文档库 最新最全的文档下载
当前位置:文档库 › 复合凝胶材料吸附染料研究_陈晓宇

复合凝胶材料吸附染料研究_陈晓宇

复合凝胶材料吸附染料研究_陈晓宇
复合凝胶材料吸附染料研究_陈晓宇

染料敏化纳米晶薄膜太阳电池

染料敏化纳米晶薄膜太阳电池 * 孟庆波 1,- 林 原2 戴松元 3 (1 中国科学院物理研究所 表面物理国家重点实验室 北京 100080) (2 中国科学院化学研究所 光化学重点实验室 北京 100080) (3 中国科学院等离子体物理研究所 合肥 230031) 摘 要 文章介绍了一种新型的太阳电池)))染料敏化纳米晶薄膜太阳电池的基本工作原理、目前研究的重点和进展以及应用前景和存在的问题.文章指出,这种新型的太阳电池以其制作简单并且具有进一步提高效率和降低成本的潜在优势,可以成为非晶硅太阳电池的有力竞争者.关键词 T iO 2多孔薄膜,染料敏化剂,太阳电池 Dye sensitized solar cells MENG Q ing -Bo 1,- LIN Yuan 2 DAI Song -Yuan 3 (1 S tate K ey L abor atory f or Su rf ace Ph ysics,Institu te of Physics,Chinese A ca demy of Sciences,Beijing 100080,China)(2 K e y L aboratory of Photochemistry ,I n stitute of Chemistry,Chine se A c ademy of S ciences,Beijing 100080,China) (3 Institute of Plasma Ph ysics,Chine se Academy of S ciences,H e f ei 230031,China ) Abstract We describe the basic principle and applicat ion prospec t s of a new t ype of solar cell,dye sensit ized nanocrystalline t hin f ilm cells,which are quite different from traditional P -N junction solar cells.T hey are easy t o produce,and w ith furt her improved efficiency and lower produc t ion c ost s promise t o rival current amorphous silicon solar c ells. Key words nano -sized T iO 2porous films,dye,solar cell * 国家高技术研究发展计划(批准号:2002AA302403)资助项目; 中国科学院/百人计划0资助项目 2003-07-23收到初稿,2003-10-30修回- 通讯联系人.E -mail:qb meng@ap h https://www.wendangku.net/doc/e15808209.html, 1 引言 1991年和1993年,瑞士的M ichael Gr Ytzel 教授先后在Nature [1]和Journal of the American Chemical Society [2]上发表论文,报道了一种全新的太阳电池)))染料敏化纳米晶薄膜太阳电池.它制作方法简单,成本低,光电转换效率超过了10%.这一转换效率可以和非晶硅太阳能电池相比,并且也是目前唯一可以和非晶硅电池竞争的候选者.而这种基于纳米半导体晶体材料(T iO 2等)和工艺的新型电池因具有进一步提高效率和降低成本的潜在优势而一直得到高度重视,染料敏化纳米晶薄膜太阳电池已经成为太阳电池研究领域的一个新的热点[3)29].国家科技部对这种新型太阳电池的研究也非常重视,在国家重点基础研究发展计划和国家高技术研究发展计划中分别立项给予支持.我国的科学工作者在这一研究领域也做了大量具有自己特色的基础研究工 作.本文侧重介绍染料敏化纳米晶薄膜太阳能电池的基本原理、目前研究的重点和进展、应用前景和存在的问题等. 2 基本原理 2.1 染料敏化纳米晶薄膜太阳电池的结构及工作 原理 染料敏化纳米晶薄膜太阳电池主要由以下几部分组成:透明导电玻璃(TCO)、纳米(TiO 2)多孔半导体薄膜、染料光敏化剂、电解质和反电极.在太阳电池中,光电转换过程通常可分为光激发产生电子空穴对、电子空穴对的分离、向外电路的输运等三个

染料的上染过程

染料的上染过程: 所谓上染就是指染料舍染液(或其它介质)而向纤维转移并将纤维染透的过程。 上染过程和通常所指的染色过程不尽相同。 上染过程的几个阶段: 1.染料从染液向纤维界面转移 扩散边界层:主要靠染料自身扩散转移到纤维表面的液层,称为扩散边界层 加强染液的循环和提高染液的流速,尽量减小扩散边界层厚度是加快染色的重要途径之一。这样不仅可加快染料到达纤维表面的速度,还可以提高匀染效果 2.染料在扩散边界层中靠近纤维到一定距离后,染料分子迅速被纤维表面所吸附,染料分子和纤维表面分子间发生氢键、范德华或库仑引力结合。 3.染料吸附到纤维表面后,在纤维内外形成一个染料浓度差,因而向纤维内部扩散并固着在纤维内部。 上染过程示意

影响上染过程的因素 染料运动状态:染液流动扩散吸附扩散 重要影响因素: 1.染料分子结构 1~6同左 1~4同左 2.染料溶解状态 7.纤维表面特征 5. 纤维微结构 3.染液中其它组成及电荷 6.纤维化学结构 4.温度 5.浴比、染液流动 6.p H值 染色平衡 染色平衡:当染色达到一定程度时,染料的吸附与解吸速率相等,染液和纤维上的染料浓度不在发生变化,即达到上染平衡状态。 上染过程是大量染料分子运动的结果,是宏观结果,常以染料在染液中和纤维

中的浓度变化来衡量,而不是代表个别染料分子的行为。 上染百分率:吸附在纤维上的染料数量占投入染料总量的百分率。平衡上染百分率:染色达到平衡时,吸附在纤维上的染料数量占投入染料总量的百分率。 上染速率:纤维上的染料浓度对上染时间的变化率。 上染速率曲线:上染率对时间的变化曲线(或者纤维上染料浓度对时间的化曲线)称为上染速率曲线。 吸附等温线:恒定温度下,染色达到平衡时,纤维上的染料浓度与染液中的染料浓度的关系曲线。 平衡吸附量:染色达到平衡时纤维上的染料浓度。 染色饱和值:纤维上的染料浓度不再随染液中的染料浓度增加而增加,此时纤维上的染料浓度成为染色饱和值。 染整知识之染色-染色的方法染色方法

天然产物对染料的吸附及其在印染废水处理中的应用

天然产物对染料的吸附及其在印染废水处理中的应用 【摘要】有色物质的过量排放是当前最为严重的环境问题之一,因此,印染废水中有色物质的去除已成为全球关注的技术问题。天然产物数量丰富、种类繁多、结构复杂,其中具染料吸附功能的物质包括动、植物材料以及土壤、沸石、颗粒状活性碳与粉煤灰等其它固体材料。热力学参数的变化表明,天然产物吸附染料的反应多属自发过程,其主要机制为表面吸附与颗粒间的扩散,且不同产物具有各自独特的吸附基团。因此,天然产物的表面性状、内部孔隙结构以及主要化学基团的分布是决定吸附效率的关键因素。此外,水溶液中染料浓度、pH值、温度、盐度与接触时间等外在因素亦能有效调控吸附过程。根据上述机理可对天然材料进行适当的修饰与固定,并将其与相应的最佳反应条件相耦合,实现规模化的试验与应用,从而逐步建立资源节约型与环境友好型的印染废水处理技术体系。 【关键词】天然产物;吸附;染料;印染废水 有色物质的过量排放是目前全球面临的共同环境问题,因此,从印染和印刷行业的废水中去除染料和色素已成为解决上述问题的技术难点。天然产物数量丰富、种类繁多、结构复杂多变,其中许多物质具有较强的吸附染料和色素的功能,故能据此开发与集成印染废水处理的新技术。 具有染料吸附功能的天然产物主要为动、植物材料与其它固体材料等。动物材料包括蛋壳[1]与骨骼[2]等,植物材料包括香蕉、荔枝与希蒙得木的树干和树皮[3-4]、草[5]、洋麻纤维[6]、藻类[7]以及木屑[8-9]和稻壳灰[10]等,其它固体材料包括土壤[11]、沸石[12] 、颗粒状活性碳与粉煤灰[13]等,上述物质因组分的差异表现出明显不同的吸附染料的功能。 利用物理化学方法可基本描述染料吸附过程的热力学与动力学特征,辅之以分析化学测试,则能大体解释吸附过程的机理。首先,熵、焓和吉布斯自由能等热力学参数的分析结果可指示吸附反应的性质和方向,例如,稻壳灰对食用靛蓝(IC)染料的吸附与脱脂加州希蒙得木对亚甲基蓝的吸附反应均为自发过程[4,10];具体而言,土壤对刚果红染料的吸附和用多聚物固定的蛋壳对活性红染料的吸附均属自发的放热反应[11],而洋麻纤维对亚甲基蓝的吸附和三毛榉锯屑对废阳离子染料孔雀石绿的吸附均属自发的吸热反应[6];其次,吸附的基本过程与步骤可用动力学模型加以描述,粉煤灰及其合成沸石吸附食用靛蓝的主要机制为表面吸附与颗粒间的扩散作用[13],以刚果红为对象的动力学实验结果表明,土壤颗粒上表面吸附位点具有非均一性,且吸附过程并非完全受扩散步骤控制[11],另一方面,用多聚物固定的蛋壳能有效吸附活性红染料,被吸附分子在颗粒间的扩散是吸附过程的限速步骤[1];此外,天然产物的物理性状与吸附机制密切相关,就活性碳而言,粉末状比颗粒态具有更强的对染料的吸附速率和能力,其原因在于染料本身的渗透阻力[14];再次,精细的化学分析方法可判定吸附剂的关键基团,从而在微观层次上揭示吸附过程的机理。傅里叶变换红外光谱显示,在吸附间胺黄染料的过程中,荔枝树皮中的氨基凭借静电引力吸附染料[3],固

高分子水凝胶

高分子水凝胶 凝胶是指溶胀的三维网状结构高分子。即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。 药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。水凝胶中的水有两种存在状态。靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。 影响水凝胶形成的主要因素有浓度、温度和电解质。每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。 水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。 根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。 不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等: (一)溶胀性:水凝胶在水中可显著溶胀。溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。溶胀的大小可用溶胀度(swelling capacity)来衡量。 (二)环境敏感性:又称智能水凝胶,根据环境变化的类型不同,环境敏感水凝胶又分为如下几种类型:温敏水凝胶、PH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶。非离子型水凝胶溶胀性只取决于聚合物的化学组成,而与外界环境无关。(三)黏附性:或称黏着或黏接等。一般指的是同种或两种不同的物体表面相黏接的现象。除非其中之一为具有黏附性的材料,或者两个表面能通过物理、化学作用而产生黏附性,否则就要用到胶黏剂。在现代新型的药物制剂中为了通过黏附作用达到长效、缓释和靶向给药的目的,往往使用聚合物水凝胶,以达到在生物体上黏附的目的。 由于水凝胶具有良好的生物相容性,对药物的释放具有缓释、控释作用及可吸水膨润等优点,引起了众多研究者的浓厚兴趣,在中药领域也逐渐得以研究应用.如把一些传统的中药散

浅析染料敏化纳米晶太阳能电池的结构及工作原理

浅析染料敏化纳米晶太阳能电池的结构及工作原理 摘要:人类的生存和社会经济的发展离不开能源,新能源尤其是可以再生的绿色能源的开发与利用是关系一个国家生死存亡的重大问题,太阳能是一种无污染并且取之不尽的能源,每年向地球辐照的能量大约是5.4×1024J,是人类每年消耗总能量的几万倍,如何有效利用太阳能成为解决能源危机和环境污染的焦点。太阳能电池也随着全世界的研究快速出现,目前使用最多的太阳能电池都是采用二氧化钛作为光阳极,由于氧化锌具有和二氧化钛几乎相同的带隙和相似的导带能级,被认为是最有可能超越二氧化钛取得更高转化效率的光阳极材料。本文以二氧化钛纳米晶粉体材料为例,详细介绍太阳能电池的结构和工作原理,染料敏化剂对太阳能电池的重要性进行详细分析。 关键词:太阳能电池;二氧化钛;染料敏化纳米晶 引言 太阳能的变换和存储的重点研究对象之一是太阳能电池。和普通电池不同的是,太阳能电池是一个把“太阳光的能量转化成电能的机器”。1991年,瑞士科学家Gratzel等人首次利用纳米技术将染料敏化太阳能电池的转化效率提高到7%。由于生产过程中没有高真空等高能耗环节,氧化锌和二氧化钛等原材料易得,发电成本比其它电池更低。不会造成严重的环境污染。因此,在过去的二十年中,染料敏化纳米晶太阳能电池(即Gratzel电池)在世界范围内得到广泛研究,并取得了一系列的突破,为染料敏化太阳能电池的实用化打下了坚实的基础。本文就染料敏化太阳能电池的结构及工作原理做一个简要的介绍。 一、太阳能电池的结构 染料敏化纳米晶太阳能电池的结构可分为三部分:工作电极、电解质和对电极。在透明导电基底上制备一层纳米多孔半导体薄膜,然后再将染料分子吸附在多孔膜的表面,这样就构成工作电极,通常称为光阳极。由于光阳极输出的是电子,从电源的角度看,光阳极其实是电源的负极,对电极才是电源的正极。对电极一般是镀有一层铂的导电玻璃,当然也可以用碳或其他它金属代替铂,不过电池转化效果最好的还是铂。在完成本文的工作中都是采用热分解沉铂的导电玻璃((FTO)作为对电极。工作电极和对电极之间充满电解质,电解质可以是液态的,也可以是准固态或固态的。 二、工作原理 在光电流产生过程中,电子通常经历以下七个过程: ①染料受光激发由基态(D)变为激发态(D*),电子从最高己占据分子轨道(简称Homo)跃迁到最低未占据分子轨道(简称Lumo):D+hv→D*

吸水高分子水凝胶

高分子水凝胶 那些貌似或神似刘谦小子的民间版非著名魔术师,信誓旦旦以娱乐民众为己任,在他们素常的节目单中,大多会设置以下环节:观众排排坐定,这位表演者先奉献一通似是而非的插科打诨,比如说本人自幼年起就在学着把有的东西变作没有,或者把没有的东西变作有,苦苦钻研数年,而今终于有了小成,说着说着拍拍手,让助手或者主持人上杯子,摆好了,又要了一壶水,然后往杯子里倒将下去,一边念念有词,说你可要看好了,笃悠悠把杯子倒扣过来,哇噻,竟然没有水流出耶…… 特别声明一下:该魔术十分适合朋友聚会之类,其他较为严肃的场合比如春晚或赈灾晚不建议使用,否则于全国人民面前穿帮丢脸,后果自负。 一般来说,看到以上场景我总是默默地低下头来,以免嘴角不屑的讥笑打击了表演者的自信心,因为在一个学材料专业出身的非著名观察家看来,要做到把水变没有了实在是太容易的一件事,他只需要在杯底放一片SAP就行了。SAP乃Super Absorbent Polymer 的缩写,意为超强吸水性聚合物,或者也被叫做高吸水树脂、超强吸水性高分子。别急,不必被这些名字给镇住了,得到这个听起来很高级的魔术道具其实毫不麻烦,你只要去超市买一包纸尿裤就行了。 好,暖场部分结束,还是让我们言归正传,从头来看看本文真正主角SAP的身世吧。 在早期,人类日常生活中凡涉及吸湿、吸水、止血之用,只能依赖于棉花、纸帛等天然纤维,但显然它们干的活并不那么让人满意:除却吸水量不是很大(最多也就是20倍左右)之外,还有一个非常大的缺陷,就是吸完之后,若受到压挤,液体还是会回渗出来,有时会造成意想不到的污染。 度过了漫漫长夜,对超吸水材料的呼声日渐高涨,美国农业部的Northern Regional Laboratory实验室1961年成功申请了一个专利,称他们用一种“接枝”的特殊聚合手法,做出了一种丙烯酸单体合成的高分子聚合物,它的奇妙之处是能够吸收400倍于己身质量的水!更妙的是,吸进去的水不会因为外界压力的作用而回渗。这一发明立刻吸引了全世界工业家的目光,强生、陶氏、杜邦……等巨头纷纷往上面砸钱,于是合成、加工等各项技艺都开始精进,原被寄望于改良土壤保湿性的新型功能材料进入日常民用也指日可待。而日本的商业公司为了避开美国人的专利,自行开发出另外一些其他单体合成的超吸水性聚合物,鉴于丙烯酸、丙烯酸胺、乙烯醇类单体都已经得到了较充分的开发,他们就结合原有的这些体系,在淀粉、羟甲基纤维素和丙烯酸/马来酸酐体系中下了一些功夫。1978年,UniCharm 开创性地首度将这种材料用于女用卫生巾,而1982年左右,欧洲市场上出现了加有这种材料的婴儿纸尿裤,此后UniCharm和美国的P&G都很快开始了这方面的研发。

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

高分子水凝胶综述

高分子水凝胶综述 摘要 在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。 关键词:高分子水凝胶应用性能制备 产生、定义与比较 高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1) 图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)

同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。 此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图 2)。 O OH R O O H R O O H R O O H R O OH R O OH R O OH R O H H 图2 凝胶保持水分子示意图 图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。 此外,还能说明一个问题:理论上能够和亲水性基团之间发生水合而吸附在高分子聚合物周围的水分子,其厚度最多不过2~3层,第一层水分子是由亲水性基团与水分子形成的配位键或氢键的水合水,第二层或第三层则是水分子和水合水形成的氢键结合层,作用力随层数的增加而不断减弱。而凝胶之所以能够吸收更多的水分,原因就在于其交联网格结构。这样的结构是包裹式的,以立体三维式取代了平面式,而且链上亲水性基团的复杂交错,给容纳水分提供了优良的环境。

复合材料结构与力学设计复结习题(本科生)

《复合材料结构设计》习题 §1 绪论 1.1 什么是复合材料? 1.2 复合材料如何分类? 1.3 复合材料中主要的增强材料有哪些? 1.4 复合材料中主要的基体材料有哪些? 1.5 纤维复合材料力学性能的特点哪些? 1.6 复合材料结构设计有何特点? 1.7 根据复合材料力学性能的特点在复合材料结构设计时应特别注意到哪些问题? §2 纤维、树脂的基本力学性能 2.1 玻璃纤维的主要种类及其它们的主要成分的特点是什么? 2.2 玻璃纤维的主要制品有哪些?玻璃纤维纱和织物规格的表示单位是什么?2.3 有一玻璃纤维纱的规格为2400tex,求该纱的横截面积(取玻璃纤维的密度 为2.54g/cm3)? 2.4 有一玻璃纤维短切毡其规格为450 g/m2,求该毡的厚度(取玻璃纤维的密 度为2.54g/cm3)? 2.5 无碱玻璃纤维(E-glass)的拉伸弹性模量、拉伸强度及断裂伸长率的大致 值是多少? 2.6 碳纤维T-300的拉伸弹性模量、拉伸强度及断裂伸长率的大致值是多少?密 度为多少? 2.7 芳纶纤维(kevlar纤维)的拉伸弹性模量、拉伸强度及断裂伸长率的大致值 是多少?密度为多少? 2.8 常用热固性树脂有哪几种?它们的拉伸弹性模量、拉伸强度的大致值是多 少?密度为多少?热变形温度值大致值多少? 2.9 简述单向纤维复合材料抗拉弹性模量、抗拉强度的估算方法。 2.10 试比较玻璃纤维、碳纤维单向复合材料顺纤维方向拉压弹性模量和强度值,指出其特点。 2.11 简述温度、湿度、大气、腐蚀质对复合材料性能的影响。 2.12 如何确定复合材料的线膨胀系数? 2.13已知玻璃纤维密度为ρf=2.54g/cm3,树脂密度为ρR=1.20g/cm3,采用规格 为450 g/m2的玻璃纤维短切毡制作内衬时,其树脂含量为70%,这样制作一层其GFRP的厚度为多少? 2.14 采用2400Tex的玻璃纤维(ρf=2.54g/cm3)制造管道,其树脂含量为35% (ρR=1.20g/cm3),缠绕密度为3股/10 mm,试求缠绕层单层厚度? 2.15 试估算上题中单层板顺纤维方向和垂直纤维方向的抗拉弹性模量和抗拉强度。 2.16已知碳纤维密度为ρf=1.80g/cm3,树脂密度为ρR=1.25g/cm3,采用规格为300 g/m2的碳纤维布制作复合材料时,其树脂含量为32%,这样制作一层其CFRP的厚度为多少?其纤维体积含量为多少? 2.17 某拉挤构件的腹板,厚度为5mm,采用±45°的玻璃纤维多轴向织物(面密

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

敏感性高分子及水凝胶

敏感性高分子及水凝胶 摘要:本文介绍了几类敏感性高分子及其水凝胶。主要包括pH 敏感水凝胶、温度敏感水凝胶、温度及pH 双重响应水凝胶、光响应水凝胶、磁场响应水凝胶等的性质及其研究进展。简要介绍了敏感性高分子及其水凝胶的性质、制备方法、应用及其发展前景。 1 引言 近年来,随着信息,生命,环境,航空航天等领域科学技术的飞速发展,人们对材料性能的要求越来越高。因此,一批性能特异的新功能材料相继问世,敏感性材料就是其中的一类。对环境具有可感知,可响应,并具有功能发现能力的高分子和水凝胶被称之为环境敏感性高分子(environment sensitive polymers)和环境敏感性水凝胶(environment sensitive hydro gels)[ 1]。与传统的高分子和水凝胶不同,这类高分子和水凝胶的某些物理或化学性质可因环境条件的变化而发生突变。因此,这类高分子也被称为“刺激响应性高分子(stimuli-responsive polymers)”、“灵巧性高分子(smart polymers)”或“智能性高分子(intelligent polymers)”,相应的水凝胶被称为“刺激响应性水凝胶(stimuli-responsive hydro gels)”、“灵巧性水凝胶(smart hydro gels)” 和“智能性水凝胶(intelligent hydro gels)”[2]。 与高分子不同,凝胶是一类可保持一定几何外形,同时具有固体和液体某些性质的胶体分散体系。它是软物质(soft materials)存在的一种重要形式,是介于固体和液体之间的一种物质形态。凝胶体系由胶凝剂(gelators)所形成的三维网络结构和固定于其中的大量溶剂组成。敏感性水凝胶[3] 是一种亲水性高分子交联网络,它能够感知外界环境的微小变化(例如温度、pH、离子强度、光、电场和磁场等) ,并通过自身体积的膨胀和收缩来响应外界的刺激. 敏感性水凝胶的上述特点使其在药物控制释放、物质分离提纯、活性酶包埋和生物材料培养等方面有广泛应用前景。 2 敏感性高分子及其水凝胶的种类和性质 1989 年,高木俊宜[4]最先提出了智能材料(intelligent materials)概念。随后,美国的Newnham 教授提出了与之类似的灵巧材料(smart materials)概 1 念。敏感性高分子和敏感性水凝胶是智能材料家族中的重要成员。 凝胶有不同的分类方法。根据溶剂的不同,凝胶分为有机凝胶(organgels)和水凝胶(hydrogels)。以适当的方式脱除溶剂后的凝胶为干凝胶(xerogels)。根据凝胶的大小不同,有(宏观)凝胶和微凝胶(microgels)之分。根据凝胶对环境条件变化响应的不同,凝胶分为传统凝胶和敏感性凝胶。根据凝胶力学性能的不同,凝胶分为弹性凝胶和刚性凝胶。同样,根据维系凝胶三维网络结构力的本性不同,凝胶分为物理凝胶和化学凝胶。 敏感性高分子水凝胶在受到刺激时,其性质会发生突变。根据刺激信号的不同,相应的水凝胶被称为化学物质敏感性水凝胶、pH 敏感性水凝胶、温敏性水凝胶、光敏性水凝胶等。敏感性水凝胶的研究涉及学科众多,具有显著的多学科交叉特点,是当今最具有挑战的高技术研究前沿领域之一。 2.1 敏感性高分子及其水凝胶的种类 2.1.1 温度敏感性高分子及其水凝胶 温敏性高分子是研究最多,也是最重要的一类敏感性高分子。这类水凝胶结构中具有一定比例的亲水性和疏水性基团,温度的变化可以影响这些基团的疏水作用和大分子链之间的氢键作用,从而改变水凝胶的网络结构,产生体积相变。温敏水凝胶有高温收缩和低温收缩两种类型[5]。 聚N-异丙基丙烯酰胺(PNIPA)是典型的高温收缩型水凝胶,对其响应机理的一般解释是,当温度升高时疏水相相互作用增强,使凝胶收缩。线型聚N-异丙基丙烯酸酰[PNIPAM]是一种典型的温敏性高分子,在水溶液中具有独特的热行为,其大分子链上同

染料敏化纳米薄膜太阳电池中DMPII浓度的优化

2004?11?09收到初稿,2005?01?19收到修改稿.联系人:戴松元(E ?mail :sydai@https://www.wendangku.net/doc/e15808209.html,;Tel :0551?5591377).*国家重点基础研究 发展规划项目(G2000028200)资助 染料敏化纳米薄膜太阳电池中DMPII 浓度的优化* 史成武1,2 戴松元1王孔嘉1郭力1 潘旭1孔凡太1胡林华1 (1中国科学院等离子体物理研究所,合肥 230031; 2 合肥工业大学化工学院,合肥230009) 摘要 利用超微铂电极和循环伏安法及电化学阻抗谱研究了在1,2?二甲基?3?丙基咪唑碘(DMPII)的3?甲氧 基丙腈(MePN)溶液中I 3-和I -的氧化还原行为,并对比了由不同浓度的I 2和DMPII 组成的电解质溶液,其染料敏化纳米薄膜太阳电池(DSCs)的光伏性能.发现以MePN 为溶剂,含1.0mol ·dm -3DMPII 、0.12mol ·dm -3I 2、0.10mol ·dm -3LiI 和0.50mol ·dm -34?叔丁基吡啶的电解质溶液,其DSCs 的短路光电流密度为16.67mA ·cm -2、开路电压为0.69V 、填充因子为0.70、光电转换效率达8.08%.关键词:1,2?二甲基?3?丙基咪唑碘,氧化还原,染料敏化,太阳电池中图分类号:O646, TK514 物理化学学报(Wuli Huaxue Xuebao )Acta Phys.?Chim.Sin .,2005,21(5):534~538 May 1991年Gr ?tzel 等人[1]利用自己合成的联吡啶钌(II)配合物染料和纳米多孔TiO 2薄膜制备的染料 敏化纳米薄膜太阳电池(以下简称为DSCs ),获得了7.1%的光电转换效率,十多年来,DSCs 的研究进展很快[2?10].DSCs 主要是由染料敏化纳米TiO 2光阳极、电解质和对电极三部分组成.其中纳米多孔TiO 2薄膜的膜厚通常为10μm ,且对于10μm 的纳米多孔TiO 2薄膜而言,液体电解质溶液中相应的1,2?二甲基?3?丙基咪唑碘(DMPII)最适宜的浓度是0.60mol ·dm -3,碘的最适宜浓度是0.10mol ·dm -3.DMPII 易溶于3?甲氧基丙腈(MePN),且其浓度达到1.0mol ·dm -3时,溶液的电导率最大.理论上讲,DSCs 电解质溶液中游离的I -浓度越高,氧化态染料的还原再生就越快,也就越有利于染料对光的吸收和减少氧化态染料与TiO 2导带电子的复合.因此,系统地研究DMPII 的浓度对I 3-和I -氧化还原行为的影响是十分必要的.本文利用超微铂电极和循环伏安法及电化学阻抗谱研究了I 3-和I -在以3?甲氧基丙腈为溶剂的DMPII 溶液中的氧化还原行为,并对比了由不同浓度的I 2(实际上是I 3-)和DMPII 组成电解质溶液的DSCs 光伏性能. 1实验部分 1.1试剂 无水碘化锂(LiI)、碘(I 2)、4?叔丁基吡啶(TBP)和 3?甲氧基丙腈购买于Fluka 公司,使用时未进一步 纯化.1,2?二甲基?3?丙基咪唑碘是由1,2?二甲基咪唑(Aldrich)和碘丙烷(Fluka)合成的[11],其纯度用600MHz 1H NMR (DMX ?600,Bruker,Switzer ?land)进行表征,符合使用要求.所用溶剂无水乙醇为AR 级,水为一次蒸馏水.1.2DSCs 的制作 先用溶胶?凝胶法制备TiO 2胶体溶液并配成浆料[9?10],再用平面丝印机将TiO 2浆料印刷到经激光刻划仪(Universal Laser Systems,Inc,USA M ?300型)刻划分割并清洗干净的导电玻璃(SnO 2:F,TEC ?8,LOF )的导电面上,每块TiO 2浆料的面积约为0.25cm 2,在450℃的空气气氛下烧结30min 可得纳米TiO 2多孔薄膜,膜厚控制在15μm 左右.接着在这层纳米TiO 2多孔薄膜上继续印刷和烧结一层约4μm 厚、粒径400nm 的TiO 2大颗粒反射层,于450℃的空气气氛下烧结30min.然后,待TiO 2膜冷却到80℃时,立即浸入5×10-4mol ·dm -3联吡啶钌染料[顺二硫氰根?双(2,2′?联吡啶?4,4′?二羧酸)合钌(II)]的无水乙醇溶液中,放置过夜,电极表面残存的染料用无水乙醇冲洗除去.将H 2PtCl 6溶液喷涂到导电玻璃的导电面上并在空气中于410℃焙烧20min ,即可得到铂对电极.用密封膜(Surlyn,Dupont)将该铂对电极和染料敏化TiO 2光阳极粘接在一起.电解质溶液可通过铂对电极上事先打出的小孔注 534

印染废水的处理方法及工艺流程

印染废水的处理方法及工艺流程 目前,国内的印染废水处理手段以生物法为主,辅以物理法与化学法。由于近年来化纤织物的发展和印染后整理技术的进步,使新型染料、PAV浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。原有的生物处理系统COD去除率大都由原来的70%F降到50%E右,甚至更低。色度的去除是印染废水处理的一大难题,旧的生化法在脱色方面一直不能令人满意。此外,PAV等化学浆料造成的COD占印染废水总COD勺比例相当大,但由于它们很难被普通微生物所利用而使其去除率只有20%~30%针对上述问题,国内外都开展了一些研究工作,主要是新的生物处理工艺和高效专门细菌以及新型化学药剂的探索和应用研究。其中具有代表性的有:厌氧-好氧生物处理工艺、高效脱色菌和PVA降解菌的筛选与应用研究、光降解技术研究、高效脱色混凝剂的研制等。 1、印染废水常用处理技术 印染废水的常用处理方法可分为物理法、化学法与生物法三类。物理法主要有格栅与筛网、调节、沉淀、气浮、过滤、膜技术等,化学法有中和、混凝、电解、氧化、吸附、消毒等,生物法有厌氧生物法、好氧生物法、兼氧生物法。 2、印染废水处理单元的选择系列 (1 )调节:对水质水量变化大的废水,调节池应考虑停留时间长些。一般情况下后续处理单元为水解酸化或厌氧处理时,调节时不应采用曝气方式搅拌混合。

(2 )混凝反应:废水中含疏水性染料较多时,混凝反应工艺放在生化前面,以去除不溶性染料物质,减轻后续生物处理的负荷。混凝药剂可根据染料性质选用碱式氯化铝(PAC、硫酸亚铁(FeS04等,混凝反应方式采用机械搅拌易于调整水力条件,保证反应充分,反应时间应在25~30min 之间。考虑脱色效应时,应把反应时间再适当延长。 (3 )中和:原水pH值高时通常用H2S04或HCI中和,为节省药剂用量,可在调节以后。如采用烟道气中和,应考虑脱硫及除灰。 (4 )沉淀(气浮):分离物化投药反应由于污泥量大,应优先考虑沉淀〔斜管沉淀易堵不宜采用),通常的辐流沉淀池适用于大水量、竖流沉淀池适用于小水量,当有地皮可利用时,平流沉淀池采用吸泥方式时也可采用。投药量大时泥量也大,辐流池可能会引起异重流,新颖的周边进出水沉淀池可克服这一缺点。如废水中表面活性剂含量高,应选择气浮法,气浮法中压力溶气气浮技术成熟,可考虑选用。 (5 )过滤:当出水要求澄清或回用时,应采用砂滤或煤砂两层过滤。 (6 )电解法:钛镀钌惰性电极电解法处理酸性染料印染废水脱色效果 好,去除COD寸,对硫化染料、还原染料、酸性染料、活性染料等均有很高的去除率。金属阳极电解法因泥量较多采用较少。 (7 )厌氧水解:印染废水有机物含量CO{高,且B/C低,应考虑水解 酸化,并增加填料挂膜,池底应设水力搅拌机,保证悬浮活性污泥与水中有机物广泛接触。池体较大时,应设串联系统,以免短路。印染废水较少采用纯厌氧技

复合材料力学沈观林编着清华大学出版社

《复合材料力学》沈观林编著清华大学出版社 第一章复合材料概论 1.1复合材料及其种类 1、复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料。 2、复合材料从应用的性质分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能。 3、结构复合材料由基体材料和增强材料两种组分组成。其中增强材料在复合材料中起主要作用,提供刚度和强度,基本控制其性能。基体材料起配合作用,支持和固定纤维材料,传递纤维间的载荷,保护纤维。根据复合材料中增强材料的几何形状,复合材料可分为三大类:颗粒 复合材料、纤维增强复合材料(fiber-reinforced composite)、层禾口 复合材料。 (1)颗粒:非金属颗粒在非金属基体中的复合材料如混凝土;金属颗粒在非金属基体如固体火箭推进剂;非金属在金属集体中如金属陶 '瓷O (2)层合(至少两层材料复合而成):双金属片;涂覆金属;夹层玻璃。 (3)纤维增强:按纤维种类分为玻璃纤维(玻璃钢)、硼纤维、碳纤维、碳化硅纤维、氧化铝纤维和芳纶纤维等。 按基体材料分为各种树脂基体、金属基体、陶瓷基体、和碳基体。按纤维形状、尺寸可分为连续纤维、短纤维、纤维布增强复合材料。 还有两种或更多纤维增强一种基体的复合材料。如玻璃纤维和碳纤维增强树脂称为混杂纤维复合材料。 5、常用纤维(性能表见P7表1-1) 玻璃纤维(高强度、高延伸率、低弹性模量、耐高温) 硼纤维(早期用于飞行器,价高)碳纤维(主要以聚丙烯腈PAN纤维或沥青为原料,经加热氧化,碳化、石墨化处理而成;可分为高强度、高模量、极高模量,后两种成为石墨纤维(经石墨化2500~3000°C);密度比玻璃纤维小、弹性模

相关文档