文档库 最新最全的文档下载
当前位置:文档库 › 原子结构与元素性质知识点讲解word

原子结构与元素性质知识点讲解word

原子结构与元素性质知识点讲解word
原子结构与元素性质知识点讲解word

第一讲原子结构与元素性质

基本要求:

核外电子的运动状态:用s、p、d等来表示基态构型(包括中性原子、正离子和负离子)的核外电子排布。电离能、电子亲合能、电负性。

一.原子核外电子的运动特征

原子核外的电子是既不能静止不动也不能像行星绕太阳一样,在确定的轨道上做圆周运动,原子核外的电子的运动有以下特征(相对于宏观物体而言):

①电子质量小(10-31Kg)带负电,运动的空间范围小(10-10m),运动的速度极快(接近光速)。

②无确定的轨道;不能描画其运动轨迹;不能同时准确地测定电子在某一时刻所处的位置和运动的速度(海森堡-Heisenberg测不准原理);仅能指出它在原子核外空间某处出现机会的多少(用电子云表示)。

③电子云能表示什么?

A.电子云是电子在核外某一区域的单位体积内出现的几率大小分布的一种形象化的描述方法;

B.每一个小黑点不是代表一个电子,而是代表一个电子的一个可能的瞬间位置。

C.离核愈近(远),电子在单位体积空间出现的机会愈多(少),电子云密度(几率密度)越大(小);D.电子云是用统计方法对电子运动规律的描述;

h

④核外电子运动的波粒二象性:λ=

mv

粒子性的体现:具有一定质量高速运动的带电粒子;

波动性的体现:电子能够发生衍射实验

二、核外电子运动状态的描述

核外电子的运动状态是由是由四个变量(或四个量子数:n、l、m、m s)来描述的。

1.电子层数(主量子数)n:表示的是核外电子距原子核的平均距离。

n = 1, 2, 3, 4, 5……(只能取正整数),电子层符号:K, L, M, N……电子层能量:K

l = 0, 1, 2, 3 ……, n-1。(取值受n的限制),

电子亚层符号:s, p, d, f, g……电子亚层能量:s< p< d< f

3.电子云的伸展方向数(磁量子数)m:不同形状的电子云在空间的伸展方向数是不同的。

m = 0, ±1, ±2, ……, ±l。(取值受l的限制)

s电子云(m = 0),球形;

p电子云(m = 0, ±1),亚铃形,有三个方向p x p y p z(称三个简并轨道,即能量相同的轨道)。

d电子云(m = 0, ±1, ±2)有五个方向dxy dxz dyz dx2-y2dz2(称五个简并轨道,即能量相同的轨道)

f电子云(m = 0, ±1, ±2, ±3)有七个方向。

4.电子的自旋方向(自旋量子数)m s:电子不仅在核外空间不停的运动,而且还作自旋运动,自旋状态共有两种,顺时针“↑”和逆时针“↓”。

1.轨道的能量由电子层(n)和电子亚层(l)决定;

n越小轨道能量越低,n确定时,l值越小电子亚层的能量也越低。

2.原子轨道数由n、l和m决定;

n =1时,只有一个轨道,即1s ;

n =2时,有四个轨道,即2s (1个), 2p (3个);

n =3时,有9个轨道,即3s (1个), 3p (3个), 3d (5个);

n =n 时,有n 2

个轨道;

3.电子运动状态数由n 、l 、m 和m s 决定,即第n 电子层上共有2 n 2种不同的运动状态。

例题1:下列说法是否正确?如不正确,应如何改正?

(1)s 电子绕核旋转,其轨道为一圆圈,而p 电子是走∞字形。 (2)主量子数为1时,有自旋相反的两条轨道。

(3)主量子数为3时,有3s 、3p 、3d 、3f 四条轨道。

分析:本题是涉及电子云及量子数的概念题。必须从基本概念出发,判断正误。

解(1)不正确。因为电子运动并无固定轨道。应改正为:s 电子在核外运动电子云图像是一个球体,其剖面图是个圆。而p 电子云图是一个纺锤体,其剖面图是∞形。

(2)不正确。因为n = 1,l = 0 ,m = 0,只有一个1s 原子轨道。应改为:主量子数为1时,在1s 原子轨道中有两个自旋相反的电子。

(3)不正确。因为n = 3 时,l 只能取0、1、2,所以没有3f 。另外3s 、3p 、3d 的电子云形状不同,3p 还有m = 0、±1 三种空间取向不同的运动状态,有3个原子轨道,3d 有m = 0、±1、±2五种空间取向,有5个原子轨道。因此应改为:主量子数为3时,有9个原子轨道。 四、核外电子的排布规律 1、能量最低原理:

(1)电子总是尽先排在能量最低的轨道,而后依次进入能量较高的轨道。 (2)轨道能量高低顺序:按照n+0.7l 的大小顺序排列

规律:

①当n 相同,l 不同时,l 越大,能量则越大。

例如:E 3s <E 3p <E 3d

②当l 相同,n 不同时,n 越大,能量则越大。

例如:E 1s <E 2s <E 3s <E 4s

③“能级交错”现象。 例如E s 4<E d 3<E p 4,E s 6<E f 4<E d 5<E p 6。

规律解释: ①屏蔽效应和有效核电荷

在多电子原子中,一个电子不仅受到原子核的引力,而且还要受到其他电子的排斥力。这种排斥力显然要削弱原子核对该电子的吸引,可以认为排斥作用部分抵消或屏蔽了核电荷对该电子的作用,相当于使该电子受到的有效核电荷数减少了。我们把由于其他电子对某一电子的排斥作用而抵消了一部分核电荷,使该电子受到的有效核电荷降低的现象称为屏蔽效应。一个电子受到其他电子的屏蔽时,其能量升高。所以有规律E 1s <E 2s <E 3s <E 4s 。 ②钻穿效应

与屏蔽效应相反,外层电子有钻穿效应。外层角量子数(l )小的能级上的电子,如4s 电子离核最近,钻到核附近的机会最多,这样它受到其他电子的屏蔽作用就小,受核的引力就强,因而电子能量降低,造成E 3s <E 3p <E 3d 。我们把外层电子钻到核附近空间运动,使电子能量降低的现象,称为钻穿效应。 ③“能级交错”现象的解释:

4s 虽然比3d 离核远,但4s 轨道比3d 轨道钻得深,可以更好地回避其它电子的屏蔽作用,其钻穿效应增大对轨道能量的降低作用,超过了电子层数增大对轨道能量的升高作用,所以E s 4<E d 3<E p 4。

2、泡利(Pauli )不相容原理(有三种说法):

①每个原子轨道上最多容纳两个电子,且这两个电子必须具有不同的自旋。 ②在同一个原子中,不可能有两个电子处于完全相同的运动状态。

③原子中两个电子所处状态的四个量子数(n 、l 、m 、m s )不可能完全相同。

例题2:按照能量最低原理和泡利不相容原理,请写出B 原子的电子排布式并画出轨道表示式。 3、洪特规则:

电子在能量相同的轨道上排布时,尽量分占不同的轨道且自旋平行,这样的排布方式使原子的能量最低。可见,洪特规则是能量最低原理的一个特例。

例题3:按照能量最低原理和泡利不相容原理及洪特规则,请写出C 、N 、O 、F 、Ne 原子的电子排布式并画出轨道表示式。

4、全满、半满、全空规则: 洪特规则的补充规则:

等价轨道全充满、半充满、全空的状态比较稳定。

相对稳定的状态

例题4:分别写出19号元素K 、24号元素Cr 和29号元素Cu 的电子排布式。 5、核外电子的排布表示方法小结: 根据以上电子排布的三条规则,就可以确定各元素原子基态时的排布情况,电子在核外的排布情况简称电子构型,表示的方法通常有两种。 ①轨道表示法 如:C

一个方框表示一个轨道。↑、↓表示不同自旋方向的电子。 ②电子排布式(亦称电子组态)如:C 1s 2 2s 2 2p 2

为了简化,常用“原子实”来代替部分内电子层构型。所谓原子实,是指某原子内电子层构型与某一稀有气体原子的电子层构型相同的那一部分实体。

如26Fe :1s 2 2s 22p 63s 23p 63d 6 4s 2可表示为[Ar]3d 64s 2 例5下列各组量子数哪些是不合理的,为什么?

(1)n = 2,l = 1,m = 0 (2)n = 2,l = 2 m = -1 (3)n = 3,l = 0,m = 0 (4)n = 3,l = 1,m = +1 (5)n = 2,l = 0,m = -1 (6)n = 2,l = 3,m = +2 例6、试写出下列微粒的电子排布式

(1)13Al 3+ (2)17Cl -

(3)24Cr (4)47Ag 例7、试比较Li 2+离子的2s 和2p 轨道能量的高低。

例8 某元素原子共有3个价电子,其中一个价电子的四个量子数为n = 3、l = 2、m = 2、m s = +2

1。试回答:(1)写出该元素原子核外电子排布式(2)写出该元素的原子序数,指出在周期表中所处的分区、周期数和族序数,是金属还是非金属以及最高正价化合价。

例9、已知某元素在氪前,当此元素的原子失去3个电子后,它的角量子数为2的轨道内电子恰好为半充满,试推断该元素。

例10、 若在现代原子结构理论中,假定每个原子轨道只能容纳一个电子,则原子序数为42的元素的核外电子排布将是怎样的?按这种假设而设计出的元素周期表,该元素将属于第几周期、第几族?该元素的中性原子在化学反应中得失电子情况又将怎样? 五、电离能(电离势)

1.定义:元素的气态原子在基态时失去一个电子成为一价气态正离子所需要的能量,称元素的第一电离能。

基态M (g )?→?

-e M +(g) ?→?-e M 2+(g) ?→?-e

M 3+(g) 例如:Al(g) ?→?

-e

Al +(g)…… 第一电离能I 1= 578 kJ ·mol -1;第二电离能I 2=1823 kJ ·mol -1; 第三电离能 I 3=2751 kJ ·mol -1

元素第一电离能的周期性

2.规律:

半充满:s 1,p 3,d 5,f 7 全空:s 0,p 0,d 0,f 0 全充满:s 2,p 6,d 10,f 14

①各级电离能的大小顺序:I 1< I 2< I 3

②电离能越大,则越难失电子,金属性越弱;电离能越小,则越易失电子,金属性越强; ③同一周期从左到右I 1逐渐增大;稀有气体元素的原子是同一周期中I 1最高的。 ④同一族从上到下第一电离能逐渐减小;

⑤具有全充满和半充满电子构型的原子的电离能比同周期的相邻元素原子的电离能高。如上图中的Be 、N 、Mg 、P 、Zn 、As 、Cd 、Hg 等。

六、电子亲合能(电子亲合势) 1.定义:一个基态的气态原子得到一个电子形成负一价气态阴离子所放出的能量。称该原子的第一电子亲合能。

注意:习惯上把放出能量的电子亲合能E A 用正号表示。O(g)+e ?→?O -

(g) E A =141.8 kJ ·mol -

1

2.规律:

①E A 反映原子得电子难易程度。E A 大,易得电子,非金属性强。

②活泼的非金属一般具有较高的电子亲合势,电子亲合势越大,表明该元素越易获得电子。 ③金属元素的电子亲合势都比较小,说明金属中通常情况下难获得电子形成阴离子。 ④半充满,全充满时E A 小,例如:氮族,稀有气体。

⑤同一主族自上而下E A 呈减小趋势,但第二周期例外,如:F 、O 、N 比Cl 、S 、P 小。(解释:第2周期的非金属元素因原子半径最小,电子密度最大,电子间排斥力很强,以致当加一个电子形成负离子时,放出的能量减小) ⑥元素的第二电子亲合能都是负值。(因为结合第二个电子时不是放出能量,而是吸收能量) 七、电负性:

1.定义:电负性是用来表示元素相互化合时,原子对电子吸收能力大小的一个量。或者说电负性是元素的原子在分子中吸引电子的能力。

1932年化学家鲍林(L. Pauling)指出:“电负性是元素的原子在化合物中吸引电子能力的标度。”并提出:H的负电性为2.1,其它原子的负电性均为相对值,以Xp 表示。。

2.规律:

①电负性数值越大, 表示该元素的原子吸引电子的能力就越强; 反之, 电负性数值越小, 表示该元素的原子吸引电子的能力就越弱。

②周期表中从左到右电负性逐渐增大,从上到下电负性逐渐减小。

③电负性可用于区分金属和非金属。金属的电负性一般小于1.9,而非金属元素的电负性一般大于2.2,处于1.9与2.2之间的元素人们把它们称为“类金属”,它们既有金属性又有非金属性。 ④除稀有气体元素外,电负性最高的元素是周期表是右上角的氟(F 4.19),电负性最小的元素是周期表是左下角的铯(Cs 0.66)

At 270 Po 183 Bi 91.3 Pb 35.1 Tl 19.3 Cs 45.5 I 295 Te 190 Sb 103

Sn 107

In 28.9

Rb 46.9 Br 325 Se 195

As 78.2 Ge 119 Ga 28.9 K 48.4 Cl 349 S 200 P 72.0

Si 134 Al 42.5 Na 59.6 F 328 O 141 N -7 C 122 B 26.7 Li 59.6 H 72.8 部分元素的第一电子亲合能(kJ ·mol -

1) Rn

Xe Kr Ar Ne He At (2.39) I 2.36 Br 2.68 Cl 2.87 F 4.19

Po (2.19) Te 2.16 Se 2.42 S 2.59 O 3.61 Bi (2.01) Sb 1.98 As 2.21 P 2.25 N 3.07 Pb 1.85 Sn 1.82 Ge 1.99 Si 1.92 C 2.54 Tl 1.79 In 1.66 Ga 1.76 Al 1.61 B 2.05 Ba 0.88 Sr 0.96 Ca 1.03 Mg 1.29 Be 1.58 Cs 0.66 Rb 0.71 K 0.73 Na 0.87 Li 0.91 H 2.1

部分元素的电负性

⑤当其它条件相同时,两个电负性相差很大的元素形成的是离子键,电负性相差不大的两种元素形成的是共价键。在共价键中两元素的电负性差别越大,则共价键的极性也越强,共用电子对偏向电负性大的原子越厉害。

自主招生典型例题:

【例1】写出Fe3+离子的电子组态,它有几个未成对电子?

[解析]铁是周期系第四周期第VIII族的第一个元素,其价电子层为3d64s2,总共为8个电子;Fe3+离子可视为铁原子失去3个电子形成的,原子失电子的顺序总是先失去最外层电子,因此Fe3+价电子层为3d5,d能级有5个轨道,按洪特规则,每个d轨道有1个电子,且自旋平行,故Fe3+离子有5个未成对电子(可用方框图使之形象化)。

[答案]Fe3+ 1s22s22p63s23p63d5或[Ar]3s23p63d5

【例2】请应用原子核外电子的排布规律和元素周期律的有关知识预测:

(1)已经制得的114号元素的价电子构型怎样?它应位于周期表的什么位置?

(2)我们已经知道描述核外电子运动状态的一些电子亚层符号,如s、p、d、f,如果接下来的电子亚层符号为g,则第一个包含g亚层电子的元素的原子序数应为多少?

(3)尚未填充的第八周期的元素可能有多少种?

解析:本题意在考查考生的推理能力,虽然考生对114号元素是不清楚的,但运用演绎推理,不难写出其核外电子排布的情况,[86Rn]5f146d107s27p2,从86号的氡开始写是上策,因此其价电子构型为7s27p2,它位于周期表的第七周期ⅣA族,此问也可采用与稀有气体原子序数比较的方法,直接推出它相对稀有气体元素的位置.由于

114-86=28<32,所以此元素应位于86号Rn的下一周期,第七周期,第七周期如果排满,所含元素种类为32种,即Rn的下一周期的稀有气体元素应为86+32=118 号,所以114号元素应处于第ⅣA族,以此位置又可推得其价电子构型,异曲同工。

要预测第二、三问中的未知事物,读者需要将已有知识进行归纳整理,并总结成规律再进行推理来解决.由s、p、d、f各亚层所含的轨道数来分别为1、3、5、7,因此可以设想,接下来的g亚层所含的轨道数为9;又由各周期的元素种数2、8、8、18、18、32、32,可推想第八周期应有32+2*9=50种元素;第一个出现g亚层的原子核外电子排布为[118X]8s25g1,原子序数为118+3=121.

【例3】镧系元素从左到右,原子半径减小的幅度变小,这种现象称为镧系收缩,说说出现这一现象的原因。[解析]这是由于镧系元素从左到右新增加的电子填入倒数第三层上,对外层电子的屏蔽效应更大,外层电子所受到的核电荷增加的影响更小,使得镧系元素从镧到镱整个系列的原子半径减小不明显。

【例4】一般来说,同主族元素的第一电离能从上到下递变的总趋势是依次降低,而副族元素的第一电离能从上到下变化趋势与主族不相同,说明理由。

[解析]原因是核外电子的层数增加而且原子半径递增,核电荷对最外层电子的吸引力降低,所以同主族元素的第一电离能,从上到下递变的总趋势是依次降低,而副族元素的第一电离能从上到下变化趋势与主族不相同,大多是从上到下第一电离能反而增加,原因是虽然核外电子层数增加但原子半径的增加却不显著甚至减小,导致核电荷对最外层电子的吸引力增加。

训练题:

i.电子构型为[Xe]4f145d76s2的元素是

A 稀有气体

B 过渡元素

C 主族元素

D 稀土元素

ii.下列离子中最外层电子数为8的是

A Ga3+

B Ti4+

C Cu+

D Li+

iii.下列基态原子的核外电子排布中,单电子数最多的是

A [Ar]3d94s1

B [Ar]3d54s1

C [Ar]3s23p3

D [Ar]3d54s2

iv.A、B是短周期元素,最外层电子排布式分别为ms x,ns x np x+1。A与B形成的离子化合物加蒸馏水溶解后可使酚酞试液变红,同时有气体逸出,该气体可使湿润的红色石蕊试纸变蓝,则该化合物的分子量是

A 38

B 55

C 100

D 135

v.无机化合物甲、乙分别由三种元素组成。组成甲、乙化合物的元素的特征电子排布都可表示如下:as a、bs b bp b、cs c cp2c。甲是一种溶解度较小的化合物,却可溶于乙的水溶液。由此可知甲、乙的化学式分别是、;甲溶于乙的水溶液化学方程式为。

vi.现代原子结构理论认为,在同一电子层上,可有s、p、d、f、g、h……等亚层,各亚层分别有1、3、5、……个轨道。试根据电子填入轨道的顺序预测:

(1)第8周期共有种元素;

(2)原子核外出现第一个6f电子的元素的原子序数是;

(3)根据“稳定岛”假说,第114号元素是一种稳定同位素,半衰期很长,可能在自然界都可以找到。试推测第114号元素属于周期,族元素,原子的外围电子构型是

vii.A、B两元素,A原子的M层和N层的电子数分别比B原子的M层和N层的电子数少7个和4个。写出A、B两原子的名称和电子排布式,并说明推理过程。

viii.(1)写出下列原子或离子的电子排布式:N、Ar、Fe、Fe2+、Pr3+。(2)在这些原子或离子中含有多少未成对电子?

ix.镍原子的电子构型为[Ar]3d84s2,试判断下一号元素Cu的电子构型[Ar]3d104s中4s电子数?

x.所有原子序数Z为奇数的原子一定至少含有一个未成对电子,试说明原子序数为偶数的原子能含有未成对电子吗?如果答案是肯定的,请在前三个周期的元素中找出例证。

xi.在第一过渡系元素(Z=21~30)中哪些原子是反磁性的?写出它们的电子构型。

xii.Cr的电子构型不服从Aufbau电子排布原理,试推断Cr实际的电子构型,并解释这种异常现象。

xiii.负离子的电子构型仍然遵循Anfbau原理,试写出H-、N3-、F-和S2-的电子构型?

xiv.写出Ni2+、Re3+和Ho3+的电子排布式,并判断这些离子中的未成对电子数是多少?

xv.最先出现g亚层的是哪一主层,写出它的n值和代表符号?如果你的答案是正确的,你将会看到2/3的已知元素在此层填有电子,试说明为什么没有g电子?

xvi.如果M的下一个稀有气体元素是能够稳定存在或可被人工制造的,并假设处于基态的此元素的9个g 轨道仍然没有被电子占据,试推断它的原子序数?

xvii.在绝大多数化合物中镧系元素是以+3价态存在的,但有时在少数几种离子型化合物中也能发现Ce4+和Eu2+,试用价电子构型解释这些离子的变价行为?

xviii.五种元素的原子电子层结构如下:

A 1s22s22p63s23p63d54s2

B 1s22s22p63s2

C 1s22s22p6

D 1s22s22p63s23p2

E 1s22s1

试问其中

(1)哪种元素是稀有气体?

(2)哪种元素最可能生成具有催化性质的氧化物?

(3)哪种元素的原子的第一电离能最大?

xix.写出Eu(63号)、Te(52号)元素原子的电子排布式。若原子核外出现5g和6h五层,请预测第九、十周期最后一个元素原子序数和它们的电子排布。

xx.假定在下列电子的各组量子数中n正确,请指出哪几种不能存在,为什么?

(1)n=1,l=1,m=1,m s=-1。

(2)n=3,l=1,m=2,m s=+1/2。

(3)n=3,l=2,m=1,m s=-1/2。

(4)n=2,l=0,m=0,m s=0。

(5)n=2,l=-1,m=1,m s=+1/2。

(6)n=4,l=3,m=2,m s=2。

i B

ii B

iii B

iv C

v BeCO

3H2CO3BeCO3+H2CO3=Be(HCO3)2

vi (1)50 (2)139 (3)七ⅣA 7s27p2

vii A原子的M层电子数比B原子的M层的电子数少7个,说明B原子的M层已经排满;A原子的N层的电子数比B原子的N层的电子数少4个,说明B原子的4s轨道已经排满,由电子排布的知识很容易判断出AB 来。A为钒(V),电子排布式为[Ar]3d34s2;B为硒(Se),[Ar]3d104s24p4

viii(1)N的原子序数是7。第一层(K层)最多可容纳2个电子,剩下的5个电子排布在第二层(L层)中,能量较低的S轨道排2个,其余3个排在p轨道中。电子排布式为:Is22s22p3

通常把内层已达稀有气体的电子层结构写成“原子实”,用稀有气体符号加括号来表示,[He]2s22p3

Ar的原子序数是18。将电子按次序相继排人到K,L和M层中,Is22s22p63s23p6

Fe的原子序数是26。超出Ar电子层结构的电子按次序先后排入到4s和3d轨道中,直到26个电子全部排完。Fe的电子排布式为:Is22s22p63s23p63d64s2或[Ar]3d64s2

Fe2+有24个电子,比电中性的Fe原子少2个电子。虽然在原子序数为19和20(K和Na)的元素中4s轨道的能量比3d轨道低,但在较高核电荷情况下这一顺序发生颠倒。一般来说,具有最大主量子数的轨道上的电子最容易失去。Fe2+的电子排布式为:[Ar]3d6

Pr3+有56个电子,比电中性的Pr原子少3个电子。在稀有气体Xe的电子层结构之后是第六周期,电子的充填顺序是;6s2、再排l个5d、然后是4f轨道直至排满为止、再排空下的5d,最后是6p轨道。时常会发生先填充4f轨道而不是sd,或者是先填充sd而不是6S轨道,不过对于Pr3+来说这些不规则填充顺序无关紧要。

按正常规则从中性原子中移走3个电子形成Pr3+离子,即首先移去最外层(主量子数n最大的)电子,然后再移去次外层电子。首先移去6s电子,如果有5d电子的话,随后应移去5d电子(所以说即便是中性原子中有一个5d电子在这种情况下也是要被移去的)。Pr3+的电子排布式为

Is22s22p63s23p63d104s24p64d104p5s25p6或[Xe]4f2

(2)在一个完全充满电子的亚层中没有未成对电子,所以无须对稀有气体电子结构进行考察。

对于N原子,2p是仅有的未充满亚层。按Hund规则3个电子应分占三个不同p轨道,所以它有3个未成对电子。

Ar原子中没有未充满亚层,因此没有未成对电子。

Fe有6个电子处于仅有的一个未充满亚层中,在5个d轨道中有一个容纳配对的2个电子,其余4个轨道各含一个未成对的单电子。所以它含有4个未成对电子。

Fe2+有4个未成对电子,理由同Fe。

Pr3+有2个未成对电子,在7个可占据的f轨道中只有两个轨道各被一个电子所占据。

ix按常规考虑完成Cu的电子排布,应该是在它前面元素Ni的电子构型基础上再加入1个电子,由此预期应该只有9个d电子。对于原子序数为19的元素,3d亚层的能量无疑比4s高,因此钾原子有1个4s电子而没有3d电子。但是,当4s亚层填满以后,从21号元素开始填充3d亚层时,随着3d电子相继填入,3d亚层的平均能量随之降低。这是由于每填入一个电子增加一个原子序数,随之增加一个核电荷,而填入的3d电子对同层的其他3d电子的屏蔽作用较低,因此随着3d电子的填入,核对3d电子束缚增加,3d亚层能量逐步下降,以至低于4s。

若采取[Ar]3d104s1电子构型,则具有一个稳定的球形对称密度分布,因为全充满或半充满亚层是稳定的。

若采取[Ar]3d94s2电子构型,则在3d亚层中有一个“孔穴”,与全充满3d电子构型相差1个电子,从而破坏了球对称性和额外的稳定化作用。综上所述,Cu的电子构型[Ar]3d104s1。

x 可以,C、O、Si和S

xi 只有Zn一个元素,[Ar]3d104s2

xii Cr实际的电子构型为[Ar]3d54s1。按照Aufbau原理Cr的价电子构型应该是3d44s2,将s轨道的一个电子填人d轨道,可形成球形对称的半充满电子构型,从而获得额外的稳定化能。

xiii H-:1s2或[He] N3-:[Ne] F-:[Ne] S2-:[Ar]

xiv Ni2+;[Ar]3d8,含2个未成对电子;Re3+:[Xe]4f145d4,含4个未成对电子;Ho3+:[Xe]4f10,含4个未成对电子。

xv n=5(符号为O)时,允许的最大l=4(符号为g)。按Anfbau原理,g轨道的能量太高,以至于不能接纳任何电子。

xvi 118

xvii Ce4+具有稀有气体Xe的稳定电子构型;Eu2+含有61个电子,电子构型为[Xe]4f7,具有稳定的半充满结构。xviii (1)稀有气体元素原子的外层电子构型为ns2np6,即s和p能级是全满的,因此上述C是稀有气体元素,它是Ne。(2)过渡元素在化合物中具有可变的化合价,因此它们的氧化物往往具催化性质。在上述五种元素中,A是过渡元素,它的氧化物MnO2是KClO3热分解反应的催化剂。(3)由第一电离能在同一周期和同一族内的递变规律。可以推想到,第一电高能较大的元素应集中在p区元素的右上角区域,而上述五种元素中,C正处于这一区域,因此C是这五种元素中第一电离能最大的元素。

xix由于第一层仅有s亚层,第二层出现2p,第三层出现3d,第四层出现4f,可推知第五层新增5g,第六层新增6h,各亚层排布的电子数为s2、p6、d10、f14、g18、h22

电子的排布遵循,ns→(n-4)h→(n-3)g→(n-2)f→(n-1)d→…的顺序

Eu(63)号Te(52号)为周期在中元素排布分别为Eu:[Xe]5f76s2Te:[Kr]4d105s25p4

第九周期最后一个元素应从9s开始排布,以118号稀有气体为原子核:[118]9s26h226g187f148d109p6。原子序数为:118+2+18+14+10+6=168

第十周期最后一个元素从10s开始排布,以168号稀有气体为原子核:[168]10s26h227g188f149d1010p6,原子序数为:168+2+22+18+14+10+6=240

xx(1)、(2)、(4)、(5)、(6)组不能存在。因为:(1)n=l时,l只能为0,m也只能为0,m

能为+1/2或-

s 1/2;(2)n=3,l=l时,m只能为0或+1,或-1;(4)n=2,l只能为0或1,m s只能为1/2或-1/2。n =2,l只能为0或1;(6)m s只能为1/2或-1/2

(完整版)第一章原子结构与性质知识点归纳

第一章 原子结构与性质知识点归纳 山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红 2.位、构、性关系的图解、表解与例析 (1)元素在周期表中的位置、元素的性质、元素原子结构之间存在如下关系: 同位素(两个特性)

3.元素的结构和性质的递变规律 4.核外电子构成原理 (1)核外电子是分能层排布的,每个能层又分为不同的能级。 随着原子序数递增 ① 原子结构呈周期性变化 ② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化 ⑤ 元素原子的第一电离能呈周期性变化 ⑥ 元素的电负性呈周期性变化 元素周期律 排列原则 ① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除外),排成一个 纵行 周期(7个横行) ① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期) ③ 不完全周期(第七周期) 性质递变 原子半径 主要化合价 元 素 周 期 表 族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④ 结 构

(2)核外电子排布遵循的三个原理: a.能量最低原理b.泡利原理c.洪特规则及洪特规则特例 (3)原子核外电子排布表示式:a.原子结构简图b.电子排布式c.轨道表示式5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法 1.先推断元素在周期表中的位置。 2.一般说,族序数—2=本族非金属元素的种数(1 A族除外)。 3.若主族元素族序数为m,周期数为n,则: (1)m/n<1时为金属,m/n值越小,金属性越强: (2)m/n>1时是非金属,m/n越大,非金属性越强;(3)m/n=1时是两性元素。

(完整版)原子结构与性质知识点总结与练习

第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,

一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3 的轨道式为或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He 为1s2外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。 2.元素周期表的分区 (1)根据核外电子排布 ①分区 ②各区元素化学性质及原子最外层电子排布特点 ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

原子结构与性质知识点归纳

第一章原子结构与性质知识点归纳 山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红 1原子结构 电子的吸引 外) 电负性逐渐减小 电负性增大 主要化合价 正价+1到+7 负价-4到 最高正价等于族序数(F 、O 除 元素性质 金属性逐渐减弱,非金属性逐 金属性逐渐增强,非金属性逐 渐增强 渐减弱,第一电离能逐渐减小, 原 2?位、构、性 质子 核电荷 决定元素种 系的图解、表解与例析_?近似相对原子 (1原元素持中中子置、元素的性质子种素原子位原子不特下关系: 子决定主族元素的化学 原子的电子式 子结构最高正价=8- F 原子纟逐渐增多 电子层数递增,最外层电子数 相同 原子核对外 逐渐增强 逐渐减弱 -1 电离能增大, 层 :电子排 同主族:从上到下 同主族:从上 位置 电子层结构 电子层数主族序数最= 递增 外 电 T *子 及化左 核电荷数 」到下一同周期::从左至负价

核外电 1族(18〈 个) 非金属性 ②副族(第I B 族一第% B 族共七 子是分能层排 3.元素的结构和性质的递变规律 随着原子序数递增 ①原子结构呈周期性变化序数递增的顺序从左到右排列 排②原则子半径呈周期性变化层数相同的元素排成一个横行 个横行)②长周期(第四、五、六周期) 厂金属性强 元素性质 Y 主要化主族(第I A 族—第% A 族共七验标志 元素周 、-③元素主要化合价 周期,7①外层变化第同的元三周别别)除外) 性质递变^原子半径 弱判断实

电子排布表示式:a .原子结构简图 b ?电子排布式c ?轨道表示式 5.原子核外电子运动状态的描述:电子云 6 .确定元素性质的方法 1 .先推断元素在周期表中的位置。 2 .一般说,族序数一2二本族非金属元素的种数(1 A 族 除外) 3 .若主族元素族序数为 m 周期数为n 贝y : (1)m/n<1 时为金属,m/n 值越小,金属性越强: ⑵m/n>1 时是非金属,m/n 越大,非金属性越强; ⑶m/n=1时是两性元素 ⑵核外电子 排布遵循的三 个原理: a .能量最低 原 理 b .泡 利 原 理 c .洪特规则及 洪特规则特例 (3)原子核外 布的,每个能层又分为不同的能级

完整版原子结构与性质知识点总结与练习

第一章原子结构与性质 ?原子结构 1?能级与能层 加:也瓦子的总十轨ift 呈哦讳醪 mW L1+ wpFfe 詆上 各隐级上的廉「孰直養副」枳|睡緘丄宇牛 佩址」一-牛 * + b +*-r ⑴相同题上㈱子執坦能量的高低; WS 畀卩M?i 『 ② 形状相R 的尙子報说能卡的髙低: 农2令触靭…… ③ 同橋层内用状相同而伸屛方向 不同的廉了蜿ifi 的昶章和专'如 即“ 2i 如即勘道仰能楚4A 零 3. 原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基 轨道(能级),叫做构造原理。 J ◎⑥?金 ? ◎⑥、⑥、⑥ ⑥⑥⑥? ?i/ 能级交错:由构造原理可知,电子先进入 说明:构造原理并不是说 4s 能级比3d 能级能 量低(实际上 4s 能级比3d 能级能量高),而是指这样顺 序填充电子可以使整个原子的能量最低。 也就是说,整个原子的能量不能机械地看做是各电子所处轨道的 能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量 最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。 换言之, 态原子的电子按右图顺序填入核外电子运动 4s 轨道,后进入3d 轨道,这种现象叫能级交错。

一个轨道里最多只能容纳两个电子, 且电旋方向相反 (用“TJ”表示),这个原理称为泡利(Pauli )原理 (4) 洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道, 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。 即 p0、dO 、fO 、p3、d5、f7、p6、d10、f14 时,是较稳定状态。 前36号元素中,全空状态的有 4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、 15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有 10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1) 电子排布式 ① 用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K : 1s22s22p63s23p64s1。 ② 为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相 应稀有气体 的元素符号外加方括号表示,例如 K : [Ar]4s1。 (2) 电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 帀冋戸冋河丽FW1 In 2 驶 2fi 3* 3|> 二.原子结构与元素周期表 1. 原子的电子构型与周期的关系 (1) 每周期第一种元素的最外层电子的排布式为 ns1。每周 期结尾元素的最外层电子排布式除 He 为1s2 外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的 电子排布跟其他周期不同。 (2) 一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量 相同的能级,而 是能量相近的能级。 2. 元素周期表的分区 (1)根据核外电子排布 ① 分区 这个规则叫洪特( Hund )规则。比如, f J J J fJ I f p3的轨道式为 而且自旋方向相同,

原子结构与元素的性质说课稿

《原子结构与元素的性质》说课设计 高二年级化学组xx 一、教学分析: (一)分析教材 本节课是在必修2第一章《物质结构元素周期律》,选修3第一章第一节《原子结构》基础上进一步认识原子结构与元素性质的关系。在复习原子结构及元素周期表相关知识的基础上,从原子核外电子排布的特点出发,结合元素周期表进一步探究元素在周期表中的位置与原子结构的关系。按照课程标准要求比较系统而深入地介绍了原子结构与元素性质的关系,为后阶段学习元素周期律和分子结构奠定了基础。尽管本节内容比较抽象,学生学起来有困难,但教科书在内容编排上注重了由易到难层层深入,能够激发和保持学生的学习兴趣。 (二)分析学生 1、知识技能方面:学生已学习了原子结构及元素周期表的相关知识和元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性变化等知识,为学习本节奠定了一定的知识基础。 2、学法方面:在必修2第一章《物质结构元素周期律》的学习过程中已经初步掌握了理论知识的学习方法——逻辑推理法、抽象思维法、总结归纳法,具有一定的学习方法基础。根据以上两个分析,我确定本课教学目标如下 二、教学目标: (一)知识与技能目标 1、了解元素原子核外电子排布的周期性变化规律。 2、进一步认识元素周期表与原子结构的关系。 (二)过程与方法目标通过问题探究和讨论交流,进一步掌握化学理论知识的学习方法──结构决定性质。

(三)情感态度与价值观目标学生在问题探究的过程中,同时把自己融入科学活动和科学思维中,体验科学研究的过程和认知的规律性,在认识上和思想方法上都得到提升。根据以上两个分析,我确定了本节课的教学重点和难点:(四)教学的重点和难点 1、教学重点:元素的原子结构与元素周期表的关系 2、教学难点:元素周期表的分区为了有用地达成教学目标,突出教学重点,突破难点,我准备采用以下教学策略,下面说教学策略的设计 三、教学策略: (一)教学模式 在建构主义学习理论指导下,采用“复习引入——自主探究——合作交流——巩固练习”的教学模式。 (二)教学方法与手段讲授法与讨论法相结合,其中运用多媒体等教学手段。 (三)教学流程图 教学策略是有针对性的,必须把例外的教学策略运用到相应的教学环节中,要想使一堂课优化,只有把有用的教学策略恰当地运用到优化的教学过程中,才能更有用地达成教学目标下面,我重点说教学过程的设计。 四、说教学过程 (一)创设情境,温故导新1.创设情景:展示门捷列夫的第一张元素周期表和例外形式排列的几种元素周期表,激发学生学习的兴趣,扩展学生知识面。 2.温故导新:通过复习元素周期表的结构如何?元素的原子结构与元素在周期表中的位置有什么关系等问题?很自然的导入新课。 (二)活动探究、探索新知为了让学生参与活动探究,使生疏的化学概念变得栩栩如生,易于理解,同时也使学生对化学学习,尤其是微观领域的学习

高中化学选修3知识点全部归纳(物质的结构与性质)

高中化学选修3知识点全部归纳(物质的结构与性质) 第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P ②.元素电离能的运用: a. 用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱. b .电离能是原子核外电子分层排布的实验验证. 分析原子核外电子层结构,如某元素的I n+1?I n,则该元素的最外层电子数为n。 (3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。 随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势. 电负性的运用: a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素). b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键). c.判断元素价态正负(电负性大的为负价,小的为正价).

原子结构与元素的性质高考总复习

原子结构与元素的性质 1.原子核外电子排布与周期的划分 周期外围电子排布 各周期增加的能级元素种数ⅠA族0族最外层最多容纳电子数 一1s11s221s2 二2s12s22p682s、2p8 三3s13s23p683s、3p8 四4s14s24p684s、3d、4p18 五5s15s25p685s、4d、5p18 六6s16s26p686s、4f、5d、6p32 七7s187s、5f、6d(未完)…… (2)观察分析上表,讨论原子核外电子排布与周期划分的关系 ①元素周期系形成的原因:元素原子核外电子排布发生周期性的变化。 ②元素周期系的形成过程 ③元素周期系的特点:每一周期(除第一周期外)从碱金属元素开始,到稀有气体元素结束,外围电子排布从n s1递增至n s2n p6;元素周期系的周期不是单调的,而是随周期序号的递增逐渐增多,同时,金属元素的数目也逐渐增多。 2.原子核外电子排布与族的划分 族数ⅠAⅡAⅢAⅣAⅤAⅥAⅦA 价电子排布式n s1n s2n s2n p1n s2n p2n s2n p3n s2n p4n s2n p5 列数121314151617 价电子数1234567 副族元素21Sc22Ti23V24Cr25Mn29Cu30Zn 族数ⅢBⅣBⅤBⅥBⅦBⅠBⅡB 价电子排布式3d14s23d24s23d34s23d54s13d54s23d104s13d104s2 价电子数目34567 (3)依据上述表格,讨论族的划分与原子核外电子排布的关系 ①同主族元素原子的价层电子排布完全相同,价电子全部排布在n s或n s n p轨道上。价电子数与族序数相同。 ②稀有气体的价电子排布为1s2或n s2n p6。 ③过渡元素(副族和Ⅷ族)同一纵行原子的价层电子排布基本相同。价电子排布为(n-1)d1~10n s1~2,ⅢB~ⅦB族的价电子数与族序数相同,第ⅠB、ⅡB族和第Ⅷ族不相同。

选修3第一章原子结构与性质知识总结

第一章 原子结构与性质知识点归纳 2.位、构、性关系的图解、表解与例析 同位素(两个特性)

3.元素的结构和性质的递变规律 4.核外电子构成原理 (1)核外电子是分能层排布的,每个能层又分为不同的能级。 (2)核外电子排布遵循的三个原理: a .能量最低原理 b .泡利原理 c .洪特规则及洪特规则特例 (3)原子核外电子排布表示式:a .原子结构简图 b .电子排布式 c .轨道表示式 5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法 第二章 分子结构与性质复习 随着原子序数递增 ① 原子结构呈周期性变化 ② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化 ⑤ 元素原子的第一电离能呈周期性变化 ⑥ 元素的电负性呈周期性变化 元素周期律 排列原则 ① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除 外),排成一个纵行 周期 (7个 横行) ① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期) ③ 不完全周期(第七周期) 元 素 周 期 表 族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④结 构

1、微粒间的相互作用 (2)共价键的知识结构 2.分子构型与物质性质 (1)微粒间的 相互作用 σ键 π键 按成键电子云 的重叠方式 极性键 非极性键 一般共价键 配位键 离子键 共价键 金属键 按成键原子 的电子转移方式 化学键 范德华力 氢键 分子间作用力 本质:原子之间形成共用电子对(或电子云重叠) 特征:具有方向性和饱和性 σ键 特征 电子云呈轴对称 (如s —s σ键、 s —p σ键、p —p σ键) π键 特征 电子云分布的界面对通过键轴的一个平面对称(如p —p π键) 成键方式 共价单键—σ键 共价双键—1个σ键、1个π键 共价叁键—1个σ键、2个π键 规律 键能:键能越大,共价键越稳定 键长:键长越短,共价键越稳定 键角:描述分子空间结构的重要参数 用于衡量共价键的稳定性 键参数 共 价 键

第二节原子结构与元素的性质

第二节原子结构与元素的性质

教学步骤、内容 教学方法、手段、 师生活动 [引入]我们明白元素性质是由元素原子结构决定的,那具体阻碍哪些性质呢? [讲]元素的性质指元素的金属性和非金属性、元素的要紧化合价、原子半径、 元素的第一电离能和电负性。 [学与咨询]元素周期表中,同周期的主族元素从左到右,最高化合价和最低 化合价、金属性和非金属性的变化规律是什么? [投影小结]同周期主族元素从左到右,元素最高化合价和最低化合价逐步升 高,金属性逐步减弱,非金属性逐步增强。 [讲]元素的性质随核电荷数递增发生周期性的递变,称为元素周期律。元素 周期律的内涵丰富多样,下面,我们来讨论原子半径、电离能和电负性的周期 性变化。 [板书]二、元素周期律 1、原子半径 [投影]观看图1—20分析: [学与咨询]1.元素周期表中同周期主族元素从左到右,原子半径的变化趋 势如何?应如何明白得这种趋势? 2.元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应 如何明白得这种趋势? [小结]同周期主族元素从左到右,原子半径逐步减小。其要紧缘故是由于核 电荷数的增加使核对电子的引力增加而带来原子半径减小的趋势大于增加电子 后电子间斥力增大带来原子半径增大的趋势。 同主族元素从上到下,原子半径逐步增大。其要紧缘故是由于电子能层增 加,电子间的斥力使原子的半径增大。 [讲]原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是 核电荷数。明显电子的能层数越大,电子间的负电排斥将使原子半径增大,因

此同主族元素随着原子序数的增加,电子层数逐步增多,原子半径逐步增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,因此同周期元素,从左往右,原子半径逐步减小。 [咨询]那么,粒子半径大小的比较有什么规律呢? [投影小结]1、原子半径大小比较:电子层数越多,其原子半径越大。当电子层数相同时,随着核电荷数增加,原子半径逐步减小。最外层电子数目相同的原子,原子半径随核电荷数的增大而增大 2、核外电子排布相同的离子,随核电荷数的增大,半径减小。 3、同种元素的不同粒子半径关系为:阳离子<原子<阴离子,同时价态越高的粒子半径越小。 [过渡]那么,什么叫电离能呢,电离能与元素的金属性间有什么样的关系呢?[板书]2、电离能 〔1〕定义:气态原子或气态离子失去一个电子所需要的最小能量叫做电离能. ①常用符号I表示,单位为KJ?mol-1 ②意义:通常用电离能来表示原子或离子失去电子的难易程度。[讲]原子为基态原子,保证失去电子时消耗能量最低。电离能用来表示原子或分子失去电子的难易程度。电离能越大,表示原子或离子越难失电子;电离能越小,表示原子或离子易失电子, [点击试题]Na元素的I1=496 KJ·mol-1,那么Na (g) -e-→Na +(g) 时所需最低能量为 . [板书]〔2〕元素的第一电离能:处于基态的气态原子失去1个电子,生成+1价气态阳离子所需要的能量称为第一电离能,常用符号I1表示。 [讲]气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。上述表述中的〝气态〞〝基态〞〝电中性〞〝失去一个电子〞等差不多上保证〝最低能量〞的条件。 [投影] [咨询]读图l—21。碱金属原子的第一电离能随核电荷数递增有什么规律呢? [讲]从图l—2l可见,每个周期的第一个元素(氢和碱金属)第一电离能最小,最后一个元素(稀有气体)的第一电离能最大;同族元素从上到下第一电离能变小(如He、Ne、Ar、Kr、Xe、Rn的第一电离能依次下降,H、Li、Na、K、Rb、

原子结构与元素性质

第二节原子结构与元素的性质 一、元素周期表的编排原则 1.将电子层数相同的元素按原子序数递增的顺序从左到右排成横行。 2.把最外层电子数相同的元素(个别例外)按电子层数递增的顺序从上到下排成纵行。 二、周期表的结构 周期:具有相同的电子层数的元素按照原子序数递增的顺序排成一个横行。 主族:由短周期和长周期元素共同构成的族。 副族:仅由长周期元素构成的族。 1.核外电子排布与族序数之间的关系 可以按照下列方法进行判断:按电子填充顺序由最后一个电子进入的情况决定,具体情况如下:

(3)进入(n -1)d ①(n -1)d 1~5为ⅢB~ⅦB ?族数=[(n -1)d +n s]电子数 ②(n -1)d 6~8为Ⅷ ③(n -1)d 10为ⅠB、ⅡB ?族数=n s 的电子数 ④进入(n -2)f ? ?????????4f ——La 系元素5f ——Ac 系元素ⅢB 2. 3.(1)主族(ⅠA~ⅦA)和副族ⅠB、ⅡB 的族序数=原子最外层电子数(n s +n p 或n s)。 (2)副族ⅢB~ⅦB 的族序数=最外层(s)电子数+次外层(d)电子数。 (3)零族:最外层电子数等于8或2。 (4)Ⅷ族:最外层(s)电子数+次外层(d)电子数。若之和分别为8、9、10,则分别是Ⅷ族第1、2、3列。 1.同周期,从左到右,原子半径依次减小。 2.同主族,从上到下,原子或同价态离子半径均增大。 3.阳离子半径小于对应的原子半径,阴离子半径大于对应的原子半径,如r (Na +)

4.电子层结构相同的离子,随核电荷数增大,离子半径减小,如r(S2-)>r(Cl-)>r(K+)>r(Ca2+)。 5.不同价态的同种元素的离子,核外电子多的半径大,如r(Fe2+)>r(Fe3+),r(Cu+)>r(Cu2+)。 特别提醒 在中学要求的畴可按“三看”规律来比较微粒半径的大小 “一看”能层数:当能层数不同时,能层越多,半径越大。 “二看”核电荷数:当能层数相同时,核电荷数越大,半径越小。 “三看”核外电子数:当能层数和核电荷数均相同时,核外电子数越多,半径越大。 七、电离能 1.第一电离能 (1)每个周期的第一个元素(氢和碱金属)第一电离能最小,稀有气体元素原子的第一电离能最大,同周期中自左至右元素的第一电离能呈增大的趋势。 (2)同主族元素原子的第一电离能从上到下逐渐减小。 2.逐级电离能 (1)原子的逐级电离能越来越大 首先失去的电子是能量最高的电子,故第一电离能较小,以后再失去电子都是能级较低的电子,所需要的能量多;同时,失去电子后离子所带正电荷对电子吸引更强,从而电离能越来越大。 (2)金属元素原子的电离能与其化合价的关系 一般来讲,在电离能较低时,原子失去电子形成阳离子的价态为该元素的常见价态。如Na的第一电离能较小,第二电离能突然增大(相当于第一电离能的10倍),故Na的化合价为+1,而Mg在第三电离能、Al在第四电离能发生突变,故Mg、Al的化合价分别为+2、+3。 八、元素电负性的应用 1.元素的金属性和非金属性及其强弱的判断 (1)金属的电负性一般小于 1.8,非金属的电负性一般大于 1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性,又有非金属性。 (2)金属元素的电负性越小,金属元素越活泼;非金属元素的电负性越大,非金属元素越活泼。 (3)同周期自左到右,电负性逐渐增大,同主族自上而下,电负性逐渐减小。 (4)电负性较大的元素集中在元素周期表的右上角。 2.化学键的类型的判断 一般认为:如果两个成键元素原子间的电负性差值大于1.7,它们之间通常形成离子键;如果两个成键元素原子间的电负性差小于1.7,它们之间通常形成共价键。

原子结构与元素的性质时优秀教案

第二节原子结构与元素地性质 第三课时 【学习目标】 1.能说出元素电负性地涵义,能应用元素地电负性说明元素地某些性质 2.能根据元素地电负性资料,解释元素地“对角线”规则,列举实例予以说明 3.能从物质结构决定性质地视角解释一些化学现象,预测物质地有关性质 4.进一步认识物质结构与性质之间地关系,提高分析问题和解决问题地能力 【学习过程】 【课前预习】 1. 叫键合电子;我们用电负性描述. 2.电负性地大小可以作为判断元素金属性和非金属性强弱地尺度. 地电负性一般小于1.8,地电负性一般大于1.8,而位于非金属三角区边界地“类金属”地电负性则在1.8左右,他们既有性又 有性. 【知识梳理】 【复习】1.什么是电离能?它与元素地金属性、非金属性有什么关系? 2.同周期元素、同主族元素地电离能变化有什么规律? (3)电负性: 【思考与交流】1. 什么是电负性?电负性地大小体现了什么性质?阅读教材p20页表同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧地非金属性与氯地非金属性哪个强? 【科学探究】 1.根据数据制作地第三周期元素地电负性变化图,请用类似地方法制作IA、VIIA元素 地电负性变化图. 2.电负性地周期性变化示例

【归纳与总结】 1. 金属元素越容易失电子,对键合电子地吸引能力越,电负性越小,其金属性越;非金属元素越容易得电子,对键合电子地吸引能力 越,电负性越,其非金属性越强;故可以用电负性来度量金属性与非金属性地强弱.周期表从左到右,元素地电负性逐渐变;周期表从上到下,元素地电负性逐渐变. 2. 同周期元素从左往右,电负性逐渐增,表明金属性逐渐减弱,非金属性逐渐增.同主族元素从上往下,电负性逐渐减,表明元素地金属性逐渐减弱,非金属性逐渐增强. 【思考】对角线规则:某些主族元素与右下方地主族元素地有些性质相似,被称为对角线原则.请查阅电负性表给出相应地解释? 3. 在元素周期表中,某些主族元素与右下方地主族元素地性质有些相似,被称为“对角线规则”.查阅资料,比较锂和镁在空气中燃烧地产物,铍和铝地氢氧化物地酸碱性以及硼和硅地含氧酸酸性地强弱,说明对角线规则,并用这些元素地电负性解释对角线规则. 4. 对角线规则 【典题解悟】 例题1.下列有关电负性地说法中正确地是() A.主族元素地电负性越大,元素原子地第一电离能一定越大. B.在元素周期表中,元素电负性从左到右越来越大 C.金属元素电负性一定小于非金属元素电负性. D.在形成化合物时,电负性越小地元素越容易显示正价 解析:电负性地变化规律: (1)同一周期,从左到右,元素电负性递增. (2)同一主族,自上而下,元素电负性递减.(3)副族元素地电负性变化趋势和主族类似.主族元素原子地电离能、电负性变化趋势基本相同,但电离能有特例,如电负性:O >N,但第一电离能:N>O,A错误.B、C选项没有考虑过渡元素地情况. 答案:D 例2.能够证明电子在核外是分层排布地事实是() A、电负性 B、电离能 C、电子亲和能 D、电势能 【当堂检测】 1. 电负性地大小也可以作为判断金属性和非金属性强弱地尺度下列关于电负性地变化规律正确地 是()

物质结构与性质知识点总结

高中化学物质结构与性质知识点总结 一.原子结构与性质. 一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.

(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式.

高中化学选修《物质结构与性质》知识点提纲-苏教版

【给力资源!】 【高中化学选修《物质结构与性质》知识点提纲,苏教版】 一.原子结构与性质. 一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式.

知识讲解_原子结构与元素的性质_基础

原子结构与元素的性质 编稿:宋杰审稿:于冬梅 【学习目标】 1、进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系; 2、知道外围电子排布和价电子层的涵义,认识周期表中各区、周期、族元素的原子核外电子排布的规律; 3、掌握原子半径的变化规律; 4、了解元素电离能的涵义,能应用元素的电离能说明元素的某些性质、主族元素电离能的变化与核外电子排布的关系; 5、了解元素电负性的涵义,能应用元素的电负性说明元素的某些性质,根据元素的电负性资料,解释元素的“对角线”规则; 6、认识原子结构与元素周期系的关系,形成有关物质结构的基本观念,认识物质的结构与性质之间的关系,提高分析问题和解决问题的能力。 【要点梳理】 【高清课堂:原子结构与性质#原子结构与周期表】要点一:原子结构与周期表 1、元素周期系:(元素的原子核外电子的排布发生周期性的重复的结果) 随着元素原子的核电荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。然后又开始由碱金属到稀有气体,这就是元素周期系中的一个个周期。这也是原子核外电子排布规律中为什么最外层的电子数不超过8个电子的原因。 2、元素周期表:(体现元素原子结构、元素性质的周期性变化) ⑴元素周期表的结构 在第一周期中元素只有一个电子层即第一个能层,而第一能层只有一个能级,该能级最多只容纳2个电子,所以第一周期只有两种元素。因此元素周期系的发展就像螺壳上的螺纹一样螺旋上升的。 ⑵、原子结构与元素在周期表中的位置关系(元素在周期表中的位置由原子结构决定) 原子核外电子层数决定元素所在的周期: 周期序数=原子核外电子层数; 原子的价电子总数决定元素所在的族,周期表上的外围电子排布称为“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化,“价电子”即与元素化合价有关的电子,元素周期表的每个纵列的价电子层上电子总数相同,对于主族元素,价电子指的就是最外层电子,所以: 主族元素其族序数=价电子数=最外层电子数。 而副族元素的族序数不等于其最外层电子数,其族序数跟核外电子的排布有关。 要点诠释:价电子数与族序数的关系 S区元素价电子特征排布为nS1~2,价电子数等于族序数。d区元素价电子排布特征为(n-1)d1~10ns1~2,价电子总数等于副族序数;ds区元素特征电子排布为(n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。 外围电子总数决定排在哪一族如:29Cu3d104s1,10+1=11尾数是1所以,是IB。

高中化学选修3物质结构与性质全册知识点总结

高中化学 选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s 、p 、d 、f ,能 量由低到高依次为s 、p 、d 、f 。 ③任一能层,能级数等于能层序数。 ④s 、p 、d 、f ……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 :能层的序数)。 n (22n 每能层所容纳的最多电子数是:

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分 布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式 的主要依据之一。 (3)不同能层的能级有交错现象,如E (3d )>E (4s )、E (4d )>E (5s )、E (5d )>E (6s )、E (6d )>E (7s )、E (4f )>E (5p )、E (4f )>E (6s )等。原 子轨道的能量关系是:ns <(n-2)f < (n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目 对应着每个周期的元素数目。 ;最 2 n 2根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于 最低能量状态 的原子称为 基态原子 。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子 跃迁至较高能级时的状态。处于激发态的原子称为激发态原子 。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定 元素。 3、电子云与原子轨道

高中化学物质结构与性质期末复习资料(知识点总结)

第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化:

重点高中化学选修3物质结构与性质全册知识点总结

重点高中化学选修3物质结构与性质全册知识点总结

————————————————————————————————作者:————————————————————————————————日期:

高中化学选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。 (3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

相关文档
相关文档 最新文档