文档库 最新最全的文档下载
当前位置:文档库 › 滑模变结构控制及应用

滑模变结构控制及应用

滑模变结构控制及应用
滑模变结构控制及应用

基于趋近律的滑模控制matlab仿真实例

基于趋近律的滑模控制 一、基于趋近律的滑模控制1、控制器的设计针对状态方程 Bu Ax x += (1) 采用趋近律的控制方式,控制律推导如下: Cx s =(2)slaw x C s == (3) 其中slaw 为趋近律。 将状态方程式(1)代人(2)得 )()(1s CAx CB u +-=-(4) 可见,控制器的抖振程度取决于趋近律s 表达式中的切换项。2、仿真实例 对象为二阶传递函数: as s b s G p += 2)(其中a=25,b=133。 )(s Gp 可表示为如下状态方程: Bu Ax x += 其中???=00A ???-251,?? ? ???=1330B 。在仿真程序中,M=1为等速趋近律,M=2为指数趋近律,M=3为幂次趋近律,M=4为一般趋近律。取M=2,采用指数趋近律,其中C=[15,1],ε=5,k=10,作图取样时间为0.001,仿真程序如下。二、程序主程序chap2_4.m clear all;close all;

global M A B C eq k ts=0.001; T=2; TimeSet=[0:ts:T]; c=15; C=[c,1]; para=[c]; [t,x]=ode45('chap2_4eq',TimeSet,[0.500.50],[],para); x1=x(:,1); x2=x(:,2); s=c*x(:,1)+x(:,2); if M==2 for kk=1:1:T/ts+1 xk=[x1(kk);x2(kk)]; sk(kk)=c*x1(kk)+x2(kk); slaw(kk)=-eq*sign(sk(kk))-k*sk(kk);%Exponential trending law u(kk)=inv(C*B)*(-C*A*xk+slaw(kk)); end end figure(1); plot(x(:,1),x(:,2),'r',x(:,1),-c*x(:,1),'b'); xlabel('x1');ylabel('x2'); figure(2); plot(t,x(:,1),'r'); xlabel('time(s)');ylabel('x1'); figure(3); plot(t,x(:,2),'r'); xlabel('time(s)');ylabel('x2'); figure(4); plot(t,s,'r');

高阶滑模控制讲解学习

高阶滑模控制

高阶滑模控制(读书笔记) 王蒙 1、传统滑模控制有如下缺陷: (1)抖振问题:主要是由未建模的串联动态引起,同时切换装置的非理想性也是一个重要原因; (2)相对阶的限制:传统滑模控制只有在系统关于滑模变量s 的相对阶是 1时才能应用,也就是说,控制量u 必须显式出现在s中,这样就限制了滑模面的设计。 (3)控制精度问题:在实际的、采样实现的传统滑模控制算法中,滑动误差正比于采样时间τ,也就是说,有限时间到达的传统滑模在具有零阶保持器的离散控制下,系统的状态保持在滑动模态上的精度是采样时间的一阶无穷小,即Oτ; () 2、高阶滑模控制理论 在传统滑模控制中,不连续的控制量显式地出现在滑模变量的一阶导数s&中,即s&是不连续的。由于未建模动态和非理想的切换特性,传统滑模存在抖振,它在实际应用中是有害的。连续近似化方法(如引入边界层)能抑制抖振,然而失去了不变性这个显著优点。Levant 提出了高阶滑模的概念,高阶滑

模保持了传统滑模的优点(如不变性),抑制了抖振,消除了相对阶的限制和提高了控制精度。 滑动模态的不变性:系统一旦进入滑动模态,对满足匹配条件的不确定性及干扰具有不变性。 3、高阶滑模的定义 (1)滑动阶r 是指滑模变量s 的连续全导数(包含零阶)在滑模面 s =0上为 0 的数目。滑动阶刻画了系统被约束在滑模面 s = 0上的运动动态平滑度。根 据上述定义可知:传统滑模的滑动阶为 1,因为在滑模面上 s = 0,而s &则是不连续的,因此传统滑模又被称为一阶滑模。 (2)关于滑模面 s (t , x ) = 0的 r 阶滑动集由下述等式描述 (1)0r s s s s -=====&&&L 上式构成了动态系统状态的 r 维约束条件。 (3)1996 年,Levant 和 Firdman 给出了高阶滑模的精确定义 r 阶滑动集(1)0r s s s s -=====&&&L 是非空,且假设它是 Filippov 意义下局部积分集(也就是说,它由不连续动态系统的 Filippov 轨迹组成),那么,满足 (1)0r s s s s -=====&&&L 的相关运动称为关于滑模面 s (t , x ) = 0的“r 阶滑模”。 (4)当且仅当系统轨迹位于状态空间中 s = 0和0s =&的交界处时,系统具有二阶滑模动态,如图所 示。

基于动态滑模控制的移动机器人路径跟踪

第32卷第1期 2009年1月 合肥工业大学学报 (自然科学版) J OU RNAL OF H EFEI UN IV ERSIT Y OF TECHNOLO GY Vol.32No.1  J an.2009  收稿日期:2008204221;修改日期:2008206202 基金项目;先进数控技术江苏省高校重点建设实验室基金资助项目(KX J 07127)作者简介:徐玉华(1985-),男,江西乐平人,合肥工业大学博士生; 张崇巍(1945-),男,安徽巢湖人,合肥工业大学教授,博士生导师. 基于动态滑模控制的移动机器人路径跟踪 徐玉华1, 张崇巍1, 鲍 伟1, 傅 瑶1, 汪木兰2 (1.合肥工业大学电气与自动化工程学院,安徽合肥 230009;2.南京工程学院先进数控技术江苏省高校重点实验室,江苏南京 211167) 摘 要:文章研究了室内环境下基于彩色视觉的移动机器人路径跟踪问题,利用颜色信息提取路径,简化了图像的特征提取;拟合路径参数时引入RANSAC 方法,以提高算法的可靠性;在移动机器人非线性运动学模型的基础上,设计了一阶动态滑模控制器,并通过仿真验证了控制器的有效性。关键词:移动机器人;视觉导航;路径跟踪;动态滑模 中图分类号:TP24 文献标识码:A 文章编号:100325060(2009)0120028204 Mobile robot ’s path following based on dynamic sliding mode control XU Yu 2hua 1, ZHAN G Chong 2wei 1, BAO Wei 1, FU Yao 1, WAN G Mu 2lan 2 (1.School of Electric Engineering and Automation ,Hefei University of Technology ,Hefei 230009,China ;2.Jiangsu Province College Key Laboratory of Advanced Numerical Control Technology ,Nanjing Institute of Technology ,Nanjing 211167,China ) Abstract :In t his paper ,mobile ro bot ’s pat h following in indoor environment based on color vision is st udied.Firstly ,t he image feat ures are extracted by color information so t hat t he real 2time perform 2ance of t he algorit hm is imp roved.To enhance t he ro bust ness of pat h parameter fitting ,a least square met hod based on RANSAC is adopted.Then ,a first 2order dynamic sliding mode cont roller is designed based on t he nonlinear vision 2guided robot ’s kinematics.The simulation proves t he validity of t he con 2t roller. K ey w ords :mobile robot ;visual navigation ;pat h following ;dynamic sliding mode 轮式移动机器人亦称自动引导车(A GV ),有着广泛的应用价值[1]。近年来,随着计算机技术和图像处理技术的发展,移动机器人视觉导航技术成为研究的热点[2]。视觉引导的路径跟踪是视觉导航技术之一。文献[3]基于移动机器人线性化的运动学模型,运用线性二次型最优控制理论设计最优控制器。该控制器对于较小角度的转向控制有一定的优越性,但没有讨论在较大偏差情况下的控制问题。文献[4]提出了一种模仿人工预瞄驾驶行为的移动机器人路径跟踪的模糊控制方法。而在实际应用中,模糊规则难以制定。文献[5]针对全局视觉条件下的轮式移动机器人路径跟踪问题,将基于图像的视觉伺服控制方法引 入到运动控制中,提出一种基于消除图像特征误差的跟踪控制方法。但该方法只适用于小规模环境条件下的使用。 针对以上存在的问题,本文采用价格低廉的车载彩色CCD 相机获取预先铺设引导线的路面实时图像,利用颜色信息提取路径。拟合路径参数时引入了RANSAC 方法,提高了参数拟合的鲁棒性。在移动机器人非线性运动学模型基础之上,设计了一阶动态滑模控制器(Dynamic Sliding Mode Cont roller ,简称DSMC ),在存在较大偏差的情况下也能达到良好的跟踪效果。滑模变结构控制对满足匹配条件的外界干扰和参数变化具有不变性,是一种适用于非线性系统的鲁棒控制方

高阶滑模控制

高阶滑模控制(读书笔记) 王蒙 1、传统滑模控制有如下缺陷: (1)抖振问题:主要是由未建模的串联动态引起,同时切换装置的非理想性也是一个重要原因; (2)相对阶的限制:传统滑模控制只有在系统关于滑模变量s 的相对阶是 1时才能应用,也就是说,控制量u 必须显式出现在s 中,这样就限制了滑模面的设计。 (3)控制精度问题:在实际的、采样实现的传统滑模控制算法中,滑动误差正比于采样时间τ,也就是说,有限时间到达的传统滑模在具有零阶保持器的离散控制下,系统的状态保持在滑动模态上的精度是采样时间的一阶无穷小,即()O τ; 2、高阶滑模控制理论 在传统滑模控制中,不连续的控制量显式地出现在滑模变量的一阶导数s 中,即s 是不连续的。由于未建模动态和非理想的切换特性,传统滑模存在抖振,它在实际应用中是有害的。连续近似化方法(如引入边界层)能抑制抖振,然而失去了不变性这个显著优点。Levant 提出了高阶滑模的概念,高阶滑模保持了传统滑模的优点(如不变性),抑制了抖振,消除了相对阶的限制和提高了控制精度。 滑动模态的不变性:系统一旦进入滑动模态,对满足匹配条件的不确定性及干扰具有不变性。 3、高阶滑模的定义 (1)滑动阶r 是指滑模变量s 的连续全导数(包含零阶)在滑模面 s =0上为 0 的数目。滑动阶刻画了系统被约束在滑模面 s = 0上的运动动态平滑度。根据上述定义可知:传统滑模的滑动阶为 1,因为在滑模面上 s = 0,而s 则是不连续的,因此传统滑模又被称为一阶滑模。 (2)关于滑模面 s (t , x ) = 0的 r 阶滑动集由下述等式描述(1)0r s s s s -===== 上式构成了动态系统状态的 r 维约束条件。 (3)1996 年,Levant 和 Firdman 给出了高阶滑模的精确定义 r 阶滑动集(1)0r s s s s -=== ==是非空,且假设它是 Filippov 意义下局部积分集(也

滑模变结构控制理论及其算法研究与进展_刘金琨

第24卷第3期2007年6月 控制理论与应用 Control Theory&Applications V ol.24No.3 Jun.2007滑模变结构控制理论及其算法研究与进展 刘金琨1,孙富春2 (1.北京航空航天大学自动化与电气工程学院,北京100083;2.清华大学智能技术与系统国家重点实验室,北京100084) 摘要:针对近年来滑模变结构控制的发展状况,将滑模变结构控制分为18个研究方向,即滑模控制的消除抖振问题、准滑动模态控制、基于趋近律的滑模控制、离散系统滑模控制、自适应滑模控制、非匹配不确定性系统滑模控制、时滞系统滑模控制、非线性系统滑模控制、Terminal滑模控制、全鲁棒滑模控制、滑模观测器、神经网络滑模控制、模糊滑模控制、动态滑模控制、积分滑模控制和随机系统的滑模控制等.对每个方向的研究状况进行了分析和说明.最后对滑模控制的未来发展作了几点展望. 关键词:滑模控制;鲁棒控制;抖振 中图分类号:TP273文献标识码:A Research and development on theory and algorithms of sliding mode control LIU Jin-kun1,SUN Fu-chun2 (1.School of Automation Science&Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing100083,China; 2.State Key Laboratory of Intelligent Technology and Systems,Tsinghua University,Beijing100084,China) Abstract:According to the development of sliding mode control(SMC)in recent years,the SMC domain is character-ized by eighteen directions.These directions are chattering free of SMC,quasi SMC,trending law SMC,discrete SMC, adaptive SMC,SMC for mismatched uncertain systems,SMC for nonlinear systems,time-delay SMC,terminal SMC, global robust SMC,sliding mode observer,neural SMC,fuzzy SMC,dynamic SMC,integral SMC and SMC for stochastic systems,etc.The evolution of each direction is introduced and analyzed.Finally,further research directions are discussed in detail. Key words:sliding mode control;robust control;chattering 文章编号:1000?8152(2007)03?0407?12 1引言(Introduction) 滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动.由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辩识,物理实现简单等优点.该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越,从而产生颤动. 滑模变结构控制出现于20世纪50年代,经历了50余年的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一般的设计方法.以滑模为基础的变结构控制系统理论经历了3个发展阶段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的变结构控制;20世纪60年代末开始了变结构控制理论研究的第2阶段,研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来,随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展,变结构控制的理论和应用研究开始进入了一个新的阶段,所研究的对象已涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力学系统等众多复杂系统,同时,自适应控制、神经网络、模糊控制及遗传算法等先进方法也被应用于滑模变结构控制系统的设计中. 2滑模变结构控制理论研究进展(Develop-ment for SMC) 2.1消除滑模变结构控制抖振的方法研 究(Research on chattering elimination of SMC) 2.1.1滑模变结构控制的抖振问题(Problems of SMC chattering) 从理论角度,在一定意义上,由于滑动模态可以 收稿日期:2005?10?19;收修改稿日期:2006?02?23. 基金项目:国家自然科学基金资助项目(60474025,90405017).

滑模变结构控制

滑模变结构控制 【原理,优点,意义,步骤,特点】 变结构控制系统的特征是具有一套反馈控制律和一个决策规则,该决策规则就是所谓的切换函数,将其作为输入来衡量当前系统的运动状态,并决定在该瞬间系统所应采取的反馈控制律,结果形成了变结构控制系统。该变结构系统由若干个子系统连接而成,每个子系统有其固定的控制结构且仅在特定的区域内起作用。引进这种变结构特性的优势之一是系统具有每一个结构有用的特性,并可进一步使系统具有单独每个结构都没有的新的特性,这种新的特性即是变结构系统的滑动模态。滑动模态的存在,使得系统在滑动模态下不仅保持对系统结构不确定性、参数不确定性以及外界干扰等不确定性因素的鲁棒性,而且可以获得较为满意的动态性能。迄今为止,变结构控制理论已经历了50年的发展历程,形成了自己的体系,成为自动控制系统中一种一般的设计方法。它适用的控制任务有镇定与运动跟踪等。滑模控制(sliding mode control, SMC)也叫变结构控制,本质上是一类特殊的非线性控制,且非线性表现为控制的不连续性。这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动。由于滑动模态可以进行设计且与对象参数及扰动无关,这就使

得滑模控制具有快速响应、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。原理:滑模变结构控制的原理,是根据系统所期望的动态特性来设计系统的切换超平面,通过滑动模态控制器使系统状态从超平面之外向切换超平面收束。系统一旦到达切换超平面,控制作用将保证系统沿切换超平面到达系统原点,这一沿切换超平面向原点滑动的过程称为滑模控制。由于系统的特性和参数只取决于设计的切换超平面而与外界干扰没有关系,所以滑模变结构控制具有很强的鲁棒性。所设计的切换超平面需满足达到条件,即系统在滑模平面后将保持在该平面的条件。现在以N维状态空间模型为例,采用极点配置方法得到M(N

滑模变结构控制

滑模变结构控制作为一种特殊的鲁棒控制方法【原理,优点,意义,步骤,特点】 变结构控制系统的特征是具有一套反馈控制律和一个决策规则,该决策规则就是所谓的切换函数,将其作为输入来衡量当前系统的运动状态,并决定在该瞬间系统所应采取的反馈控制律,结果形成了变结构控制系统。该变结构系统由若干个子系统连接而成,每个子系统有其固定的控制结构且仅在特定的区域内起作用。引进这种变结构特性的优势之一是系统具有每一个结构有用的特性,并可进一步使系统具有单独每个结构都没有的新的特性,这种新的特性即是变结构系统的滑动模态。滑动模态的存在,使得系统在滑动模态下不仅保持对系统结构不确定性、参数不确定性以及外界干扰等不确定性因素的鲁棒性,而且可以获得较为满意的动态性能。迄今为止,变结构控制理论已经历了50年的发展历程,形成了自己的体系,成为自动控制系统中一种一般的设计方法。它适用的控制任务有镇定与运动跟踪等。 滑模控制(sliding mode control, SMC)也叫变结构控制,本质上是一类特殊的非线性控制,且非线性表现为控制的不连续性。这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动。由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得滑模控制具有快速响应、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。 原理: 滑模变结构控制的原理,是根据系统所期望的动态特性来设计系统的切换超平面,通过滑动模态控制器使系统状态从超平面之外向切换超平面收束。系统一旦到达切换超平面,控制作用将保证系统沿切换超平面到达系统原点,这一沿切换超平面向原点滑动的过程称为滑模控制。由于系统的特性和参数只取决于设计的切换超平面而与外界干扰没有关系,所以滑模变结构控制具有很强的鲁棒性。所设计的切换超平面需满足达到条件,即系统在滑模平面后将保持在该平面的条件。现在以N维状态空间模型为例,采用极点配置方法得到M(N

滑模控制

滑模变结构理论 一、引言 滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结 构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其 各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态 轨迹运动。由于滑动模态可以进行设计且与对象参数及扰动无关,这就使 得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线 辩识,物理实现简单等优点。该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越, 从而产生颤动。滑模变结构控制出现于20世纪50年代,经历了 50余年 的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一 般的设计方法。以滑模为基础的变结构控制系统理论经历了 3个发展阶 段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的 变结构控制; 20世纪60年代末开始了变结构控制理论研究的第2阶段, 研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来, 随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展, 变 结构控制的理论和应用研究开始进入了一个新的阶段, 所研究的对象已 涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力 学系统等众多复杂系统, 同时,自适应控制、神经网络、模糊控制及遗传 算法等先进方法也被应用于滑模变结构控制系统的设计中。 二、基本原理 带有滑动模态的变结构控制叫做滑模变结构控制(滑模控制)。所谓滑动模态是指系统的状态被限制在某一子流形上运动。通常情况下,系统 的初始状态未必在该子流形上,变结构控制器的作用在于将系统的状态 轨迹于有限时间内趋使到并维持在该子流形上,这个过程称为可达性。系 统的状态轨迹在滑动模态上运动并最终趋于原点,这个过程称为滑模运 动。滑模运动的优点在于,系统对不确定参数和匹配干扰完全不敏感。下 图简要地描述了滑模变结构控制系统的运动过程,其中S(t)为构造的切 换函数(滑模函数), S(t)=0为滑模面。 图1

滑模控制

滑模控制(sliding mode control, SMC)也叫变结构控制, 其本质上是一类特殊的非线性控制,且非线性表现为控制的不连续性. 这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动. 由于滑动模态可以进行设计且与对象 参数及扰动无关,这就使得滑模控制具有快速响应、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点. 滑模变结构控制是根据系统所期望的动态特性来设计系统的切换超平面,通过滑动模态控制器使系统状态从超平面之外向切换超平面收束。系统一旦到达切换超平面,控制作用将保证系统沿切换超平面到达系统原点,这一沿切换超平面向原点滑动的过程称为滑模控制。由于系统的特性和参数只取决于设计的切换超平面而与外界干扰没有关系,所以滑模变结构控制具有很强的鲁棒性。超平面的设计方法有极点配置,特征向量配置设计法,最优化设计方法等,所设计的切换超平面需满足达到条件,即系统在滑模平面后将保持在该平面的条件。控制器的设计有固定顺序控制器设计、自由顺序控制器设计和最终滑动控制器设计等设计方法[1]。现在以N维状态空间模型为例,采用极点配置方法得到M(N

高阶滑模控制方法

高阶滑模控制方法 1.1高阶滑模[1] 1.1.1带摄动双积分系统的基于STO的STC设计 考虑如下形式的动态系统 (0-1) 其中为系统输出,为系统扰动。大多数控制器设计时需要获取全状态信息,当只有系统输出可测时,首先需要重构系统其它状态,在估计的状态信息基础上设计STC(Super-Twisting-Control, STC)。下面分析基于STO(Super-Twisting-Observer, STO)设计STC时控制量存在不连续的问题。 系统(0-1)的状态估计STO动态形式如下: (0-2) 其中为校正项。定义状态估计误差变量为,并设计校正项为。那么,状态估计误差动态如下: (0-3) ,由文献[2]和[3]知当设计时,误差 将同时在有限时间内收敛到零。当收敛到零时,在有限时间 后可认为状态。 由于STC只适用于相对度为1的系统,但是系统(0-1)的输出相对度为2,因此不能直接使用STC,必须定义如下形式的滑模变量将系统相对度转换为1: (0-4) 为设计STC控制律,对式(0-4)进行时间微分得到: (0-5) 将代入到上式得: (0-6) 结合式(0-4)和(0-6)可将系统(0-1)转换到的坐标系下,如下:

(0-7) (0-8) 其中为控制器设计参数。将控制量(0-8)代入系统(0-7)后可得: (0-9) 因此,整个闭环系统的控制器和观测器可整理如下: (0-10) 如前所述,系统中估计误差将在有限时间内收敛到零,也即,存在 使得对于任意的都有。根据文献[4]可知,系统的轨迹不会在 有限时间内逃逸到无穷大。通常,观测器增益可根据观测误差收敛速度进行设计。在有限时间后,闭环系统可进一步描述如下: (0-11) 进一步,增加虚构状态变量,以上系统动态可表示为 (0-12) 由此可知,经过数学变换(0-4)后,系统(0-12)中包含不可微项,因此下面两个式子组成的子系统不能实现STA。因此,二阶滑模运动不能实现,即有限时间内不能实现。STO-STC实现框图如下图1-1所示,可以看出闭环控制策略在STO处实现,而并非在STC处实现。

滑模变结构控制(SMC)的基本思路

步骤一:确定状态变量(分为单输入系统和多输入系统)以及状态变量之间的关系 比如永磁同步电机速度滑模变结构控制: 状态变量为: 状态变量之间的关系(可以通过电机的电压,磁链,转矩和运动学方程推导)比如确定如上x1,x2以及系统的关系,可根据如下方程(其中有错误注意): 得到状态关系方程(其中a为常数与电机参数有关): 永磁同步电机位置滑模变结构控制: 状态变量为: 步骤二:确定滑动面方程(切换函数S) 必须确保滑动模态在S = 0时t趋近于无穷大是稳定的。(根据实际情况确保品质参数),其表达式如下:

这种切换函数下得到的响应是过阻尼响应,理论上是不存在超调量的。 对于多输入系统,其切换函数为: 步骤三: 方法一:确定趋近率函数(切换函数的微分S’),并确定滑模变结构控制的输出量即控制率函数Ux(Ux)。另外,需要由电机方程指定该控制率函数和电机系统变量的关系(实际需要决定)(比如:速度滑模变结构的输出肯定是与电机电流iq是有关系的,从而便于下一步的电流逆变器的控制)。 常见的趋近率函数为: 其他特殊的更常用的趋近律如下:

如此可确定控制率函数的表达式。(本质上控制率函数是用来去除系统参数变化和外部扰动对系统的影响。) 该方法的缺点是:由于系统在滑动面上对参数及系统外部扰动的抗干扰性很强。而在滑动面外(趋近运动),控制率函数在起作用,而控制率函数是与系统参数有关的。所以收到系统参数的影响。为了能够实现系统一直具有很高的鲁棒性,可以使系统设置从初始时刻就处于滑动面上,见方法二(全局滑模变结构控制)。 方法二:合适选择切换函数并先确定控制率函数Ux。(由于系统一直处于滑动面上,所以无需选择趋近率函数) 比如PMSM的速度滑模变结构控制:

相关文档
相关文档 最新文档