体: F —( m i + m 2) g sin a — g( m i + m 2) g cos a=( m i + m 2) a 对 m 2: T — m 2g sin a — g( m i + m 2) g cos a = m 2 a 其二,系统内各物体的加速度不同。 这种题目较难,牛顿第二定律的基本表达式为: F m i a i mba 2 L ,这是一个矢量表达式,可以分为以下几种情形: 1. 系统中只有一个物体有加速度,其余物体均静止或作匀速运动。 例2?如图示,斜面体 M 始终处于静止状态,当物体 m 沿斜面下滑时,下列说法正确的是: A ?匀速下滑时,M 对地面的压力等于(M +m ) g B. 加速下滑时,M 对地面的压力小于(M + m ) g ⑵m i 、m 2放在粗糙水平面上作加速直线运动: T = m 2 —F 解得:T = m 2 m i m 2 ⑸m i 、m 2放在光滑水平面上在 F 作用下绕0i 02作匀速圆周运动 解析:对整体:F =( m i + m 2) a 对 m 2: T = m 2 a (连接绳子极短) 解得:T = m 2 > F 01 [m2 -| ml m i m 2 ⑴m i 、m 2放在光滑水平面上作加速直线运动: T = m 2

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。

例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。

(完整版)牛顿第二定律的应用-临界问题(附答案)

例1.如图所示,一质量为M=5 kg的斜面体放在水平地面上,斜面体与地面的动摩擦因数为μ1=0.5,斜面高度为h=0.45 m,斜面体右侧竖直面与小物块的动摩擦因数为μ2=0.8,小物块的质量为m=1 kg,起初小物块在斜面的竖直面上的最高点。现在从静止开始在M上作用一水平恒力F,并且同时释放m,取g=10 m/s2,设小物块与斜面体右侧竖直面间最大静摩擦力等于它们之间的滑动摩擦力,小物块可视为质点。问: (1)要使M、m保持相对静止一起向右做匀加速运动,加速度至少多大? (2)此过程中水平恒力至少为多少? 例1解析:(1)以m为研究对象,竖直方向有: mg-F f=0 水平方向有:F N=ma 又F f=μ2F N 得:a=12.5 m/s2。 (2)以小物块和斜面体为整体作为研究对象,由牛顿第二定律得:F-μ1(M+m)g=(M+m)a 水平恒力至少为:F=105 N。 答案:(1)12.5 m/s2(2)105 N 例2.如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,求: (1)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (2)劈以加速度a1= g/3水平向左加速运动时,绳的拉力多大? (3)当劈以加速度a3= 2g向左运动时,绳的拉力多大? 例2解:(1)恰无压力时,对球受力分析,得 (2),对球受力分析,得

(3),对球受力分析,得(无支持力) 练习: 1.如图所示,质量为M的木板上放着质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,求加在木板上的力F为多大时,才能将木板从木块下抽出?(取最大静摩擦力与滑动摩擦力相等) 1解:只有当二者发生相对滑动时,才有可能将M从m下抽出,此时对应的临界状态是:M与m间的摩擦力必定是最大静摩擦力,且m运动的加速度必定是二者共同运动时的最大加速度 隔离受力较简单的物体m,则有:,a m就是系统在此临界状态的加速度 设此时作用于M的力为F min,再取M、m整体为研究对象,则有: F min-μ2(M+m)g=(M+m)a m,故F min=(μ1+μ2)(M+m)g 当F> F min时,才能将M抽出,故F>(μ1+μ2)(M+m)g 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)() A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2 2.分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对 小猴受力分析,运用牛顿第二定律求解加速度. 解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg; 小猴对细绳的拉力等于细绳对小猴的拉力F′=F; 对小猴受力分析,受重力和拉力,根据牛顿第二定律,有

(精) 牛顿第二定律的应用

图 3 F 1 牛顿第二定律的应用检测题 (以下各题取2/10s m g ) 第一类:由物体的受力情况确定物体的运动情况 1,如图1所示,用F = 5.0 N 的水平拉力,使质量m = 5.0 kg 的物体由静止开始沿光滑水平面做匀加速直线运动.求: (1)物体加速度a 的大小; (2)物体开始运动后t = 2.0 s 内通过的位移x . 2,如图2所示,用F = 6.0 N 的水平拉力,使质量m = 2.0 kg 的物体由静止开 始沿光滑水平面做匀加速直线运动。 (1)求物体的加速度a 的大小; (2)求物体开始运动后t = 4.0 s 末速度的大小; 3.如图3所示,用F 1 = 16 N 的水平拉力,使质量m = 2.0 kg 的物体由静止开始沿水平地面做匀加速直线运动。已知物体所受的滑动摩擦力F 2 = 6.0 N 。求: (1)物体加速度a 的大小; (2)物体开始运动后t=2.0 s 内通过的位移x 。 4.如图4所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求: (1)物体加速度a 的大小; (2)物体在t =2.0s 时速度v 的大小. 5,一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。求汽车运动的加速度和20秒末的速度各是多大? 图1 F 图 2 F 图 4 F

6.如图6所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求: (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 7,如图7所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10, (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)求物块速度达到s m v /0.6 时移动的距离 第二类:由物体的运动情况确定物体的受力情况 1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s. (1)求列车的加速度大小. (2)若列车的质量是1.0×106 kg ,机车对列车的牵引力是1.5×105 N ,求列车在运动中所受的阻力大小. 2,静止在水平地面上的物体,质量为20kg ,现在用一个大小为60N 的水平力使物体做匀加速直线运动,当物体移动9.0m 时,速度达到6.0m/s ,求: 图6 图7 F

高一物理必修一牛顿第二定律的应用

牛 顿第二定律的应用 一、计算题 1.如图所示,在游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来。若人和滑板的总质量m = 60 kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ= 0.50,斜坡的倾角θ= 37°(sin37° = 0.6,cos37° = 0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10 m/s 2.求: (1)人从斜坡上滑下的加速度为多大? (2)若AB 的长度为25m ,求人到B 点时的速度为多少? 2.如图所示,物体的质量m=4 kg ,与水平地面间的动摩擦因数为μ=0.2,在与水平方向夹角为37°、大小为10 N 的恒力F 的作用下,由静止开始加速运动,取g=10m/s 2,已知sin 37°= 0.6,cos 37°= 0.8,试求: (1)物体运动的加速度的大小a ; (2)若1t =10 s 时撤去恒力F ,物体还能继续滑行的时间2t 和距离 x . 3.放于地面上、足够长的木板右端被抬高后成为倾角为0137θ=的斜面,此时物块恰好能沿着木板匀速下滑,重力加速度取10m/s 2,sin370=0.6,cos370=0.8,求 (1)物块与木板间的动摩擦因数;

(2)若将此木板右端被抬高后成为倾斜角为0253θ=的斜面,让物块以一定初速度v 0=10m/s 从底端向上滑, 能上滑离底端的最远距离是多大. 4.如图所示,物体的质量m=4kg ,与水平地面间的动摩擦因数为μ=0.2,在与水平面成37°,F=10N 的恒力作用下,由静止开始加速运动,当t=5s 时撤去F ,(g=10m/s 2,sin37°=0.6,cos37°=0.8)。求: (1)物体做加速运动时的加速度a ; (2)撤去F 后,物体还能滑行多长时间? 5.如图所示,水平地面上有一质量m=2.0kg 的物块,物块与水平地面间的动摩擦因数μ=0.20,在与水平方向成θ=37°角斜向下的推力F 作用下由静止开始向右做匀加速直线运动。已知F=10N ,sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物块运动过程中所受滑动摩擦力的大小; (2)物块运动过程中加速度的大小; (3)物块开始运动5.0s 所通过的位移大小。 6.如图所示,粗糙斜面固定在水平地面上,用平行于斜面的力F 拉质量为m 的物块,可使它匀速向上滑动,若改用大小为3F 的力,扔平行斜面向上拉该物体,让物体从底部由静止开始运动,已知斜面长为L ,物块可看作质点,求: (1)在力3F 的作用下,物体到达斜面顶端的速度; (2)要使物体能够到达斜面顶端,3F 力作用的时间至少多少?

牛顿第二定律的应用

寒假作业 4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧, 则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则() A. 2a>a′ B. 2a

牛顿第二定律应用及连接体问题

牛顿定律的应用 一 两类常用的动力学问题 1. 已知物体的受力情况,求解物体的运动情况; 2. 已知物体的运动情况,求解物体的受力情况 上述两种问题中,进行正确的受力分析和运动分析是关键,加速度的求解是解决此类问题的纽带,思维过程可以参照如下: 解决两类动力学问题的一般步骤 根据问题的需要和解题的方便,选出被研究的物体,研究对象可以是单个物体, 也可以是几个物体构成的系统 画好受力分析图,必要时可以画出详细的运动情景示意图,明确物体的运动性 质和运动过程 通常以加速度的方向为正方向 或者以加速度的方向为某一坐标的正方向 若物体只受两个共点力作用,通常用合成法,若物体受到三个或是三个以上不 在一条直线上的力的作用,一般要用正交分解法 根据牛顿第二定律=ma F 合或者x x F ma = ;y y F ma = 列方向求解,必要时对结论进行讨论 解决两类动力学问题的关键是确定好研究对象分别进行运动分析跟受力分析,求出加速度 例1(新课标全国一2014 24 12分) 公路上行驶的两汽车之间应保持一定的安全距离。当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s 。当汽车在晴天干燥沥青路面上以108km/h 的速度匀速行驶时,安全距离为120m 。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m ,求汽车在雨天安全行驶的最大速度。 解:设路面干燥时,汽车与路面的摩擦因数为μ0,刹车加速度大小为a 0,安全距离为s ,反应时间为t 0,由 牛顿第二定律和运动学公式得:ma mg =0μ ①0 20002a v t v s += ②式中,m 和v 0分别为汽车的质量和刹车钱的速度。 明确研究对象 受力分析和运动 状态分析 选取正方向或建 立坐标系 确定合外力F 合 列方程求解

(完整版)牛顿第二定律的综合应用专题

图 1 牛顿第二定律的应用 第一类:由物体的受力情况确定物体的运动情况 1. 如图1所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10.( g=10m/s 2) (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)物体在t = 2.0s 时速度v 的大小. (4)求物块速度达到s m v /0.6=时移动的距离 2.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2,求 (1)画出物体的受力示意图 (2)物体运动的加速度 (3)物体在拉力作用下5s 内通过的位移大小。 〖方法归纳:〗

〖自主练习:〗 1.一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。求汽车运动的加速度和20秒末的速度各是多大? ( g=10m/s 2) 2.如图所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求:( g=10m/s 2) (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 3.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2, 求(1)物体运动的加速度 (2)物体在拉力作用下5s 内通过的位移大小。

牛顿第二定律应用

牛顿第二定律的应用 【知识点】 一、动力学中的正交分解 如果物体受三个及三个以上力作用产生加速度,常采用的办法是建立平面直角坐标系,一般使x 轴沿____方向,然后将各个力进行正交分解,从而在x 轴上列出∑F x =ma ;再在y 轴上列出∑F y =0,之后解方程组。 二、超重与失重 1.超重:物体对支持物的压力(或对悬挂物的拉力)______物体所受的重力的情况,当物体具有_________的加速度时呈现超重现象。 2.失重:物体对支持物的压力(或对悬挂物的拉力)______物体所受的重力的情况,当物体具有_________的加速度时呈现失重现象,当物体向下加速度大小为g 时,物体呈现__________现象。 3、物体超重还是失重仅跟_______方向有关,而与_______方向无关。当物体向上做匀减速运动时呈现_______现象(超重、失重)。 【练习】(一律取g=10m/s 2) 1.一辆汽车能以3米/秒2的加速度前进,如果它拉着另一辆质量相同的车斗一起运动,已知阻力是车重的0.1倍,则此时的加速度为________米/秒2【1】 2.如图,质量2千克的物体在水平面上向右运动,物体与地 面间的动摩擦因数为0.2。当物体受到一个水平力F=5牛作用时,物 体的加速度是________米/秒2。【-4.5】 3.在水平轨道上行驶的火车车厢内悬挂一个单摆.当列车进站 时,摆线偏离竖直方向θ角,如图所示。列车的运动方向是________, 加速度为__________ 。【右;gtg θ】 4.质量为10千克的物体挂在弹簧秤上,当物体以0.5米/秒2的加速度匀减速上升时,弹簧秤的示数为__________牛。当物体以1.5米/秒2的加速度匀减速下降时,弹簧秤的示数是__________牛。【95,115】 V

牛顿第二定律的应用经典

牛顿第二定律的应用(二) 【学习目标】 1、知道利用整体法和隔离法分析连接体问题。 2、知道瞬时加速度的计算方法。 3、知道临界法、程序法、假设法在牛顿第二定律中的应用。 4、学会利用图像处理动力学问题的方法。 【重点、难点】 掌握临界法、程序法、假设法、图象法、整体法和分隔法,并能利用它们处理物理问题。 【知识精讲】 一、整体法和隔离法分析连接体问题 在研究力与运动的关系时,常会涉及相互关联物体间的相互作用问题,即连接体问题。在求解连接体问题时,整体法和隔离法相互依存,相互补充,交替使用,形成一个完整的统一体。 在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点)分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量)。如果需要知道物体之间的相互作用力,就需要把物体从系统中隔离出来,将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程。隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。 例1、为了测量木板和斜面间的动摩擦因数,某同学设计这样一个实验。在小木板上固定一个弹簧秤(弹簧秤的质量不计),弹簧秤下端吊一个光滑的小球。将木板和弹簧秤一起放在斜面上。当用手固定住木板时,弹簧秤示数为F1;放手后使木板沿斜面下滑,稳定时弹簧秤示数为F2,测得斜面倾角为θ,由以上数据可算出木板与斜面间的动摩擦因数为(只能用题中给出的已知量表示)。 解析:把木板、小球、弹簧看成一个整体,应用整体法。 木板、小球、弹簧组成的系统,当沿斜面下滑时,它们有相同的加速度。 设,它们的加速度为a, 则可得:(m球+m木)gsinθ-μ(m球+m木)gcosθ=(m球+m木)a 可得:a=gsinθ-μgcosθ① 隔离小球,对小球应用隔离法, 对小球受力分析有:mgsinθ-F2=m a② 而:mgsinθ=F1 ③ 由①②得:F2=μmgcosθ ④

牛顿第二定律的应用知识点总结和练习

一、课堂导入 谁说“百无一用是书生”,21世纪最重要的是什么?最缺的是什么?————人才。我们学过了牛顿第二定律,它不是只是纸上谈兵,有很多的应用,可以解决生活中很多的问题,今天我们就来看看牛顿的第二定律到底有什么用。 二、新课传授 1、已知物体的受力情况,求解物体的运动情况。 处理方法:已知物体的受力情况,可以求出物体的合外力,根据牛顿第二定律可以求出物体的加速度,再利用物体的初始条件(初位置和初速度),根据运动学公式就可以求出物体的位移和速度,也就是确定了物体的运动情况。流程图如下: 2、已知物体的运动情况,求解物体的受力情况。 处理方法:已知物体的运动情况, 由运动学公式求出加速度,再根据牛顿第二定律就可以确定物体所受的合外力,由此推断物体受力情况。流程图如下: 题型一: 已知物体的运动情况分析物体的受力情况 【例1】(★★★)质量为100t 的机车从停车场出发,做匀加速直线运动,运动225m 后,速度达到54km/h ,此时,司机关闭发动机,让机车进站,机车又行驶了125m 才停在站上。设机车所受阻力不变,求机车关闭发动机前所受到得牵引力。 【答案】1.4×105N 【解析】 火车的运动情况和受力情况如图所示 加速阶段:v 0=0,v t =54km/h=15m/s ,s 1=225m 由运动学公式:222 12110.5m/s m/s 225 2152s =?==v a

由牛顿第二定律得:N 1050.5N 10m f F 4 51?=?==-a 减速阶段:以运动方向为正方向,v 2=54km/h=15m/s ,s 2=125m ,v 3=0 故222 22 220.9m/s m/s 125 21502s 0-=?-=-=v a 由牛顿第二定律得:-f=m a 2 故阻力大小f= - m a 2= -105×(-0.9)N=9×104N 因此牵引力F=f+m a 1=(9×104+5×104)N=1.4×105N 【例2】(★★★)如图所示质量为m 的物体放在倾角为α的斜面上,物体和斜面间的动摩擦因数为μ,如沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动,则F 的大小为多少? 【答案】α μαα μαsin cos cos sin F +++= mg mg ma 【解析】 以物体为研究对象,受力分析如右下图所示,正交分解, 由牛顿第二定律得:ma =--==f m gsin Fcos f -G x -Fy F x αα合 0sin cos N Fy -G y -N F y =--==ααF mg 合 又N f μ= 联立以上三式得:α μαα μαsin cos cos sin F +++= mg mg ma 变式训练:如图所示,电梯与水平面的夹角为30°,当电梯向上运动时,人对电梯 的压力是其重力的 6 5 倍,则人与电梯间的摩擦力是重力的多少倍?

牛顿第二定律的应用

牛顿第二定律的应用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

寒假作业4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则 () A. 2a>a′ B. 2a

相关文档