文档库 最新最全的文档下载
当前位置:文档库 › 双极型晶体管测试参数总结

双极型晶体管测试参数总结

双极型晶体管测试参数总结
双极型晶体管测试参数总结

Cc 集电极电容

Ccb 集电极与基极间电容

Cce 发射极接地输出电容

Ci 输入电容

Cib 共基极输入电容

Cie 共发射极输入电容

Cies 共发射极短路输入电容

Cieo 共发射极开路输入电容

Cn 中和电容(外电路参数)

Co 输出电容

Cob 共基极输出电容。在基极电路中,集电极与基极间输出电容

Coe 共发射极输出电容

Coeo 共发射极开路输出电容

Cre 共发射极反馈电容

Cic 集电结势垒电容

CL 负载电容(外电路参数)

Cp 并联电容(外电路参数)

BVcbo 发射极开路,集电极与基极间击穿电压

BVceo 基极开路,CE结击穿电压

BVebo 集电极开路EB结击穿电压

BVces 基极与发射极短路CE结击穿电压

BV cer 基极与发射极串接一电阻,CE结击穿电压

D 占空比

fT 特征频率

fmax 最高振荡频率。当三极管功率增益等于1时的工作频率

hFE 共发射极静态电流放大系数

hIE 共发射极静态输入阻抗

hOE 共发射极静态输出电导

h RE 共发射极静态电压反馈系数

hie 共发射极小信号短路输入阻抗

hre 共发射极小信号开路电压反馈系数

hfe 共发射极小信号短路电压放大系数

hoe 共发射极小信号开路输出导纳

IB 基极直流电流或交流电流的平均值

Ic 集电极直流电流或交流电流的平均值

IE 发射极直流电流或交流电流的平均值

Icbo 基极接地,发射极对地开路,在规定的VCB反向电压条件下的集电极与基极之间的反Iceo 发射极接地,基极对地开路,在规定的反向电压VCE条件下,集电极与发射极之间的Iebo 基极接地,集电极对地开路,在规定的反向电压VEB条件下,发射极与基极之间的反Icer 基极与发射极间串联电阻R,集电极与发射极间的电压VCE为规定值时,集电极与发射Ices 发射极接地,基极对地短路,在规定的反向电压VCE条件下,集电极与发射极之间的Icex 发射极接地,基极与发射极间加指定偏压,在规定的反向偏压VCE下,集电极与发射ICM 集电极最大允许电流或交流电流的最大平均值。

IBM 在集电极允许耗散功率的范围内,能连续地通过基极的直流电流的最大值,或交流电

ICMP 集电极最大允许脉冲电流

ISB 二次击穿电流

IAGC 正向自动控制电流

Pc 集电极耗散功率

PCM 集电极最大允许耗散功率

Pi 输入功率

Po 输出功率

Posc 振荡功率

Pn 噪声功率

Ptot 总耗散功率

ESB 二次击穿能量

rbb' 基区扩展电阻(基区本征电阻)

rbb'Cc 基极-集电极时间常数,即基极扩展电阻与集电结电容量的乘积

rie 发射极接地,交流输出短路时的输入电阻

roe 发射极接地,在规定VCE、Ic或IE、频率条件下测定的交流输入短路时的输出电阻RE 外接发射极电阻(外电路参数)

RB 外接基极电阻(外电路参数)

Rc 外接集电极电阻(外电路参数)

RBE 外接基极-发射极间电阻(外电路参数)

RL 负载电阻(外电路参数)

RG 信号源内阻

Rth 热阻

Ta 环境温度

Tc 管壳温度

Ts 结温

Tjm 最大允许结温

Tstg 贮存温度

td #NAME?

tr 上升时间

ts 存贮时间

tf 下降时间

ton 开通时间

toff 关断时间

VCB 集电极-基极(直流)电压

VCE 集电极-发射极(直流)电压

VBE 基极发射极(直流)电压

VCBO 基极接地,发射极对地开路,集电极与基极之间在指定条件下的最高耐压

VEBO 基极接地,集电极对地开路,发射极与基极之间在指定条件下的最高耐压

VCEO 发射极接地,基极对地开路,集电极与发射极之间在指定条件下的最高耐压

VCER 发射极接地,基极与发射极间串接电阻R,集电极与发射极间在指定条件下的最高耐压VCES 发射极接地,基极对地短路,集电极与发射极之间在指定条件下的最高耐压

VCEX 发射极接地,基极与发射极之间加规定的偏压,集电极与发射极之间在规定条件下的Vp 穿通电压。

VSB 二次击穿电压

VBB 基极(直流)电源电压(外电路参数)

Vcc 集电极(直流)电源电压(外电路参数)

VEE 发射极(直流)电源电压(外电路参数)

VCE(sat

) 发射极接地,规定Ic、IB条件下的集电极-发射极间饱和压降

VBE(sat

) 发射极接地,规定Ic、IB条件下,基极-发射极饱和压降(前向压降)

VAGC 正向自动增益控制电压

Vn(p-p) 输入端等效噪声电压峰值

V n 噪声电压

Cj 结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容

Cjv 偏压结电容

Co 零偏压电容

Cjo 零偏压结电容

Cjo/Cjn 结电容变化

Cs 管壳电容或封装电容

Ct 总电容

CTV 电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比

CTC 电容温度系数

Cvn 标称电容

IF 正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的IF(AV)正向平均电流

IFM(IM)正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电IH 恒定电流、维持电流。

Ii 发光二极管起辉电流

IFRM 正向重复峰值电流

IFSM 正向不重复峰值电流(浪涌电流)

Io 整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流

IF(ov) 正向过载电流

IL 光电流或稳流二极管极限电流

ID 暗电流

IB2 单结晶体管中的基极调制电流

IEM 发射极峰值电流

IEB10 双基极单结晶体管中发射极与第一基极间反向电流

IEB20 双基极单结晶体管中发射极向电流

ICM 最大输出平均电流

IFMP 正向脉冲电流

IP 峰点电流

IV 谷点电流

IGT 晶闸管控制极触发电流

IGD 晶闸管控制极不触发电流

IGFM 控制极正向峰值电流

IR(AV)反向平均电流

IR(In)反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波

流。

IRM 反向峰值电流

IRR 晶闸管反向重复平均电流

IDR 晶闸管断态平均重复电流

IRRM 反向重复峰值电流

IRSM 反向不重复峰值电流(反向浪涌电流)

Irp 反向恢复电流

Iz 稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流

Izk 稳压管膝点电流

IOM 最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷IZSM 稳压二极管浪涌电流

IZM 最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流

iF 正向总瞬时电流

iR 反向总瞬时电流

ir 反向恢复电流

Iop 工作电流

Is 稳流二极管稳定电流

f 频率

n 电容变化指数;电容比

Q 优值(品质因素)

δvz 稳压管电压漂移

di/dt 通态电流临界上升率

dv/dt 通态电压临界上升率

PB 承受脉冲烧毁功率

PFT(AV)正向导通平均耗散功率

PFTM 正向峰值耗散功率

PFT 正向导通总瞬时耗散功率

Pd 耗散功率

PG 门极平均功率

PGM 门极峰值功率

PC 控制极平均功率或集电极耗散功率

Pi 输入功率

PK 最大开关功率

PM 额定功率。硅二极管结温不高于150度所能承受的最大功率

PMP 最大漏过脉冲功率

PMS 最大承受脉冲功率

Po 输出功率

PR 反向浪涌功率

Ptot 总耗散功率

Pomax 最大输出功率

Psc 连续输出功率

PSM 不重复浪涌功率

PZM 最大耗散功率。在给定使用条件下,稳压二极管允许承受的最大功率

RF(r)正向微分电阻。在正向导通时,电流随电压指数的增加,呈现明显的非线性特性。在

RBB 双基极晶体管的基极间电阻

RE 射频电阻

RL 负载电阻

Rs(rs) #NAME?

Rth #NAME?

R(th)ja #NAME?

Rz(ru) 动态电阻

R(th)jc 结到壳的热阻

r δ衰减电阻

r(th) 瞬态电阻

Ta 环境温度

Tc 壳温

td 延迟时间

tf 下降时间

tfr 正向恢复时间

tg 电路换向关断时间

tgt 门极控制极开通时间

Tj 结温

Tjm 最高结温

ton 开通时间

toff 关断时间

tr 上升时间

trr 反向恢复时间

ts 存储时间

tstg 温度补偿二极管的贮成温度

a 温度系数

λp 发光峰值波长

△λ光谱半宽度

η单结晶体管分压比或效率

VB 反向峰值击穿电压

Vc 整流输入电压

VB2B1 基极间电压

VBE10 发射极与第一基极反向电压VEB 饱和压降

VFM 最大正向压降(正向峰值电压)VF 正向压降(正向直流电压)

△VF 正向压降差

VDRM 断态重复峰值电压

VGT 门极触发电压

VGD 门极不触发电压

VGFM 门极正向峰值电压

VGRM 门极反向峰值电压

VF(AV)正向平均电压

Vo 交流输入电压

VOM 最大输出平均电压

Vop 工作电压

Vn 中心电压

Vp 峰点电压

VR 反向工作电压(反向直流电压)

VRM 反向峰值电压(最高测试电压)

V(BR)击穿电压

Vth 阀电压(门限电压)

VRRM 反向重复峰值电压(反向浪涌电压)

VRWM 反向工作峰值电压

V v 谷点电压

Vz 稳定电压

△Vz 稳压范围电压增量

Vs 通向电压(信号电压)或稳流管稳定电流电压av 电压温度系数

Vk 膝点电压(稳流二极管)

VL 极限电压

NPN型双极晶体管(半导体器件课程设计)

微电子器件课程设计报告 题目: NPN型双极晶体管 班级:微电0802班 学号: 080803206 姓名:李子忠 指导老师:刘剑霜 2011 年6月6日

一、目标结构 NPN 型双极晶体管 二、目标参数 最终从IV曲线中提取出包括fT和 Gain在内的设计参数. 三、在该例中将使用: (1)多晶硅发射双极器件的工艺模拟; (2)在DEVEDIT中对结构网格重新划分; (3)提取fT和peak gain. ATLAS中的解过程: 1. 设置集电极偏压为2V. 2. 用 log语句用来定义Gummel plot数据集文件. 3.用extract语句提取BJT的最大增益"maxgain"以及最大ft,"maxft". Gummel plot:晶体管的集电极电流Ic、基极电流 Ib与基极-发射极电压 Vbe关系图(以半对数坐标的形式). 四、制造工艺设计 4.1.首先在ATHENA中定义0.8um*1.0um的硅区域作为基底,掺杂为均匀的砷杂质,浓度为2.0e16/cm3,然后在基底上注入能量为18ev,浓度为4.5e15/cm3的掺杂杂质硼,退火,淀积一层厚度为0.3um的多晶硅,淀积过后,马上进行多晶硅掺杂,掺杂为能量50ev,浓度7.5e15/cm3的砷杂质,接着进行多晶硅栅的刻蚀(刻蚀位置在0.2um 处)此时形成N++型杂质(发射区)。刻蚀后进行多晶氧化,由于氧化是在一个图形化(即非平面)以及没有损伤的多晶上进行的,所以使

用的模型将会是fermi以及compress,进行氧化工艺步骤时分别在干氧和氮的气氛下进行退火,接着进行离子注入,注入能量18ev,浓度2.5e13/cm3的杂质硼,随后进行侧墙氧化层淀积并进行刻蚀,再一次注入硼,能量30ev,浓度1.0e15/cm3,形成P+杂质(基区)并作一次镜像处理即可形成完整NPN结构,最后淀积铝电极。 4.2.三次注入硼的目的: 第一次硼注入形成本征基区;第二次硼注入自对准(self-aligned)于多晶硅发射区以形成一个连接本征基区和p+ 基极接触的connection.多晶发射极旁的侧墙(spacer-like)结构用来隔开 p+ 基极接触和提供自对准.在模拟过程中,relax 语句是用来减小结构深处的网格密度,从而只需模拟器件的一半;第三次硼注入,形成p+基区。 4.3.遇到的问题 经常遇到这样一种情况:一个网格可用于工艺模拟,但如果用于器件模拟效果却不甚理想.在这种情况下,可以用网格产生工具DEVEDIT 用来重建网格,从而以实现整个半导体区域内无钝角三角形. 五、原胞版图和工艺仿真结果: 用工艺软件ATHENA制作的NPN基本结构:

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

第五章 FET三极管及其放大管考试试题

第五章FET三极管及其放大管 一、判断题 结型场效应管外加的栅源电压应使栅源之间的PN结反偏,以保证场效应管的输入电阻很大。()。 √ 场效应管放大电路和双极型三极管放大电路的小信号等效模型相同。()× 开启电压是耗尽型场效应管的参数;夹断电压是增强型场效应管的参数。()× I DSS表示工作于饱和区的增强型场效应管在u GS=0时的漏极电流。() × 若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。()前往 × 互补输出级应采用共集或共漏接法。( ) √ 开启电压是耗尽型场效应管的参数;夹断电压是增强型场效应管的参数。( ) × I DSS表示工作于饱和区的增强型场效应管在u GS=0时的漏极电流。( ) × 结型场效应管外加的栅源电压应使栅源之间的PN结反偏,以保证场效应管的输入电阻很大。( ) √ 与三极管放大电路相比,场效应管放大电路具有输入电阻很高、噪声低、温度稳

定性好等优点。() √ 场效应管放大电路的偏置电路可以采用自给偏压电路。() × 二、填空题 场效应管放大电路中,共__极电路具有电压放大能力,输出电压与输入电压反 相;共__极电路输出电阻较小,输出电压与输入电压同相。 源,栅 场效应管是利用__电压来控制__电流大小的半导体器件。 V GS(栅源电压),I D(漏极) 场效应管是____控制半导体器件,参与导电的载流子有____种。 电压,1 当u gs=0时,漏源间存在导电沟道的称为____型场效应管;漏源间不存在导电沟道的称为____型场效应管。 耗尽型,增强型 场效应管具有输入电阻很____、抗干扰能力____等特点。 大,强 输出电压与输入电压反相的单管半导体三极管放大电路是____。 共射(共源) 共源极放大电路的性能与半导体三极管的____电路相似。 共射 共漏极放大电路的性能与半导体三极管的____电路相似。

PNP双极型晶体管的设计

目录 1.课程设计目的与任务 (2) 2.设计的内容 (2) 3.设计的要求与数据 (2) 4.物理参数设计 (3) 4.1 各区掺杂浓度及相关参数的计算 (3) 4.2 集电区厚度Wc的选择 (6) 4.3 基区宽度WB (6) 4.4 扩散结深 (10) 4.5 芯片厚度和质量 (10) 4.6 晶体管的横向设计、结构参数的选择 (10) 5.工艺参数设计 (11) 5.1 工艺部分杂质参数 (11) 5.2 基区相关参数的计算过程 (11) 5.3 发射区相关参数的计算过程 (13) 5.4 氧化时间的计算 (14) 6.设计参数总结 (16) 7.工艺流程图 (17) 8.生产工艺流程 (19) 9.版图 (28) 10.心得体会 (29) 11.参考文献 (30)

PNP 双极型晶体管的设计 1、课程设计目的与任务 《微电子器件与工艺课程设计》是继《微电子器件物理》、《微电子器件工艺》和《半导体物理》理论课之后开出的有关微电子器件和工艺知识的综合应用的课程,使我们系统的掌握半导体器件,集成电路,半导体材料及工艺的有关知识的必不可少的重要环节。 目的是使我们在熟悉晶体管基本理论和制造工艺的基础上,掌握晶体管的设计方法。要求我们根据给定的晶体管电学参数的设计指标,完成晶体管的纵向结构参数设计→晶体管的图形结构设计→材料参数的选取和设计→制定实施工艺方案→晶体管各参数的检测方法等设计过程的训练,为从事微电子器件设计、集成电路设计打下必要的基础。 2、设计的内容 设计一个均匀掺杂的pnp 型双极晶体管,使T=300K 时,β=120,V CEO =15V,V CBO =80V.晶体管工作于小注入条件下,最大集电极电流为I C =5mA 。设计时应尽量减小基区宽度调制效应的影响。 3、设计的要求与数据 (1)了解晶体管设计的一般步骤和设计原则。 (2)根据设计指标设计材料参数,包括发射区、基区和集电区掺杂浓度N E , N B , 和N C ,根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命 等。 (3)根据主要参数的设计指标确定器件的纵向结构参数,包括集电区厚度W c , 基本宽度W b ,发射区宽度W e 和扩散结深X jc ,发射结结深X je 等。 (4)根据扩散结深X jc ,发射结结深X je 等确定基区和发射区预扩散和再扩散的扩 散温度和扩散时间;由扩散时间确定氧化层的氧化温度、氧化厚度和氧化 时间。 (5)根据设计指标确定器件的图形结构,设计器件的图形尺寸,绘制出基区、 发射区和金属接触孔的光刻版图。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

双极型晶体管参数符号及其意义

双极型晶体管参数符号及其意义 Cc---集电极电容 Ccb---集电极与基极间电容 Cce---发射极接地输出电容 Ci---输入电容 Cib---共基极输入电容 Cie---共发射极输入电容 Cies---共发射极短路输入电容 Cieo---共发射极开路输入电容 Cn---中和电容(外电路参数) Co---输出电容 Cob---共基极输出电容。在基极电路中,集电极与基极间输出电容 Coe---共发射极输出电容 Coeo---共发射极开路输出电容 Cre---共发射极反馈电容 Cic---集电结势垒电容 CL---负载电容(外电路参数) Cp---并联电容(外电路参数) BVcbo---发射极开路,集电极与基极间击穿电压 BVceo---基极开路,CE结击穿电压 BVebo--- 集电极开路EB结击穿电压 BVces---基极与发射极短路CE结击穿电压 BV cer---基极与发射极串接一电阻,CE结击穿电压 D---占空比 fT---特征频率 fmax---最高振荡频率。当三极管功率增益等于1时的工作频率

hFE---共发射极静态电流放大系数 hIE---共发射极静态输入阻抗 hOE---共发射极静态输出电导 h RE---共发射极静态电压反馈系数 hie---共发射极小信号短路输入阻抗 hre---共发射极小信号开路电压反馈系数 hfe---共发射极小信号短路电压放大系数 hoe---共发射极小信号开路输出导纳 IB---基极直流电流或交流电流的平均值 Ic---集电极直流电流或交流电流的平均值 IE---发射极直流电流或交流电流的平均值 Icbo---基极接地,发射极对地开路,在规定的VCB反向电压条件下的集电极与基极之间的反向截止电流 Iceo---发射极接地,基极对地开路,在规定的反向电压VCE条件下,集电极与发射极之间的反向截止电流 Iebo---基极接地,集电极对地开路,在规定的反向电压VEB条件下,发射极与基极之间的反向截止电流 Icer---基极与发射极间串联电阻R,集电极与发射极间的电压VCE为规定值时,集电极与发射极之间的反向截止电流Ices---发射极接地,基极对地短路,在规定的反向电压VCE条件下,集电极与发射极之间的反向截止电流 Icex---发射极接地,基极与发射极间加指定偏压,在规定的反向偏压VCE下,集电极与发射极之间的反向截止电流ICM---集电极最大允许电流或交流电流的最大平均值。 IBM---在集电极允许耗散功率的范围内,能连续地通过基极的直流电流的最大值,或交流电流的最大平均值 ICMP---集电极最大允许脉冲电流 ISB---二次击穿电流 IAGC---正向自动控制电流 Pc---集电极耗散功率 PCM---集电极最大允许耗散功率 Pi---输入功率 Po---输出功率 Posc---振荡功率 Pn---噪声功率 Ptot---总耗散功率

《双极型晶体管》word版

第三讲双极型晶体管 1.3 双极型晶体管 半导体三极管有两大类型,一是双极型半导体三极管 二是场效应半导体三极管 双极型半导体三极管是由两种载流子参与导电的半导体器件,它由两个PN 结组合而成,是一种CCCS器件。 场效应型半导体三极管仅由一种载流子参与导电,是一种VCCS器件。 1.3.1晶体管的结构及类型 双极型半导体三极管的结构示意图如图所示。它有两种类型:NPN型和PNP型。中间部分称为基区,相连电极称为基极,用B或b表示(Base); 一侧称为发射区,相连电极称为发射极,用E或e表示(Emitter); 另一侧称为集电区和集电极,用C或c表示(Collector)。 E-B间的PN结称为发射结(Je), C-B间的PN结称为集电结(Jc)。 两种极性的双极型三极管 双极型三极管的符号在图的下方给出,发射极的箭头代表发射极电流的实际方向。从外表上看两个N区(或两个P区)是对称的,实际上发射区的掺杂浓度大,集电区掺杂浓度低,且集电结面积大。基区要制造得很薄,其厚度一般在几个微米至几十个微米。 1.3.2 晶体管的电流放大作用 双极型半导体三极管在工作时一定要加上适当的直流偏置电压。若在放大工作状态:发射结加正向电压,集电结加反向电压。现以NPN型三极管的放大状态为例,来说明三极管内部的电流关系。

双极型三极管的电流传输关系(动画2-1) 发射结加正偏时,从发射区将有大量的电子向基区扩散,形成的电流为I EN。与PN结中的情况相同。从基区向发射区也有空穴的扩散运动,但其数量小,形成的电流为I EP。这是因为发射区的掺杂浓度远大于基区的掺杂浓度。 进入基区的电子流因基区的空穴浓度低,被复合的机会较少。又因基区很薄,在集电结反偏电压的作用下,电子在基区停留的时间很短,很快就运动到了集电结的边上,进入集电结的结电场区域,被集电极所收集,形成集电极电流I CN。在基区被复合的电子形成的电流是I BN。 另外,因集电结反偏,使集电结区的少子形成漂移电流I CBO。于是可得如下电流关系式: I E= I EN+I EP 且有I EN>>I EP I EN=I CN+ I BN 且有I EN>> I BN,I CN>>I BN I C=I CN+ I CBO I B=I EP+ I BN-I CBO I E=I EP+I EN=I EP+I CN+I BN=(I CN+I CBO)+(I BN+I EP-I CBO)=I C+I B 以上关系在图02.02的动画中都给予了演示。由以上分析可知,发射区掺杂浓度高,基区很薄,是保证三极管能够实现电流放大的关键。若两个PN结对接,相当基区很厚,所以没有电流放大作用,基区从厚变薄,两个PN结演变为三极管,这是量变引起质变的又一个实例。 双极型半导体三极管的电流关系 (1) 三种组态 双极型三极管有三个电极,其中两个可以作为输入, 两个可以作为输出,这样必然有一个电极是公共电极。三种接法也称三种组态,见图02.03。 共发射极接法,发射极作为公共电极,用CE表示; 共集电极接法,集电极作为公共电极,用CC表示; 共基极接法,基极作为公共电极,用CB表示。

晶体管输入输出特性曲线测试电路实验报告

实验题目:晶体管输入输出特性曲线测试电路的设计 班级: 学号: 姓名: 日期:

一、实验目的 1. 了解测量双极型晶体管输出特性曲线的原理与方法 2. 熟悉脉冲波形的产生和波形变换的原理与方法 3. 熟悉各单元电路的设计方法 二、实验电路图及其说明 晶体管共发射极输出特性曲线如图所示,它是由函数i c=f (v CE)|i B=常数,表示的一簇曲线。它既反映了基极电流i B对集电极电流i C 的控制作用,同时也反映出集电极和发射极之间的电压v CE对集电极电流i C的影响。 如使示波器显示图那样的曲线,则应将集电极电流i C取样,加至示波器的Y轴输入端,将电压v CE加至示波器的X轴输入端。若要显示i B为不同值时的一簇曲线,基极电流应为逐级增加的阶梯波形。通常晶体管的集电极电压是从零开始增加,达到某一数值后又回到零值的扫描波形,本次实验采用锯齿波。 测量晶体管输出特性曲线的一种参考电路框图如图所示。 矩形波震荡电路产生矩形脉冲输出电压v O1。该电路一方面经锯齿波形成电路变换成锯齿波v O2,作为晶体管集电极的扫描电压;另一方面经阶梯波形成电路,通过隔离电阻送至晶体管的基极,作为积极驱动电流i B,波形见图3的第三个图(波形不完整,没有下降)。 电阻R C将集电极电流取样,经电压变换电路转换成与电流i C成正比的对地电压V O3,加至示波器的Y轴输入端,则示波器的屏幕上便会显示出晶体管输出特性曲线。 需要注意,锯齿波的周期与基极阶梯波每一级的时间要完全同步(用同一矩形脉冲

产生的锯齿波和阶梯波可以很好的满足这个条件)。阶梯波有多少级就会显示出多少条输出特性曲线。另外,每一整幅图形的显示频率不能太低,否则波形会闪烁。 选作:晶体管特性曲线数目可调: 主要设计指标和要求: 1、矩形波电压(V O1)的频率f大于500Hz,误差为±10Hz,占空比为4%~6%,电压幅度 峰峰值大约为20V。 2、晶体管基极阶梯波V O3的起始值为0,级数为10级,每极电压0.5V~1V。 3、晶体管集电极扫描电压V O2的起始电压为0V,幅度大约为10V。 三、预习 理论计算:电路设计与仿真: 1.矩形波电路:仿真图如下:

双极型晶体管介绍

双极型晶体管 晶体管的极限参数 双极型晶体管(Bipolar Transistor) 由两个背靠背PN结构成的具有电流放大作用的晶体三极管。起源于1948年发明的点接触晶体三极管,50年代初发展成结型三极管即现在所称的双极型晶体管。双极型晶体管有两种基本结构:PNP型和NPN型。在这3层半导体中,中间一层称基区,外侧两层分别称发射区和集电区。当基区注入少量电流时,在发射区和集电区之间就会形成较大的电流,这就是晶体管的放大效应。双极型晶体管是一种电流控制器件,电子和空穴同时参与导电。同场效应晶体管相比,双极型晶体管开关速度快,但输入阻抗小,功耗大。双极型晶体管体积小、重量轻、耗电少、寿命长、可靠性高,已广泛用于广播、电视、通信、雷达、计算机、自控装置、电子仪器、家用电器等领域,起放大、振荡、开关等作用。 晶体管:用不同的掺杂方式在同一个硅片上制造出三个掺杂区域,并形成两个PN结,就构成了晶体管. 晶体管分类:NPN型管和PNP型管 输入特性曲线:描述了在管压降UCE一定的情况下,基极电流iB与发射结压降uBE之间的关系称为输入伏安特性,可表示为:硅管的开启电压约为0.7V,锗管的开启电压约为0.3V。 输出特性曲线:描述基极电流IB为一常量时,集电极电流iC与管压降uCE之间的函数关系。可表示为: 双击型晶体管输出特性可分为三个区 ★截止区:发射结和集电结均为反向偏置。IE@0,IC@0,UCE@EC,管子失去放大能力。如果把三极管当作一个开关,这个状态相当于断开状态。 ★饱和区:发射结和集电结均为正向偏置。在饱和区IC不受IB的控制,管子失去放大作用,U CE@0,IC=EC/RC,把三极管当作一个开关,这时开关处于闭合状态。 ★放大区:发射结正偏,集电结反偏。 放大区的特点是: ◆IC受IB的控制,与UCE的大小几乎无关。因此三极管是一个受电流IB控制的电流源。 ◆特性曲线平坦部分之间的间隔大小,反映基极电流IB对集电极电流IC控制能力的大小,间隔越大表示管子电流放大系数b越大。 ◆伏安特性最低的那条线为IB=0,表示基极开路,IC很小,此时的IC就是穿透电流ICEO。 ◆在放大区电流电压关系为:UCE=EC-ICRC, IC=βIB ◆在放大区管子可等效为一个可变直流电阻。 极间反向电流:是少数载流子漂移运动的结果。

晶体管特性曲线测试电路

近代电子学实验之晶体管特性曲线测试电路

2、锯齿波:幅度0—10V连线可调,输出极性可变。 3、阶梯波:3—10阶连线可调。 4、电压—电流变换器:0.001<=I1<=0.2(mA),输出电流方向可变(每阶0.001<=Ib<=0.02(mA))。 实验设计的基本原理: 三极管特性曲线测量电路的基本原理: 晶体三极管为电流控制器件,他们特性曲线的每一根表示当Ib一定时Vc与Ic的关系曲线,一簇表示不同Ib时Vc与Ic的关系曲线的不同关系曲线,就称为单晶体三极管的输出特性曲线,所以在晶体三极管的基级加上阶梯电流源表示不同 Ib。在每级阶梯内测量集射极电压 Vc和集电极定值负载电阻上的电压 Vr,通过电压变换电路将 Vr换算成集电极电流 Ic, 以 Ic作为纵轴, Vc 为横轴, 在数字示波器上即可显示一条晶体管输出特性曲线。示波器的地线与测量电路地不可相通。即测量电路的稳压电源不能接大地。(因为示波器外壳已接大地) 晶体三极管特性曲线测量电路原理框图如下: 框图 在本测量电路中,两种波形的准确性直接影响到了输出曲线的好坏。故在实验中需准确调整主要电阻电容的参数。

电阻R10右边输出的波形就是脉冲方波,之后经过U6积分后,在U6的6脚即可输出锯齿波。 电路中,R5和C1的参数会直接影响到输出锯齿波的波形好坏,所以应注意参数。 2、阶梯波产生部分电路 产生阶梯波的原理: 阶梯波电路如下, 十进制同步计数器 (异步清零 ) 74ls161构成八进制计数器, 将比较器 U1 输出矩形波接至其脉冲端作为触发信号,进行计数。八进制计数器四位输出经过八位 DAC0832进行转换成八级阶梯波电压信号, 再经过放大电路进行放大。 电路中的与非门用于调节阶梯波的阶数,从而实现输出特性曲线中的曲线条数可调。由于74ls161的输出Q0—Q3是四个数的组合,对于该电路使用二输入端与非门作为闸门控制,那么可以得到3—10阶之间的任意数字的阶梯。譬如:Q1、Q0组合,分别接入与非门的两端,那么就可以得到3阶的阶梯波;若Q2、Q3组合,分别接到与非门的两端,即可得到10阶的阶梯波。 该阶梯波是下降的阶梯波,对于实验的结果是不会影响的。 电路图如下:

器件物理第五章

▲双极性晶体管工作原理(结构条件,外加电压条件) 答:①右图 为理想的一维结构p-n-p双极型晶体管,具有三段不同掺杂浓度的区域,形成两个p-n结。浓度最高的p+区域称为发射区;中间比较窄的n型区域,其杂项浓度中等,称为基区,基区宽度远小于少数载流子的扩散长度;浓度最小的p型区域称为集电极区。 ②图(a)是一热平衡状态下的理想p-n-p双极型晶体管,即其三端点接在一起;或者三端点都接地,阴影区域分别表示两个PN结的耗尽区。显示三段掺杂区域的杂质浓度,发射区的掺杂浓度远比极电区大,基区的浓度比发射区低,但高于集电区浓度。图(c)表示耗尽区的电场强度分布情况。图(d)是晶体管的能带图,它只是将平衡状态下的p-n结能带直接延伸,应用到两个相邻的耦合p+—n结与n-p结 ③图(a)为工作在放大模式下的共基组态p-n-p型晶体管;即基极被输入与输出电路所共用,图(b)与图(c)表示偏压状态下电荷密度与电场强度分布的情形,与热平衡状态下比较,射基结的耗尽区宽度变窄,而集基结耗尽区宽度变宽。图(d)是晶体管工作在放大模式下的能带图,射基结为正向偏压,因此空穴由p+发射区注入基区,而电子由基区注入发射区。▲推导双晶体管理想电流,电压方程中五点假设及其具体推导过程。为什么基区少数载流子分布可近似为一条直线? 答:为推导出理想晶体管的电流,电压表示式,需作下列五点假设: ⑴晶体管中各区域的浓度为均匀掺杂; ⑵基区中的空穴漂移电流和集基极反向饱和电流可以忽略; ⑶载流子注入属于小注入; ⑷耗尽区中没有产生一复合电流; ⑸晶体管中无串联电阻。 假设在正向偏压的状况下空穴由发射区注入基区,然后这些空穴再以扩散的方式穿过基区到达集基结,一旦确定了少数载流子的分布(n区域中的空穴),就可以由少数载流子的浓度梯度得出电流。_____________________________________________________。 即少数载流子分布趋近于一直线。此近似是合理的,因为在晶体管的设计中基极区域的宽度远远小于少数载流子的扩散长度。如图可见,由线性载流子分布的合理假设可化简电流-电压特性的推导过程。 ▲什么叫小信号工作?跨导,输入电导和输出电导的定义及其表达式。答:小信号意指交流电压和电流峰值小于直流的电压电流值。 跨导:________________________;输入电导:_________________________;输出电导:_______________。 ▲双极晶体管的截止频率定义。共基极截止频率、共射极截止频率之间的相互关系特征频率的表达式。 答截止频率:如右图中,跨导 m g和输入电导 EB g与晶体管的共基电流增益 有关。在低频时,共基电流增益是一个固定值,不会因工作频率而改变,然而当频率升高到一关键点后,共基电流增益会降低。右下图是一典型的共基电流增益相对于工作频率的示意图。加入频率的参量后,共基电流增 益为___________。其中 α是低频(或者直流)共基电流增益, α f是共基 的截止频率,当工作频率 α f f=时,α的值为0.707 α(下降3dB)。右图也显示了共射电流增益,由上式可得________________________。其 中 β f称为共射截止频率_____。 由于1 ≈ α,所以 β f远远小于 α f。另外,一截止频率 T f(又称特征频率)

PNP双极型晶体管课程设计

pnp双极型晶体管课程设计学生姓名馥语甄心

目录 1.设计任务及目标......................................................................P1 2.概述-发展现状......................................................................P1 3.设计思路.................................................................................P2 4.各材料参数和结构参数的设计...............................................P2 4.1原材料的选择....................................................................................P2 4.2各区掺杂浓度和相关参数的计算....................................................P4 4.3集电区厚度Wc的选择.....................................................................P5 4.4基区宽度WB的选择........................................................................P7 4.5扩散结深及发射区面积、基区面积的确定....................................P7 5.工艺参数设计.........................................................................P8 5.1硅片氧化相关参数............................................................................P8 5.2基区扩散相关参数............................................................................P9 5.3发射区扩散相关参数......................................................................P10 6.刻画掩模板.............................................................................P12 6.1基区掩模板........................................................................................P12 6.2发射区掩模板....................................................................................P12 6.3金属引线掩模板................................................................................P13 6.4设计参数总结....................................................................................P14 7.工艺步骤.................................................................................P14 7.1清洗....................................................................................................P15 7.2氧化工艺............................................................................................P15

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解 届别 系别 专业 班级 姓名 指导老师

二零一二年十月 晶体管的输入输出特性曲线详解 学生姓名:指导老师: 摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。 根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。 生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值 晶体管是一种半导体器件,放大器或电控开关常用。晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。由于

其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。 关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。 【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis. 一、晶体管的基本结构 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图 1-1(a)、(b)所示。从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。当前国内生产的锗管多为PNP型(3A

第五章FET三极管及其放大管考试试题及答案

第五章FET三极管及其放大管考试试题及答案一、判断题 结型场效应管外加的栅源电压应使栅源之间的PN结反偏,以保证场效应管的输入电阻很大。()。 √ 场效应管放大电路和双极型三极管放大电路的小信号等效模型相同。()× 开启电压是耗尽型场效应管的参数;夹断电压是增强型场效应管的参数。()× I DSS表示工作于饱和区的增强型场效应管在u GS=0时的漏极电流。() × 若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。()前往 × 互补输出级应采用共集或共漏接法。() √ 开启电压是耗尽型场效应管的参数;夹断电压是增强型场效应管的参数。() × I DSS表示工作于饱和区的增强型场效应管在u GS=0时的漏极电流。()

× 结型场效应管外加的栅源电压应使栅源之间的PN结反偏,以保证场效应管的输入电阻很大。() √ 与三极管放大电路相比,场效应管放大电路具有输入电阻很高、噪声低、温度稳 定性好等优点。() √ 场效应管放大电路的偏置电路可以采用自给偏压电路。() × 二、填空题 场效应管放大电路中,共__极电路具有电压放大能力,输出电压与输入电压反 相;共__极电路输出电阻较小,输出电压与输入电压同相。源,栅 场效应管是利用__电压来控制__电流大小的半导体器件。 V GS(栅源电压),I D(漏极) 场效应管是____控制半导体器件,参与导电的载流子有____种。 电压,1 当u gs=0时,漏源间存在导电沟道的称为____型场效应管;漏源间不存在导电沟道的称为____型场效应管。

耗尽型,增强型 场效应管具有输入电阻很____、抗干扰能力____等特点。 大,强 输出电压与输入电压反相的单管半导体三极管放大电路是____。 共射(共源) 共源极放大电路的性能与半导体三极管的____电路相似。共射 共漏极放大电路的性能与半导体三极管的____电路相似。共集 图所示场效应管的转移特性曲线,由图可知,该管的类型是____沟道____MOS管。 耗尽型,N沟道 下图中的FET管处于____工作状态。 截止

双极结型晶体管

第三章 3–1.(a )画出PNP 晶体管在平衡时以及在正向有源工作模式下的能带图。 (b )画出晶体管的示意图并表示出所有的电流成分,写出各级电流表达式。 (c )画出发射区、基区、集电区少子分布示意图。 3–2.考虑一个N P N 硅晶体管,具有这样一些参数:m x B μ2=,在均匀掺杂基区 2 3 16 01.0,1,10 5cm A s cm N n a ==?=-μτ。若集电结被反向偏置,mA I nE 1=,计算 在发射结基区一边的过量电子密度、发射结电压以及基区输运因子。 3–3. 在3–2的晶体管中,假设发射极的掺杂浓度为31810-cm ,m x E μ2=,ns pE 10=τ , 发射结空间电荷区中,s μτ1.00=。计算在mA I nE 1=时的发射效率和FE h 。 3–4. 一NPN 晶体管具有以下规格:发射区面积=1平方密耳,基区面积=10平方密耳,发 射区宽度= m μ2,基区宽度= m μ1,发射区薄层电阻为/ 2Ω / 200Ω集电极电阻率=0.3.cm Ω,发射区空穴寿命=ns 1,基区电子寿命=100ns , 假设发射极的复合电流为常数并等于A μ1。还假设为突变结和均匀掺杂。计算A I E μ10=、mA mA mA A 100101100、、、μ以及A 1时的FE h 。用半对数坐标画出曲线。中间电流范围的控制因素是什么? 3-5.(a )根据式(3-19)或式(3-20),证明对于任意的 n B L x 值公式(3-41)和(3-43) 变成E dE PE n B n a n i x N D L x L N D qAn a + -=)(coth [ 2 11] n B n a i n L x h L N n qAD a a csc 2 2112= = ])(coth [ 2 22PC dC PC n B n a n i L N D L x L N D qAn a + -= (b )证明,若n B L x <<1,(a )中的表达式约化为(3-41)和(3-43)。 3–6.证明在有源区晶体管发射极电流–电压特性可用下式表示R F E E I I αα-≈ 10T E V V e /+ 2τE i W qAn T E V V e /其中0 E I 为集电极开路时发射结反向饱和电流。提

晶体管输出特性曲线测试电路的设计实验报告

晶体管输出特性曲线测试电路的设计 无 29班 宋林琦 2002011547 一、实验任务: 设计一个测量NPN 型晶体管特性曲线的电路。测量电路设置标有e 、b 、c 引脚的插 孔。当被测晶体管插入插孔通电后,示波器屏幕上便显示出被测晶体管的输出特性曲线。要有具体指标的要求。 二、实验目的: 1、了解测量双极型晶体管输出特性曲线的原理和方法。 2、熟悉脉冲波形的产生和波形变 换的原理和方法。 3、熟悉各单元电路的设计方法。 三、实验原理: 晶体管共发射极输出特性曲 线如图1所示,它是由函数i c =f (v CE )|i B=常数,表示的一簇曲线。它 既反映了基极电流i B 对集电极电 流i C 的控制作用,同时也反映出 集电极和发射极之间的电压v CE 对集电极电流i C 的影响。 如使示波器显示图1那样的曲线,则应将集电极电流i C 取样,加至示波器的Y 轴输入端,将电压v CE 加至示波器的X 轴输入端。若要显示i B 为不同值时的一簇曲线,基极电流应为逐级增加的阶梯波形。通常晶体管的集电极电压是从零开始增加, 达到某一 图2 晶体管输出特性测试电路 图1 晶体管输出特性曲线 V CC 3

数值后又回到零值的扫描波形,本次实验采用锯齿波。 测量晶体管输出特性曲线的一种参考电路框图如图2所示。矩形波震荡电路产生矩形脉冲输出电压v O1。该电路一方面经锯齿波形成电路变换成锯齿波v O2,作为晶体管 集电极的扫描电压;另一方面经阶梯波 形成电路,通过隔离电阻送至晶体管的基极,作为积极驱动电流i B ,波形见图3 的第三个图(波形不完整,没有下降)。 电阻R C 将集电极电流取样,经电压变换电路转换成与电流i C 成正比的对地电压V O3,加至示波器的Y 轴输入端,则示波器的屏幕上便会显示出晶体管输出特性曲线。 需要注意,锯齿波的周期与基极阶梯波每一级的时间要完全同步(用同一矩形脉冲产生的锯齿波和阶梯波可以很好的满足这个条件)。阶梯波有多少级就会显示出多少条输出特性曲线。另外,每一整幅图形的显示频率不能太低,否则波形会闪烁。 四、主要设计指标和要求: 1、矩形波电压(V O1)的频率f 大于500Hz,误差为±10Hz ,占空比为4%~6%,电压幅 度峰峰值大约为20V 。 2、晶体管基极阶梯波V O3的起始值为0,级数为10级,每极电压0.5V~1V 。 3、晶体管集电极扫描电压V O2的起始电压为0V ,幅度大约为10V 。 五、电路设计及仿真结果: 1、 电路基本组成: 电路由5个基本部分组成,包括矩形波产生电路、锯齿波产生电路、阶梯波产生电路、电压变换电路和由以上4个电路组成的晶体管测试电路。 2、 矩形波产生电路: 用来产生窄的矩形脉冲,要求占空比为4%~6%,所用电路为一个由LM741组成的施密特触发器,用来产生矩形窄脉冲,由于二极管D3的单向导通功能,使得充放电时的回路电阻不同,以至于时间常数不同,从而决定了矩形脉冲的占空比不是50%,而是远小于50%。电路图以及仿真结果如下,矩形脉冲的峰峰值幅度大约为21V 。 时钟源 锯齿波发生器 阶梯波发生器 图3 输出特性曲线测试电路工作波形

相关文档
相关文档 最新文档