文档库 最新最全的文档下载
当前位置:文档库 › 前置放大器的作用

前置放大器的作用

前置放大器的作用
前置放大器的作用

前置放大器百科名片

前置放大器

前置放大器是指把音频(AUX、MIC)信号放大至功率放大器所能接受的输入范围。目录

功能

组成

作用

区别应用

挑选方法

相关概念

模型

展开

功能

组成

作用

区别应用

挑选方法

相关概念

模型

展开

编辑本段功能

前置放大器功能有两个:一是要选择所需要的音源信号,并

前置放大器

放大到额定电平;二是要进行各种音质控制,以美化声音。

音源选择电路的作用是选择所需的音源信号送入后级,

输出的观念将讯号送出,因此单增益前级便具有阻抗转换的功能。市面上的单增益前级并不多,最主要原因在于增益往往不足,音量开至最大依旧意犹未尽,国产厂商交直流工作室推出的Encore前级,正是单增益前级的具体代表。这部前级使用孪生场效应晶体管做输入,以ZTX双极性晶体管做输出,具有高输入阻抗、低输出阻抗的特性,由于零件极少,因此S/N比奇高,将音量开至最大,耳朵贴近高音单体听不到任何嘶声,音色通透无染,细节呈现自然,是一部价格极其便宜音质极其优异的单增益前级。

前级放大器线路越简略就是越理想吗?

有非常多的废话谈论前级放大器,因此,现在是该为它澄清的时候了。在理想的环境聆听中,组件数目越少的讯号路径设计,这种放大器可能会越完全真实完美。这就是simple is the best理论。

每多用一个组件,会增加一分失真,而开关和音量控制却是主要的罪犯。但是很多好的录音能够达致做到,需要在前面的音调上,帮一个忙,才能消除掉回放时那些声音尖刺、令人聆听起来容易感到疲倦的毛病。

这样一来,就产生了这种情况:音调控制提供精密敏感的的运作(事实上许多高级层次的前级放大器都采用了步进制的电阻选择器取代了常用的电位器)。当你试听一个放大器,不妨做一个尝试:只使用它附有的低音与高音旋钮控制音量的时候,你会聆听到相应的差异。你应该相对地小的变化。这种现像不单只是发生在聆听摇滚音乐或流行音乐上,甚至聆听古典音乐的朋友,也会时常想找对一个「左手向下的」在高音上渐减的旋钮,驯化录音天然的顶端。

音量控制器已经尽力仍不能令放大器更高声输出——令书架型音箱的低音单元听起来像怪物Cerwin Vega。请紧记我们提到的附加失真?为了舞会尽兴,将旋钮旋到低音和高音都提高的位置,整个声浪提高了,但失真已经开始吹拍喇叭。

两个世界都一起拥有是最好的?既有好音量调控制的前级放大器,又可以直接的音源输出,或设有一个「音量撤离」按钮,当需要时可以将它旁路。但要留意的一点,纯化论者会更甚至这仍然坚持越简单越好。

输入阻抗匹配

前级放大器与后级放大器输出、输入阻抗匹配

前级放大器与后级放大器皆有输出与输入阻抗这项规格,输出阻抗表示前级或后级放大器讯号输出的内阻,单位是欧姆,输出阻抗越低,就表示该放大器的内阻越低、驱动能力越强。同理,输入阻抗就是前级放大器或后级放大器对于讯号输入器材时所遇到的阻抗,单位也是欧姆。输入阻抗越高,就表示前端器材可以推得更轻松,同时也可以降低负载效应的影响。每部放大器都有输入阻抗与输出阻抗,一般而言,输入阻抗Ri越高越好,输出阻抗Ro越低越好。阻抗匹配理想上前级的输出阻抗越低越好,而后级放大器的输入阻抗越高越好,这是为了避免负载效应的影响。

通常后级放大器的输入阻抗,最好高于前级放大器输出阻抗的十倍以上,这样才能让前级的实力尽量发挥。这就好比火车头拉车厢的道理是相同的,相同的车厢让不同马力的火车头拉动,轻松程度自然不一样,马力越大(输出阻抗越低)的火车头,拉动重量越轻(输入阻抗越高)的车厢,自然轻松愉快。

论坛方法

在另外一个有关怎样选择前置放大器里的帖子,L版说:「这个时代讲求的是个性! 」的确,挑选前置放大器最重要的是该前置放大器的个性气质。

前级放大器最重视的它的频率响应范围一定要宽阔(5- 35K Hz以上)高频越延伸谐波、泛音、余韵才会丰富,高频不出色,中低频无论多么好,我也不接受,影响了听感。一台好的前级放大器,首先要做到整个声音音域要平衡,动态不能过大,也不能太小,声音解析力十分好,这样声音才会通透,音场的结像自然,乐器隔离度玲珑,尺寸大小才适当。

当提出怎样选择前级放大器需要考虑那些问题时,我忽然想起自己拥有的那3部前级放大器,是我在无法作出取舍、选一部符合自己的构想的情况下,索性全把它买下来的(当然不是3部前级放大器在同一时间添置的)。这是一个多么笨的方法!?自己既然这样笨,还有资格继续写这篇文章?

要想丰润的声音,中低和低音最难调校,怎样调,利用什么材料,这就看你个人的工夫了。我当年的没有办法的办法是购置了几部前级放大器(Restek的Vector,喜欢它的频域宽,解释能力强,回放出来的声音认真清晰细致,我称它为「燕瘦」;另外一部称为「环肥」的是Audiolabor的Klar,它回放出来的声音就丰润细腻了,有血有肉,滑不留手,我仿如唐明皇般喜欢杨玉环多于赵飞燕,尤其像冬天寒冷天气里,它给我带来温暖;不像赵飞燕那般冷若冰霜,我心情燥热时才以她播放,回放出来的声音往往能令自己整个人沉静下来,起安神降燥的特殊功效。再者,我还有一部ARC SP 11 Mk II,那就专门用来聆听人声的特别措施了,由于接驳繁复,不像我的「燕瘦」「环肥」一部接XLR、另一部接RCA插头输入我的Restek Exponent后级放大器般方便,我只需要在Exponent背板的按钮上将Bal变Unbal,就可以选择「燕瘦」或「环肥」了。

这个例子说明前级放大器对聆听者的偏爱有直接关系,我聆听音乐种类、性质繁多,因此用了多部,其它的发烧朋友,当然要根据自己聆听那一类型的音乐去选择了。喜欢古典音乐的,当然频率响应范围一定要宽阔(5- 35K Hz以上);以聆听人声为主的音压和频域的要求就可以降低些……

总之,要诀还是要多些聆听,还要配合已选好的音箱结合起来聆听,只有这样,回放出来的声音才会是将来自己想聆听到的声音。

假如音响器材的前级放大器,能在速度、瞬变、动态、声压等要素,较为真实还原出来的话,就可以冷静的坐下来聆听音乐了,并可以进入音乐优美的境界,欣赏到音乐的内涵而深受感动。

玩HiFi的朋友往往会偏重于调校某些环节,而疏忽其它因素的影响,器材除了要配搭得宜之外,更要有一个好的聆听环境,悉心的调校和使用,才可以达到目的,不会是一蹴而就的。这些道理相信大部分的发烧友都懂得,但能够顾及全面去玩的朋友毕竟不多。单就器材使用方面,很多发烧友对自己的器材性能都不甚了了,往往因为使用不当,而将声音不好的原因归究在某些器材身上。结果「玩」HiFi变成了不停地「换」HiFi。我居住的这个小镇

里,就有这样一位发烧朋友,玩音响的经历仅五六年,前后换了不下六套系统了。我说的是「套」,换的是整套!大家猜猜他现在是怎样玩前级放大器的?他现在是以玩CD Wadia 861为讯源(半年前曾玩过一台LP唱盘,弄不出好声音而转让或退回给代理了) ,这部机已经可以直接连接后级放大器了,因为它经已设置了有一个数码式音量遥控器。可是这位发烧友大概慕名或者是嫌Wadia 861数码声音较重,另外连接了一部ARC Reference II 前级放大器,然后连接到每边输出600W的Pass功率放大器,驱动一对Wilson WATT / Puppy 6。钞票原来是可以这样来花的!?大概他认为这样就能将声音真空管化了!

前级可以说是整个系统的控制中心。一般人对前级的理解,以为仅是前级只是用来控制音量的大小和选择讯源的一件器材,对于机上的按钮和设施往往视而不见,甚至对每个按钮的用途也懒得去理解,他们其实是浪费自己的金钱和设计者的心血,没有好好地去发挥它的性能。

就以一部最简单的前级为例,它通常只具备选择讯源和控制大小声的功能,但你不要轻视它,其实声音的好坏,与操作前级是否正确和调校有极大关系。先撇开调校不谈,就以控制音量旋钮(Volumn)来说,它可以说是一种艺术,音量的大小足以影响到整个系统声音的好坏。我居住的这个小镇里,又有这样的另一位发烧朋友,他喜欢欣赏鼓声音,招待客人就是鼓声连场,音量旋钮通常都旋至12.00 o’clock 或13.00 o’clock位置,谁受得了。他不管听什么音乐,都以同一音量去听,以为录音好的自然声音就必然好听。更要命的是他以为大声就是好听,所以不管是听交响乐,或是单一乐器演奏都用同一音量去听,结果你听到邓丽君的歌喉声如洪钟,娇小的身躯变得像姚明雄伟,小提琴的体积扩大为倍音大提琴,结他的高音像古钢琴,低音部分像打鼓。当你听到皱起眉头,心中发闷时,他还对你说他的系统的动态如何的劲,歌手是如何的够中气,录音细节是如何多,简直可以把你气得半死!

为什么这些朋友会这样子去听音乐呢?纯粹因为他们少了去聆听音乐会,正统的现场音乐会。当他听过在同一音乐厅里演奏的交响乐队,和单一件乐器演奏时的音量大小,和真正乐器发声时,他会明白到什么叫做声音的比例,才能了解到单一件乐器演奏发声时的音量的响度。除了听现场外,其它解乐器发声和音量的方法,就是听一些不用扩音机系统的真人演奏。那么当你再去听那些CD上的罐头音乐时,就不会毫无准则地去调节音量,不但使声音失真,乐器变形,耳朵受罪外,听觉也可能受损呢!

音量控制的最高技巧,就是能令到自己的音响器材达到最佳的表现,能够将乐队、独奏乐器、真人唱歌时的音量大小,原汁原味地还原!就是HiFi的1:1的音量,同样比例的体积和同样大小的立体音场,彷佛整个交响乐队在家里聆听室作现场演奏!发烧友以为:只要把世上最贵的器材搬回家,就可以做到这样的景界。事实上并不像他设想的那么简单,其中学问多着。

翻译方法

译者注:这是一篇这两天刚开始翻译的文章,目的是配合坛子里网友提出的要求,将会分段贴出,希望大家耐心等候。

当提出怎样选择前级放大器需要考虑那些问题时,我忽然想起自己拥有的那3部前级放大器,是我在无法作出取舍、选一部符合自己的构想的情况下,索性全把它买下来的(当

然不是3部前级放大器在同一时间添置的)。这是一个多么笨的方法!?自己既然这样笨,还有资格继续写这篇文章?

前级放大器的添加目标,是达成在你的音源(s)和放大器之间的协同作用。任何时候你有一个机会试听连接在你的系统中多部前级放大器,却说不出那一部的声音较另一部的声音好。理由是声音好的通常或多或少在价格上会较高,或者那部前级放大器的在电路设计上多做了很多功夫。

选择理想前级放大器时,你必需弄清楚两件事

A. 你的音源输出电压(最光盘驱动器是2伏);

B. The input sensitivity of your amplifier (most amplifiers are around 1 volt) 你的放大器的输入灵敏度(大多数的放大器1伏在附近)

究竟你的光盘驱动器或其它的音源的输出电平小于或大于2伏,你必需知道。在相同的音符上,如果你功率放大器的输入灵敏度小于或大于1伏,你也应该必需知道。一经你确实知道这些电压,你就可以好好的选择正确的前级放大器了。

编辑本段相关概念

音源输出电压

(output voltage of your source)音源输出电压是一个不会变更的固定电平,除非你的音源有一个”可变的输出”。这一个2伏的讯号(音乐),驱动着功率放大器的输入级,或者驱动着前级放大器,它依次驱动放大器的前级放大器的输入或功率放大器的输入级。

放大器的输入灵敏度

(input sensitivity of an amplifier)

简单地说,放大器的输入灵敏度意思指有多少伏的电平讯号传送到功率放大器去。任何的电压量超过这个数量,将会令到你的功率放大器尝试使出更多的、超越实际上有的功率,结果令它超负载产生所谓”削波clipping”。

因此在所有的情况下,一个前级放大器理所当然的是用来控制来自音源的电压。当前级放大器音量向左被旋到最尽的时候,你能测算到只有零伏电压输出,功率放大器因此没有声音。当你把音量音量旋钮向右旋调把输出电压增大时,你的功率放大器便能驱动音箱发出声音。音量控制上的理想工作范围应该在一个向右1/4 与3/4 之间,这是聆听电平的正常位置(实际上超越向右1/2位置时,失真已经存在了)。意思是说:前级放大器永远不会在输入信号里增添任何的电压,也即是”增益gain”。

什么情况下前级放大器需设”增益” 呢?有两个理由可能希望前级放大器增强增益:

A. 当功率放大器需要高于1伏才能到达全功率输出的时候。

B. 当你的音源只有小于2伏输出的时候。

某些功率放大器需要5伏输入,才能达到全功率输出,通常放大器设计,全部设定在2伏输入时便达到全功率输出。偶然间我们会看到某种放大器仅需要1/2伏输入便到达全功率输出。

一些被修改过的光盘驱动器的输出电平少于2伏,一些数码模拟转换器DACs 也有少于2伏输出电平的。(虽然大多数的DACs 至少有2伏或稍高伏的情况,有时可能达到5伏。)

喜爱乙烯基唱片的人,有时可能很难找到一部以输出的一部附设有2伏的唱头和唱盘接线端子级。我曾看到过多数是1伏的。

假如音源只有1伏输出电平的情况下,而放大器的输入灵敏度只有2伏,就必须多设一部有增益的前级放大器,否则便无法让后级放大器去正常的回放出该有的音压。即使有一对超高效率的音箱、聆听的要求仅是非常松软水平,但回放出来的音乐将会缺乏动态和重量感的。

一旦作出决心需要增益或不增益,便已经大大缩窄了选择范围。但无论选择增益或没有增益,都必需考虑匹配的「阻抗」。

所有的音源和放大器有被称为「输出阻抗output impedance」的东西。把它当作这部机对付困难负载的驱策能力,例如以很长的信号线连接放大器。

相反的情况,所有的放大器有被称为「输入阻抗input impedance」这种的东西。把它当作这部机遭逢到前级放大器或光盘驱动器所施的电平。

一般规律是愈低输出阻抗,愈比较易于驱策困难的负载。同样,愈高的输入阻抗,也是比较容易驱动。前级放大器最好是输出阻抗低于1000Ω去驱动一部输入阻抗为100,000Ω的放大器。

市面上的光盘驱动器的输出阻抗通常都相当低,但是不幸的是功率放大器的输出阻抗,通常都在10,000Ω和500,000Ω之间,多数是在50 KΩ附近。

50 KΩ是一个适当的负载,大多数的音源和前级放大器驱动时都不会产生问题。除非是以一部高输出阻抗的前级放大器,以额外长的信号线去尝试驱动一部50 KΩ放大器。结果可能经常不是低频响应衰落便是声音变得缺乏动态,或者两者同时存在。聆听者当然不希望回放出来的声音听起来单薄,因此,千万设法使用短的信号线。如果那部前级放大器的输出阻抗颇低,那么就没关系了,即使功率放大器在房子的另一边,仍然低频响应硬朗有重量感,也不会有衰落。

编辑本段模型

这里有3部前级放大器模型:

顶级的A模型跟据怎样在背板设定的选择开关,设有许多增益或没有增益;或者采用一个正常输出阻抗或低的输出阻抗。这样才能够确定它实发出独特的、或经常性的好声音。

模型B则没有增益,输出阻抗却是低的,对大多数的系统的匹配最为理想。

模型C有较大增益以及较高的输入灵敏度,迎合以较低输出的音源或较高输出灵敏度的放大器,或两者都存在都适配。

假如玩家的讯号只是CD机,而音响系统所采用的功率放大器设有音量控制电位的话,用与不用前级放大器,则存在有可选用或不选用前级放大器的可能。事实上大多数的情况下,建议被劝告不要不选用前级放大器。

宽带放大器前级放大电路

宽带放大器(A题) 摘要 本作品主要由增益放大器OPA820ID和功率放大芯片THS3091D,分别实现增益信号的调节和末级功率的放大,在20HZ到5MHZ带宽范围之间的小信号进行有效的放大,实现增益0dB到100dB之间连续可调,最大不失真输出电压有效值不小于10V,利用DC—DC变换器TPS61087DRC为末级放大电路供电。系统主要由三个模块组成:前级放大电路;功率放大电路;供电电路,本设计在放大电路中设计了相位补偿电路和防止产生自激振荡电路,由于电路限用单电源供电,所以在电路设计时加入了合适的偏置。 关键词:宽带增益放大器 OPA820ID TPS61087DRC THS3091D

一方案选择与论证: 分析设计题目的各项要求,放大器的增益调节是重点,而功率放大是本题的难点,因此有以下的方案选择与论证。 1增益放大电路部分 方案一:采用TI公司提供的OPA820ID芯片,采用反相输入比例运算放大电路,设计简单,但容易产生自激振荡,电路稳定性差,不选用此方案。 方案二:采用多级放大器的级联实现增益放大,通过模拟开关选择信号的级联放大,每一级实现不同的增益放大,最终实现的增益等于各级增益之和。此方案原理简单,但需较多模拟开关和较多运放的级联,增加了系统的成本和不稳定性,而且调试难度较大,增加了本身的不稳定性。故放弃此方案。 方案三:采用TI公司提供的OPA820ID芯片,采用同相输入比例运算放大电路,设计简单,且能有效避免自激,稳定性好。采取此方案。 2功率放大部分 方案:由于题目要求采用THS3091ID,所以放弃使用分立元件实现的方 案,而使用集成高速功率放大器THS3091D,驱动负载能力较大,低噪声,采用并联三个THS3091D高速宽带放大器,电路简单,增益可调,而且方便调试,为防止自激,我们采用输入电压从反相输入端输入,由于THS3091D为单电源供电,所以在其同相输入端加入直流偏置电路,以使同相输入电压为Vcc/2.其原理图见下。总放大增益为16 dB。而其在输出端能实现大电流输出,完全满足题目要求,实现起来简便易行,易于调试,且噪音小。故采用此方案。 二理论分析计算: 1 增益分配: (1)前级放大电路以OPA820ID为核心,其频率上下限控制在10HZ-10MHZ,其电压增益不小于40db。前级放大电路有两级OPA820ID构成,为实现输入阻抗匹配,系统第一级为缓冲级,为扩展通频带,输入缓冲级增加一补偿电路。第一级放大倍数为16dB,在其同向输入端加入直流偏置。第二级放大倍数为16 dB。题目要求放大电路不失真时输出电压峰峰值大于10V。频率下限不大于20HZ,上限不小于5MH,而本电路对输入输出电压及频率都有限制,所以,必须合理分配各级放大器的放大倍数。 第一级电路由OPA820ID构成电压串联负反馈,在其同向输入端加入直流偏置电路以使其同相输入端电压稳定在Vpp/2,即2.5V。为展宽电路通频带,在其电路反向输入负载并联30pf可调电容。使并联后总的阻抗减小,频率增大,使高频顺利通过。起补偿作用。在此电路中,在OPA820ID电源端加入去耦电容和瓷珠。以稳定输出电压及起滤波作用。两级放大电路通过隔直电容级联。 末级放大电路以THS3091D为核心,其电压增益为16dB采用并联三个THS3091D高速宽带放大器,为防止自激,我们采用输入电压从反相输入端输入,由于THS3091为单电源供电,所以在其同相输入端加入直流偏置电路,以使同相输入电压为Vcc/2.其原理图见下。总放大增益为16dB。而其在输出端能实现

AD603的直流宽带放大器

基于AD603的直流宽带放大器设计直流宽带放大器可以对宽频带、小信号、交直流信号进行高增益的放大,广泛应用于军事和医用设备等高科技领域上,具有很好的发展前景。在很多信号采集系统中,经放大的信号可能会超过A/D转换的量程,所以必须根据信号的变化相应调整放大倍数,在自动化程度要求较高的场合,需要程控放大器的增益。AD603是由美国ADI公司生产的压控放大器芯片,具有低噪声、宽频带、高增益精度(在通频带内增益起伏小于等于1dB)的特点。压控输入端电阻高达50MΩ,在输入电流很小时,片内控制电路对提供增益控制电压的外电路影响较小,适于实现程控增益调节。故该系统选择AD603为核心实现高增益、低噪声的程控直流宽带放大器。 1系统设计 1.1技术指标 输入电阻Ri≥50Ω;输入电压有效值Ui≤10mV;带宽0~10MHz,0~9MHz范围内,增益起伏小于等于1dB;程控增益40dB和60dB,以5dB步进;在60dB放大,带载50Ω时,最大输出10V,且无明显失真。 1.2总体设计 宽带直流放大器的实现原理框图如图1所示。该系统主要由宽带运放级联组成,输入信号经由AD603及外围电路构成的放大网络输出,输出增益为36.5dB,带宽15.6M,再由AD811放大,两级可实现40dB增益,在0~10MHz范围内无明显失真。经AD811放大电路放大的信号再经过AD829实现60dB增益,输出电压有效值10V,信号经过AD829之后进入扩流电路,实现带载50Ω电阻。单片机mega16通过DAC0832来控制预置增益,编程实现步进增益5dB,实时液晶显示。

图1总体设计框图 1.3单元电路分析与参数计算 1.3.1前置放大电路分析与设计 AD603是一款8引脚的高增益、带宽可调放大器,带宽最大为90MHz.在-1~+41dB 的增益范围内,带宽可达30MHz;在9~51dB的增益范围内,带宽为9MHz.由于带宽增益积的关系,一级AD603无法实现60dB放大,需采取多级级联实现。由于低噪声的特性,选择AD603作为第一级放大。根据芯片技术手册,当VG在-500mV~+500mV范围内以40dB/V(即25mV/dB)进行线性增益控制,增益G(dB)与控制电压VG之间的关系为:G(dB)=40VG+G0i(i=1,2,3)。这里要求增益5dB步进,故VG=5325mV=125mV,其中VG=VGPOS-VGNEG(单位为伏特),G0i分别为三种不同模式下的增益常量: G01=10dB,G02=10~30dB,G03=30dB. Ri=R1‖100=100‖100=50Ω,系统要求带宽为10M,前置放大器的带宽应大于 10M,采用G02模式,通过计算调试选定AD603的5、7脚接2.15kΩ,4、5连接5pF电容,实现频率补偿。第一级放大器的最高频率为: AD603芯片内部有100Ω电阻,在反向输入端与地之间加入100Ω电阻,实现输入电阻为50Ω,第一级实现增益36.5dB. 1.3.2中间级放大设计 AD603的供电电压最大为±7.5V,经AD603放大的信号幅度最大为5V左右,带载能力差。AD811是一款视频驱动放大器,在满足通频带内增益起伏小于等于0.1dB,增益小于等于2时,具有25M带宽,供电电压选用±15V,可实现10V有效值输出。满足系统10M通频带的指标要求,具有较强的带载能力,在满足40dB增益的前提下,还要考虑到与后级放大器一起实现60dB增益,且满足带宽要求,这里选择AD811的增益为1.5倍(3.5dB)。增益由电阻RFB和RG来决定: 为了便于精确调整放大倍数,RFB选用1kΩ滑动电位器,前两级放大后,在10M带宽范围内,实现了40dB增益。

前置放大器与功率放大器的性能解析9页

前置放大器与功率放大器的性能解析 前置放大器与功率放大器的性能解析2011-05-31 11:34 第一节前置放大器与功率放大器一、前置放大器1.前置放大器的功能与主要性能在歌舞厅、会堂以及家庭等场合,广泛使用的放大器分为音频放大器(亦称声频放大器)TAV放大器(视听放大器)两类。音频放大器又分前置放大器和功率放大器两种,它们只接收、放大、处理音频信号;而AV放大器可以接收、放大、处理音频和视频信号。在音频放大器中,前置放大器(又称电压放大器、控制放大器)的作用是对它的输入各种音频节目源信号进行选择和放大,并调整输入信号的频响、幅度等,以美化音质。功率放大器则是将前置放大器送来的信号进行无失真的单纯功率放大,以推动扬声器放音。前置放大器和功率放大器可以独立装成两台机器,也可以组装在一台机器内。组装在一起的称为综合功率放大器或综合放大器港台或市场上则称为合并式功放,而把分开做成两台机器的有时又称为前级和后级功放。①对各种节目源信号(如激光唱机、电唱机、调谐器、录音机或传声器)进行选择与处理;②将微弱的输入信号放大到0.5-1V,以推动后续的功率放大器;③进行各种音质控制、以美化音色。因此它的控制旋钮多、性能高,对改善整个音响系统的性能,提高音质、音色,以高保真的指标对音频信号进行切换、放大、处理并传递到功放级,具有极为重要的作用。它的地位和重要性相当于调音台,因为它的输入接自各种节目源信号,它的输出传输给功放和扬声器放大器也可以说是整个音响系统的控制中心。显然,在设计和选用音响系统设备时,采用前置放大器就不必再用调音台,或者反之,采用了调音台就不必选用前置放大器。从结构、能以及功能来说,前置放大器要比调音台简单些。2.前置放大器的主要性能前置放大器的主要性能指标有:失真度、信噪比、频率响应、转换速率(SR)、输入阻抗和动态范围等。①失真度。失真包括谐波失真和互调失真等,当然其值越小越好。作为高保真前置放大的最低要求,其谐波失真应≤0.5%。目前,前置放大器的指标可做得很高。谐波失真一般能做到小于0.01%,瞬态互调失真大多在0.05%以下。②信噪比。其值越大越好。作为高保真前置放大器对宽带信噪比的最低要求为≥50dB,现在做到90dB以上也不难了。③频率响应。作为高保真前置放大器对频响的最低要求为40- 1600Hz,允差≤±1.5dB,现在一般能做到20-20000Hz、通带内平直、正负不超过0,1%。④其他要求。除了以上三个最主要指标外,还有许多

宽带放大器设计报告

宽带放大器设计报告 ―-武汉大学电子设计基地设计组第1组:许可崔振威谢超 摘要:本系统利用可变增益放大器AD600作为核心,通过模拟开关选通不同的控制电压的方式来达到增益步进6dB,总增益从0dB到30dB的目的,其控制电压均由2.5v电压基准MAX873经过精密电阻分压得到,有效的保证了控制电压的稳定度,获得良好的波形。前置放大采用由AD844构成的正向放大器,可以有效的提高输入电阻,使输入电阻达到兆欧级别。后级放大采用增益固定为10dB的同向放大器,从而使整个电路的增益能从10dB变化到40dB,该放大器由高精度宽带运放MAX477构成,在保证良好输出波形的同时,可以使输出电压有效值大于3V。前置放大和后级放大的输出均采用峰值检测电路检测出正半周最大电压值,用于有效值的计算,采用AD603构成的AGC电路,在输入信号在0.05V~1.00V内变化时,能将输出有效值稳定在2.05~2.6 V。整个系统的通频带为1K~14.6MHz。由12位A/D 转换器MAX197对输出信号的峰值进行测量,分辨率达到1mV 。AT89S52和CycloneFPGA构成的单片机小系统板可以通过键盘,人为预置增益值来获取相应的放大倍数,同时实时显示实际增益值、输出有效值和当前增益误差。整个系统采用中文显示,界面友好美观,控制方便。

一、方案论证与选择 1.增益控制部分: 方案一 采用普通宽带运算放大器组成的放大电路,同时由分立元件构成的AGC控制电路,通过包络检波再反馈回放大器的方法来控制放大倍数,这种方法构成电路简单,但是反馈控制比较困难,难以实现步进,精度也很低。 方案二 采用集成可变增益放大器AD600作为增益控制。AD600是一款低噪声、精密控制的可变增益放大器,温度稳定性高,最大增益误差为0.5dB,满足题目要求的精度,其增益(dB)与控制电压成线性关系,因此可以方便的采用控制电压的方式来控制放大器的增益.采用D/A变换装置输出电压控制高速压控放大器AD600来实现增益的步进,采用此种方法可以获得很小的步进。但是由这种方法得到的控制电压有一定的纹波,而芯片AD600对控制电压非常敏感,微小的电压波动就能造成输出波形上下起伏,波形不佳。 方案三 主控芯片采用AD600,利用电压基准源通过精密电阻分压得到各个增益值对应得控制电压,在用模拟开关CD4051来选则不同的控制电压来达到控制增益的目的。电压基准源采用MAXIM公司2.5 V基准MAX873。 经过比较,选用方案三。 2.有效值测量部分 方案一 采用检波二极管构成的峰值检测电路,然后用A/D转换器对其检测结果进行读数。峰值检测的原理是当输入电压正半周通过时,检波管导通,对电容C充电,适当选择电容值,使得电容放电速度大于充电速度,这样,电容两端的电压可以保持在最大电压处,该电压通过一个用运算放大器构成的射极跟随器输出电压峰值。采用这种电路优点是频带响应宽,频率越高检测反而越准确,且电路简单。但是由于检波二极管存在一定的导通压降,且为非线性,测量精度低,小信号时尤其明显。同时电容值的选取也使得电路有一定的局限性,如选取太大,放电时间过长,会改善输出电压发纹波,但是会导致该电路响应速度慢;如果电容选的太小,放电时间过短,能改善电路的响应时间,但也会导致低频时输出电压纹波较大。 方案二 采用集成电路AD637作为有效值运算,它测量有效值的范围为0-7V,精度优于0.5%,且外围元件少,频带宽,对于一个有效值为1V的信号,它的3dB带宽为8MHz,并且可对输入信号的电平以dB形式表示。该方案精度高,直接输出有效值,但电路稍复杂,且不适合高频信号。 经过比较,方案二中AD637对小信号测量具有很大优势,而方案一中在频带方面满足要求,考虑到题目的频带范围和制作成本的因素,采用方案一。 3.自动增益控制部分(AGC) 方案一 AGC电路实际上是一个根据输出电压的动态的调整放大倍数,从而使输出稳定在预定范围的反馈型电路。根据该特点可以引入CPU、A/D和D/A转换器通过程序对放大倍数进行控制,即数字式AGC,此种AGC电路的输出范围完全由人为设定,可以很容易满足题目要求,

射频宽带放大器

射频宽带放大器(D题) 摘要:本系统以可控增益放大器LMH6502为核心,外加宽带放大器OPA695的配合,实现了增益可调的射频宽带放大功能。系统主要由四个模块构成:前置固定放大电路模块、可控增益电路模块、后级固定放大电路模块和单片机控制显示模块。前置放大电路和后级放大电路以OPA695为核心器件,分别可提供约25.3dB 和23.5dB的固定增益;可控增益模块主要由LMH6502构成,可实现-50dB~20dB 的动态增益变化;单片机显示模块用于控制并显示可控增益电路模块的控制电压,使整个网络能够完成0~60dB的增益可调。本系统具有增益可调,频带宽,电路形式简单且调试方便的特点。经测试,系统完成了全部基本功能和部分发挥功能。 关键词:宽带放大器;可控增益;单片机控制;

一、系统方案: 1.1方案比较与选择: 方案一采用分立三极管或双栅场效应管,将每一级构成的可控放大器级联,分别对每一级增益进行控制。该方案灵活度相对较高,但电路稳定度低,不利于调节和控制。 图一方案一总体框图 方案二:用模拟开关构成电阻网络,由单片机控制以改变信号增益。这种方案存在的不足是模拟开关会导致导通电阻较大,信号会互相干扰,容易影响系统性能。而且电阻网络级数多,造成硬件电路复杂,且电阻网络的电阻选择也较为困难,很难做到高精度控制。 方案三:用多级固定增益的运算放大电路和电压增益控制运算放大器构成。集成可控增益放大器的增益与控制电压成严格线性关系,控制电压由单片机控制DAC 产生,精度高,可以满足题目指标要求,而且外围电路简单,便于调试,故采用此方案。 图二电路总体框图 1.2方案描述: 1.2.1总体框图:

音响前置放大器

2013届课程设计说明书模板音响前置放大器 院、部:电气与信息工程学院 学生姓名:鞠纯 指导教师:龙卓珉职称讲师 专业:电子信息工程 班级:电子1102班 完成时间:2013年6月10日

摘要 本文介绍了前置放大的构成、功能、及工作原理。所用芯片是价格便宜的带有真差动输入的LM324四运算放大器。与单电源应用场合的标准运算放大器相比,它们有一些显著优点。该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。本音响的功能是将输入音频信号进行放大,是一种可普遍用于家庭音响系统、立体声唱机等电子系统中,便于携带,适用性强。 关键词:前置放大;LM324;立体声唱机

ABSTRACT This paper introduce the structure ,function and working principle of the audio.The LM324 are low-cost,quad operational amplifiers withtrue differential inputs.They have several distinc advantages overstandard operational amplifier types in single supply voltages as low as 3.0V or 32V with quiescent currents about one-fifth of thoseassociated with the MC1741. The sound is the function of the input audio signal amplification,is generally available for home audio system,stereo player and other electronic system,convenient carrying,strong applicability. Key word preamplifier amplifiers;LM324;stereo player

射频宽带放大器的设计方案

射频宽带放大器设计报告 摘要:本系统以AD公司生产的高速可控增益运放AD8330为核心,结合固定增益放大、可变增益放大、末级差分电路等主要部分,能实现放大倍数0~50dB 增益可调。前级放大采用一片AD8330实现可变增益放大,固定增益放大采用OPA847芯片实现10倍的固定增益放大,再经末级1片电流反馈型运放THS3001扩流,构建末级差分驱动负载。 关键词:宽带放大器高速运放 OPA847 AD8330

一、方案论证与选择 1、方案选择与比较 1.1 固定增益放大器比较 方案一:采用OPA820运放芯片作为固定增益放大,该芯片是一种高速运算放大器,在6 Hz~ 20 MHz 的通频带中可实现放大增益为43 dB, 具有带内波动小, 输出噪声低的特点。但是缺点是通频带不够宽。 方案二:采用OPA695电压反馈型高速运算放大器,在1400MHz频率下能实现两倍放大,符合本题要求,但在高频下,该运放易产生自激。 方案三:采用OPA847, 电压反馈型高速运算放大器,最大频带宽度达 3.9GHz,完全满足本题频带要求,输入电压噪声低,带内波动小,自激现象 少。 综上所述,本设计采用方案三。 1.1.2 可变增益放大器比较 方案一:采用可编程程控放大器AD603。该运放增益在-11~+30dB范围内可调,通过改变管脚间的连接电阻值可调节增益范围,易于控制。但该运放增益可调带宽为90MHz,不满足题目要求。 方案二:采用高增益精度的压控VGA芯片AD8330。该芯片可控增益带宽可达150MHz,增益可调范围0~70dB,符合本题指标要求. 因此,该电路采用方案二。 1.1.3 电压增益可调方案比较 方案一:基于单片机做步进微调。由单片机MSP430G2553及12位DA转换芯片TLV5616对AD8330进行程控,实现增益在可取范围内可调。但是,此设计只能步进调节,不能连续可调,此方案不可取。 方案二:基于精密电位器做连续可调。用一个精密电位器对+5V分压后输入AD8330 5脚VDBS,从而对电压增益实现连续可调。电路简单,节省成本。 经比较,本设计选择方案二。 2、方案描述 总体框图如图1所示。

宽带中频放大电路

宽带中频放大电路 摘要 中频放大电路是超外差接收设备的重要部件,其性能在很大程度上决定了整机的重要性能。在通信系统中,处于前端的前置低噪声放大器LAN和混频之后的中频放大器需要采用宽频带放大器进行小信号放大。宽频带放大电路是由晶体管、场效应管或集成电路提供电压增益,既要有较大的电压增益, 又要有很宽的通频带,增益带宽积越大的宽频带放大器的性能越好。为了展宽工作频带,不但要求有源器件的高频性能好, 而且在电路结构上采取了一些改进措施。 本设计从通频带、中频电压放大倍数、上冲量、平顶下降量等方面介绍了宽带中频放大电路,并对中心频率、通频带、总增益等参数进行了分析,通过对调幅调频电路的分析与理解很好的实现了中频信号处理电路对中频信号进行放大, 获得足够的增益, 吸收邻近的特殊干扰、提供自动增益控制信号的目的。 关键词:宽带中频放大电路、电压增益、混合π型等效电路

目录 1 绪论 (1) 2 设计过程 (2) 2.1宽频放大器的主要性能指标 (2) 2.2 扩展通频带的方法和电路 (2) 2.3 其他必要电路 (5) 2.3.1 混合Π型等效电路 (5) 2.3.2 Y参数等效电路 (6) 2.3.3 谐振放大器电路 (7) 2.3.4 多级单调谐放大器 (9) 2.3.5 中和电路 (9) 2.3.6 自动增益控制电路 (10) 2.4 结构框图及性能参数 (11) 2.5 性能分析 (15) 总结 (16) 致谢 (17) 参考文献 (18)

1 绪论 在电子技术领域内,中频放大电路是超外差接收设备的重要部件,其性能在很大程度上决定了整机的重要性能。同时中频放大器的前级接混频电路或高频放大电路,后级接解调电路,是中间的重要桥梁,可由此建立两个频段间的信号变换与阻抗匹配,有重要的理论价值与实践意义。接收信号的频谱是很宽的,放大器很难做到在很宽的频带内都有一致性很好的增益平坦性,所以通常的做法是将接收到的信号变频到一个固定的频点上(通常叫做中频),然后放大,这样就带来诸多好处:选择性更好、增益也好控制在接收机中,由于中频频率较低,且频率固定不变,可以很容易地得到较高的增益,为下一级提供足够大的输入,所以中频放大电路的应用非常广泛。但是,无线电信号强弱差异很大,中频放大器本身也有一定的动态范围,输入信号增大时会出现失真,因此常采用AGC电路自动调节中频放大器的增益,使中放输出信号电平基本保持不变。 超外差收音机把接受到的电台信号本机振荡信号同时送入变频管进行混频,并始终保持本机振荡频率比外来信号频率高465KHz,通过选频电路取两个信号的“差频”进行中频放大。因此,在接收波段范围内信号放大量均匀一致,同时,超外差收音机还具有灵敏度高、选择性好等优点。其框图如图1—1所示。 图1—1 超外差收音机框图 输入回路从天线接收到的众多广播电台发射出的高频调幅波信号中选出所需接收的电台信号,将它送到混频管,本机振荡产生的始终比外来信号高465KHz的等幅振荡信号也被送入混频管。利用晶体管的非线性作用,混频后产生这两种信号的“基频”、“和频”、“差频”,其中差频为465KHz,由选频回路

音频放大电路的组成及原理

第二章高保真电路的组成及基本原理 2.1电路整体方案的确定 音频功率放大器的基本功能是把前级送来的声频信号不失真地加以放大,输出足够的功率去驱动负载(扬声器)发出优美的声音。放大器一般包括前置放大和功率放大两部分,前者以放大信号振幅为目的,因而又称电压放大器;后者的任务是放大信号功率,使其足以推动扬声器系统。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题也必须要重视。 OCL电路由于性能比较好,所以广泛地应用在高保真扩音设备中。本课题输出级选用OCL功率放大器,偏置电路选用甲乙类功放电路。为了使电路简单,信号失真小,本电路选用反馈型音调控制电路。为了不影响音调控制电路,要求前置输入阻抗比较高,输出阻抗低,本级电路选用场效应管共源放大器和源级跟随器组成。 高保真音频放大器组成框图 2.2 OCL功率放大器的原理 OCL功率放大器电路通常可分成:功率输出级、推动级和输入级三部分。根据给定技术指标,选择下图所示电路 功率输出级是由四个三极管组成的复合管准互补对称电路,可以得到较大的输出功率。再用一些电阻来减小复合管的穿透电流,增加电路的稳定性。前置电路用NPN型三极管组成恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。 推动级采用普通共射放大电路。 输入级部分由三极管组成差动放大电路,减小电路直流漂移。 2.3音调控制电路的原理 常用的音调控制电路有三种:一种是衰减式RC音调控制电路,其调节范围

第二章 思考题与习题

第二章思考题与习题 2.1 简述过程通道的作用、类型和组成。 答:生产过程通道是指在计算机的接口与被控对象(生产过程)之间进行信息传递和信息交换的连接通道,(不包括传感器、变送器和执行机构)。“外围”则包括生产过程输入输出通道和接口两部分。过程通道起到了CPU和被控对象之间的信息传送和变换的桥梁作用。具有两个方面的基本任务: (1)把生产过程中的各种参量和执行机构的运行状态通过检测器件转换为计算机所能接收和识别的信息送入计算机,以便计算机按确定算法进行运算处理。 (2)把计算机根据算术逻辑运算的结果发出的各种控制指令,以数字量或转换成模拟量的形式输出给执行机构(执行机构所能接受的控制信号),从而对被控对象进行自动控制。 过程通道包括模拟量输入通道、模拟量输出通道、数字量输入通道和数字量输出通道4种。其组成如图示: 2.2 在计算机控制系统中,模拟量和数字量输入信息各有哪几种形式? 答:模拟量输入输入信号主要有传感器输出的信号和变送器输出的信号两类,包括温度、压力、物位、转速、成分等; 数字量输入信号包括各种接点的通断状态的开关信号,如开关的闭合与断开、继电器或接触器的吸合与释放、指示灯的亮与灭、电动机的启动与停止、阀门的打开与关闭等,它们都可以用逻辑值“1”和“0”表示。此外,还包括各类数字传感器、控制器产生的编码数据和脉冲量等(电平高低状态、数字装置的输出数码等)。 2.3 信号调理单元的功能是什么?通常包括哪些电路? 答:信号调理电路主要通过非电量的转换、信号的变换、放大、滤波、线性化、共模抑制及隔离等方法,将非电量和非标准的电信号转换成标准的电信号。信号调理电路是传感器和A/D之间以及D/A和执行机构之间的桥梁。 传感器输出信号不同,其相应的信号调理电路也不同,一般包括标度变换器、滤波电路、线性化处理及电参量间的转换电路等。 其中:标度变换器是信号调理单元的主要部分,作用是将传感器输出的不同种类和不同电平的被测模拟电信号变换成统一的电流或电压信号。它主要包括放大、电平变换、电隔离、阻抗变换等电路,通常由电桥电路、激励恒流源、仪用放大器、隔离放大器等组成。 2.4 为何常采用电桥作为信号输入电路? 答:非电信号的检测-不平衡电桥 电桥电路是最常见的标度变换电路之一,也称为测量电桥电路,它结构简单,应用广泛

放大器的种类及作用

放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。 原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 2、画图的时候,放大或缩小图形的用具。也叫放大尺。 原理:利用光的折射 一、集成运算放大器的分类介绍 下面对不同特性的集成运算放大器进行介绍。 1.通用型集成运算放大器 通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。通用型集成运算放大器又分为Ⅰ型、型和型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。 2.高精度集成运算放大器 高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。这类运算放大器的噪声也比较小。其中单片高

射频宽带放大器

电子系统设计 方案设计:增益可调的宽带放大器 团队成员: 指导教师: 提交时间:2015年12月11日

增益可调的宽带放大器 摘要:本设计以增益调整、带宽预置、单片机反馈调节为核心,制作一个射频宽带放大 器,要求具有0.3~100MHz 通频带,增益0~60dB 范围内可调,并且实现输入输出阻抗、最大输出正弦波有效值、指定频带内平坦度等功能指标要求。由于系统输入信号小,频率高,带宽要求大,可控增益范围宽,并且需要满足平坦度、输出噪声电压等指标。为此,采用高增益带宽运放组成频带预置、AD8367的压控增益放大系统完成增益调整、单片机实现反馈调节。除此之外,通过增加缓冲级、外加硬件保护措施有效地抑制了高频信号的噪声和自激振荡。经测试,系统对mV 1≤的输入信号实现了增益0~60dB 范围内可调,带宽0.3~100MHz ,并在1~80MHz 频带内增益起伏dB 1≤,且全程波形无明显失真。完成了题目所要求的所有基本要求以及绝大部分发挥部分的性能指标。

1.系统方案设计与论证 1.1总体方案设计与论证 分析该射频宽带放大器设计的指标,为达到题目所设定带宽与增益可调,并且能够满足在输入和输出阻抗=50Ω的情况下,最大输出正弦波电压有效值达到要求的目的,我们将整个系统分为前置缓冲级、带宽预置、增益调整、输出缓冲级、峰值检波等部分组成,主控器采用STC12系列单片机。系统整体框图如图1所示: 图1 系统框图 1.2前置缓冲级的方案论证与选择 前置缓冲电路使用电压跟随器实现,如图2所示。考虑到本系统的通频带为0.3~100MHz,且输入阻抗限定为50Ω,由正相输入电压跟随器的输入阻抗为Rj趋于无穷大,所以图2电 路的输入阻抗为 k k k k R R R R R R R R≈ + * = = j j j n i // 。则可令实际电路取Rk=50Ω以达到输入阻抗要求。 除此之外,此前置放大电路还具有缓冲、避免引入噪声等作用,起到了良好的隔离功能。其电压增益接近于1,运算放大器选用AD8005,此放大器的增益带宽积达到270MHz。 图2 前置缓冲级

音响混合前置放大器的设计

第一章 绪论 近几年来,计算机技术进入了前所未有的快速发展时期,随着电子信息技术的发展关于音响放大器在电子技术基础中所处的位置越来越重要,它不仅是电子信息类专业的一个重要部分,而且在其他类专业工程中也是不可缺少的。放大器电路做为子系统的应用,发展更是迅速,已成为新一代电子设备不可缺少的核心部件,其现实生活中的运用也是非常普遍和广泛。 在音响放大器的设计过程中,控制其电路的核心部分是几个放大器的设计,其主要包括:话音放大器,混合前置放大器,音调控制器,功率放大器等。电子技术的发展促使话音放大器被广泛应用到一系列放音设备中,混合前置放大器也成为数字电子电路设计和制作过程中不可缺少的部分,例如在信号放大器的设计和无线电遥控电路的设计过程中该部件都是不可缺少的,功率放大器更是设计电子电路的核心。功率放大器的运用使电子产品的成本大大减少,并且有设计简单,易于操作,可靠性好的优点。 对音响放大器设计的目的是为了更好的掌握集成功率放大器内部电路工作原理,学会其外围电路的设计与主要性能参数测量方法以及掌握音响放大器的设计与电子线路系统的装试和调试技术。本次设计分为四个主要步骤:一,构思和设计话音放大器,混合前置放大器,音调控制级和功率放大级。二,根据设计要求和选择的电路通过计算选择元器件和参数,并准确无误的设计好要设计的电路原理图。三,在万能板或在面包板上根据设计电路原理进行元器件的电路安装和精细的调试。四,在安装好的电路板上进行输出功率的测试。 在此次课程设计的编写过程中得到了龙老师和许多实验室老师的大力支持和指导,在此表示感谢。 另外,由于时间仓促和本组成员能力有限,设计中难免出现缺点和不足之处,还敬请各位老师批评和指正。 2011年6月

宽带放大器(B题)

宽带放大器(B题) 本设计由三个模块电路构成:前级放大电路(带AGC部分)、后级放大电路和单片机显示与控制模块。在前级放大电路中,用宽带运算放大器AD603两级级联放大输入信号,输出放大一定倍数的电压,经过后级放大电路达到大于8V的有效值输出。ADUC812的单片机显示、控制和数据处理模块除可以程控调节放大器的增益外,还可以实时显示输出电压有效值。 本设计采用高级压控增益器件,进行合理的级联和阻抗匹配,加入后级负反馈互补输出级,全面提高了增益带宽积和输出电压幅度。应用单片机和数字信号处理技术对增益进行预置和控制,AGC稳定性好,可控范围大,完成了题目的所有基本和发挥要求。 方案论证与比较 1.可控增益放大器部分 方案一简单的放大电路可以由三极管搭接的放大电路实现,图1为分立元件放大器电路图。为了满足增益60dB的要求,可以采用多级放大电路实现。对电路输出用二极管检波产生反馈电压调节前级电路实现自动增益的调节。本方案由于大量采用分立元件,如三极管等,电路比较复杂,工作点难于调整,尤其增益的定量调节非常困难。此外,由于采用多级放大,电路稳定性差,容易产生自激现象。 方案二为了易于实现最大60dB增益的调节,可以采用D/A芯片AD7520的电阻权网络改变反馈电压进而控制电路增益。又考虑到AD7520是一种廉价型的10位D/A转换芯片,其输出V out=Dn×Vref/210,其中Dn为10位数字量输入的二进制值,可满足210=1024挡增益调节,满足题目的精度要求。它由CMOS 电流开关和梯形电阻网络构成,具有结构简单、精确度高、体积小、控制方便、外围布线简化等特点,故可以采用AD7520来实现信号的程控衰减。但由于AD7520对输入参考电压Vref有一定幅度要求,为使输入信号在mV~V每一数

前置放大器电路噪声分析

前置放大器电路噪声分析 前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PDA设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 1、是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 2、运算放大器需要什么样的供电电压? 这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 3、输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。

宽带直流放大器设计方案

宽带直流放大器方案设计 一、方案的选择和论证 分析题目要求,设计需要满足以下几个技术指标:在输入电压有效值Vi≤10 mV 情况下放大器电压增益必须大于60dB,且电压增益为60dB时,输出端噪声电压的峰-峰值VONPP≤0.3V。另外,3dB通频带0~10MHz;在0~9MHz通频带内增益起伏≤1dB,能为50欧姆的负载输出正弦有效值10V的电压。 基于以上要求,我们把整个放大器分为5个板块来设计。前置缓冲级,中间增益可调放大级,后级功率放大电路,电源部分和滤波器。 系统总体框图: 1.前置缓冲级方案论证 方案一:采用宽带高精度集成运放。 缓冲级对整个放大电路来说尤为重要,高质量的前级是放大电路的基本保障,故本设计中采用宽带高精度低噪声运算放大器OPA620构成电压增益为6dB的缓冲级。该运放增益宽带乘积为200M赫兹,能很好的满足题目要求。 方案二:采用普通运放。 普通运放虽然价格稍低,但是带宽和精度都十分有限,理论上虽然能用反馈的方式扩宽通频带,但是题目要求的10M赫兹频带太宽,故普通低价的运放很难达到实验要求。 比较上述两种方案,方案一能更好的完善题要求的指标,方案二虽然成本较低,但是不容易达到题目要求,且前级配置的高低对后级电路影响很大。故选择方案一。 2.中间增益放大级方案论证 方案一:采用三极管构成多级放大电路

若用分立元件构成60dB放大器,则须采用三极管构成的多级放大器。此方案有选材方便和成本较低的优点,但是选择性能合适的三级管比较费时间,选择合适的三极管配对组合更是不容易,并且题目给出的指标较高,三级管构成的多级放大器容易引起更多的干扰,影响放大质量。此外,晶体管构成的多级放大电路不易实现大范围的增益连续可调,这是相比于集成运算放大器的又一大缺点。所以,我们对下一种方案进行论证。 方案二:使用集成运放OPA620构成2级放大 单个OPA620的增益可调范围为 -20bB — +20dB ,采用两级相连,则可以实现-40dB-+40dB的可调范围。从厂商的数据手册可以看出,OPA620外围电路简单,容易操控,通频带内增益起伏小于0.05dB,且放大效果较好。但是若要求实现提高部分0-60dB全范围的连续可调,两级OPA620放大则不能达到题目要求。 方案三:使用低噪声增益可控放大器AD603 使用两级AD603构成的增益可调放大电路。 AD603是主要用于RF和IF AGC系统的低噪声可调增益放大器,它具有引脚可编程增益功能,可以使用一个外部电阻设置增益范围内的任何增益子范围,控制接口可以输入差分电压,也可以输入单端的正控制或负控制电压,使用十分方便。单级AD603便可以实现0-40dB的电压放大,且该增益范围内有30MHz的频带宽,性能优异,如果采用两级连放,理论上可以实现0-80dB的增益可调范围,能满足题目要求。其次,AD603构成的增益可控放大电路有很大的提升空间,可以通过电位器获取基准电压进行手动控制,通过模拟开关连接电阻器实现增益程控,通过单片机配合DAC模块实现不同精度的增益数控。 所以比较上述两种方案,AD603与OPA620相比,容易实现增益数控,AD603有更高的性价比,我们最终选择方案三。 3.增益控制电路 方案一:单片机和数模转换芯片实现增益可调 使用89C51单片机,选择稳定的基准电压,配合DAC0832输出电压信号控制AD603,从而实现增益数控。 DAC0832是采样频率为8位的D/A转换芯片,集成电路内有两级输入寄存器,D/A转换结果采用电流形式输出,理论精度为1/256,能满足增益步进5dB的要求。该芯片价格便宜,使用方便,算是较常用的8位DAC芯片。该芯片为电流输出型,若采用该芯片实现AD603的增益可控,则须在输出端加上运算放大器LM324,实现电流到电压的转换,从而稳定实现增益可调。 方案二:单片机、模拟开关和电阻网络实现增益可调 使用89C51单片机,配合模拟开关控制不少于12个串联的电阻,通过取得电阻上的稳定电压控制AD603,从而实现步进为5dB的增益数控。模拟开关控制电阻网络与DAC模块工作原理相似,但是精度就远远不如8位DAC,并且使用模拟开关和电阻网络扩大了控制电路,电路集成度降低,引入更多的干扰因素。再者,从成本上看来,该方案也是不经济的。 方案三:滑动变阻器实现增益手动可调 通过电位器获取与基准电压成一定比例的控制电压输入AD603控制端,实现手动增益可调。 该方案很容易实现增益连续可调,相比以上两种方案成本是最低的,理论控制精度最高,精度仅有电阻器可调精度决定,但是此方案仅适用于固定范围内的手动

功率放大器的基本结构和工作原理

功率放大器的基本结构和工作原理 功率放大器的基本结构和工作原理 扩音机是一种对声音信号进行放大的电子设备,其基本结构如图5-1所示,常分为前置放大器(简称前级)和功率放大器(简称后级)两大部分。 前置放大器通常由输人选择与均衡放大电路、等响音量控制电路、音调控制电路等组成,而功率放大器常由功率放大电路和扬声器保护电路组成。 扩音机工作时,输人选择电路主要对收音调谐器、录音座、CD唱机和Av辅助输入等信号源的信号进行选择切换控制,得出所需的信号输入,输入后的信号经均衡放大电路进行频率特性的校正和放大,使输入信号的频率特性变得较为平坦,同时使各种信号源输入的信号电平基本趋于一致,避免在转换不同的信号源时,声音响度出现较大的变化,影响使用效果。均衡放大后的信号则由等响音量控制电路控制信号的强弱,从而调节音量的大小。等响控制的目的主要是在音量较小时提升高、低频信号成分,以补偿人耳听觉的不足,在低响度时得到较丰满的声音信号。而音调控制电路则主要是根据个人的喜好调节电路的频率特性,适当提升或衰减声音中的高、低频成分,以满足听音者的需求。经前置放大器放大处理后的信号被送人功率放大器进行功率放大,以推动扬声器重放出声音。扩音机中为了保护扬声器免受电路冲击电流的干扰,或在电路出现故障时烧毁扬声器,常在功率放大器中加入扬声器保护电路。 在高保真的音响设备中,扩音机常有两种组合结构形式,一种是把前置放大器和功率放大器组合在一起,称作合并式扩音机,这种形式把“前置”和“功放”合并在一起,这时由于小信号电压放大的前置级和大信号电流放大的功率放大在电性能上不能互相兼顾,因而不能使扩音机达到最佳的工作状态,特别是前、后级的电源馈电,电源变压器的电磁干扰,印制电路板的走线排列,共用地线的走向等方面总会存在一定的相互干扰,影响整机性能的提高。另一形式是在设计制造上把前置放大器和功率放大器彻底分开,分别使用独立电源,单独的机壳,使前、后级之间互不干扰,形成前、后级分体式的结构,在使用时再把它们用信号传输线连接起来,这种分体式结构的扩音机可获得极高的性能指标。

相关文档
相关文档 最新文档