文档库 最新最全的文档下载
当前位置:文档库 › 第1章 集合与不等式(初等数学教案)

第1章 集合与不等式(初等数学教案)

第1章 集合与不等式(初等数学教案)
第1章 集合与不等式(初等数学教案)

第1章集合与不等式

【学习目标】

1.了解集合的概念及其表示方法.

2. 掌握集合之间的运算(子集、真子集、相等、交集、并集、补集).

3. 理解区间的概念,会在数轴上表示区间.

4. 掌握绝对值不等式、一元二次不等式、分式不等式的解法.

5. 培养学生应用数学概念的能力和计算能力.

1.1 集合

1.集合的概念

集合是现代数学中最基本的概念之一.研究集合的数学理论称为集合论,它是数学的一个基本分支,是近代许多数学分支的基础.

我们在初中就已经接触到了“集合”一词,如: “自然数的集合” ,“有理数的集合”, “不等式的解集”等. 在数学和日常生活中,也经常把某些指定的对象作为一个整体加以研究,例如:

⑴一个班里的全体学生;

⑵某图书馆的全部藏书;

⑶所有的直角三角形;

⑷与一个角的两边距离相等的所有点;

⑸不等式21

x->3的所有解;

⑹某工厂金工车间的所有机床.

它们分别是由一些人、书、图形、点、数和机床组成的.

一般地,指定的某些对象的全体称为集合(简称为集),用大写字母,,,

A B C L表示.集合中的每个对象叫做这个集合的元素,用小写字母,,,

a b c L 表示.

如果a是集合A的元素,就说“a属于集合A”,记作a A

∈;如果a不是集合A的元素,就说“a不属于集合A”,记作a A

?.

某校高一(1) 班全体学生就构成了一个集合,该校内的任一学生,或者是高一(1) 班的同学,或者不是,二者必居其一,这一性质叫做集合元素的确定性;在书写高一(1)班全体同学的名单时,谁写在前面或者后面,不论次序如何,都是高一(1)班全体同学的名单,这一性质叫做集合元素的无序性;另外,每名同学的名字,必须写而且只需写一次就可以了,这一性质叫做集合元素的互异性.

练一练:

判断下列各组元素能否构成一个集合:

(1)所有爱唱歌的孩子;

(2) 0,1,1,2.集合理论的创始人是

康托尔(Cantor,G.

F.L.P,1845—1918),德国数学家.

任何集合的子集,即?A

?.因此,任何一个集合是它本身的子集,即A

A?.

集合A不包含于集合B时,记作A?/B.

例1 写出集合{}

,,

a b c的所有子集.

解集合{}

,,

a b c的所有子集是:

{}{}{}{}{}{}{}

,,,,,,,,,,,,

a b c a b a c b c a b c

?

2. 真子集

在集合{}

,,

a b c的所有子集中,除去它本身{}

,,

a b c外,集合{}

,,

a b c中至

少有一个元素不在其余的某个子集中.

如果集合A是集合B的子集,且集合B中至少有一个元素不属于A,则称

集合A是集合B的真子集,记作A B(或A

B≠?),读作A真包含于B(或B真

包含A).如文氏图1-1所示.

集合{}

,,

a b c的子集中,除了{}

,,

a b c外,其它子集都是{}

,,

a b c的真子集.

显然,空集是任何非空集合的真子集.

练一练:判断集合A B

与的关系:

(1)集合{}

1,2,3

A=,{}

1,2,3,4

B=;

设合{}

1,2,3

A=,{}2,3,1

=

B.

3、集合的相等

如果集合A与集合B的元素完全相同,即A

B

B

A?

?且,则称集合A与

集合B相等,记作B

A=.

练一练:

对于集合{}

1,2

A=, {}

1,2,3,4,5,6

B=,{}

2,7

C=,

思考:

符号∈与符

号?表达的

含义相同

吗?

思考:集合

{}

,,

a b c有

三个元素,子

集个数为

8个,即32

个;真子集个

数为3

21

-

个;推广到含

有n个元素

的集合,则子

集个数和真

子集的个数

分别为多

少?

{}

(1)(2)0

D x x x

=--=,

下列关系是否成立:A D

=,A B

?, A B,A C

??

例2 指出下列各组中两个集合之间的关系:

(1){}{}

1,7,1,2,3,7

A B

==;

(2){}{}

21,1,1

C x x D

===-;

(3){}{}

,

E F

==

偶数整数;

解(1) A B; (2)C D

=; (3)E F.

例3 讨论集合{}

20

A x x

=-=与集合{}

260

B x x x

=+-=的关系.

解因为集合{}{}2

2=

=

-

=x

x

A,

集合{}{}2,3

6

2-

=

=

-

+

=x

x

x

B,

所以集合A是集合B的真子集,即A B.

【习题1.2】

1.用符号∈、?、=、、≠?填空:

(1)1 N;(2)0 Z;(3)-2 -

Q

(4)

4

3

Q;(5)πQ;(6)2R;

(7){1,2} {2,1};(8){3,5} {1,3,5};

(9){2,4,6,8} {2,8};(10)? {1,2,3}.

2.图1-2中A、B、C表示集合,说明它们之间的关系.

图1-2

3.写出集合{1,3,5}的所有子集.

4.设A={1,3,5,7,9},B={1,2,4,6},写出由A和B的所有元素组

成的集合C.

5.设A={1,3,5,7,9},B={1,2,3,4,6,8,10},写出由A和B的

公共元素组成的集合C.

1.3 集合的运算 1. 交集

观察集合{}1,237A =,,与{}2,3,67,B =,,容易看出,集合}73,2{,是由集合A 与B 的所有公共元素组成的,对于这样的集合我们给出如下定义.

定义 由集合A 与集合B 的所有公共元素组成的集合,叫做集合A 与集合B 的交集(如图1-3的阴影部分所示),记作B A I ,读作“A 交

B ”.即

{}A B x x A x B =∈∈I 且.

由交集的定义及图1-3可以看出, B A I 既

是A 的子集,也是B 的子集,即A B A ?I 且A B B ?I .

另外,交集还有如下性质:

A A A A A

B B A

?=?==I I I I 若A B A I =,则A B ?,反之也成立. 例1 设集合:

(1){}2,578A =,,,{}5,68,10B =,; (2) {}A =奇数,{}B =偶数; (3) {

}

A =奇数,{

}

B =整数;

(4) {}A =等腰三角形,{}

B =直角三角形; (5){}(,)25A x y x y =+=,{}

(,)27B x y x y =+=; (6){}13A x x =≤≤,{}

25B x x =≤≤. 求B A I .

解 (1) {}{}{}2,5785,68,105,8A B ==I I ,,,; (2) {}{}

A B ==?I I 奇数偶数;

(3) {}{}{}

A B A ===I I 奇数整数奇数;

{}{}{}(4);

A B ==I I 等腰三角形直角三角形等腰直角三角形

{}{}

{}

(5)(,)25(,)27

25

(,)(1,3);

27

A B x y x y x y x y

x y

x y

x y

=+=+=

??

+=

?

??

==

???

+=

?

??

??

I I

(6){}{}{}

132523

A B x x x x x

=≤≤≤≤=≤≤

I I, 如图1-4所示.

2. 并集

我们把集合{}

1,237

A=,,与{}

2,3,67,

B=,的元素放在一起,构建新的集合,由集合元素的互异性得新的集合为{}

1,2,3,6,7. 它是由所有属于A,或属于B的元素组成的.对于这样的集合,我们给出如下定义.

定义由所有属于集合A或属于集合B的元

素组成的集合,称为集合A与集合B的并集(如图

1-5的阴影部分所示),记作A B

U,读作A并B,

{|,}

A B x x A x B

=∈∈

U或.

由并集的定义及图1-5可以看出,集合A B

都是A B

U的子集,即A A B

?U,B A B

?U.

另外,并集还有如下性质:

A A

A A A

A B B A

?=

=

=

U

U

U U

若A B B

U=,则A B

?,反之也成立.

例2设集合:

(1){}

2,578

A=,,,{}

5,68,10

B=,;

(2) {}

A=奇数,{}

B=偶数;

(3) {}

A=奇数,{}

B=整数;

(4) {}

A=等腰三角形,{}

B=直角三角形;

(5) {}

13

A x x

=≤≤,{}

25

B x x

=≤≤.

求A B

U.

解(1) {}{}{}

2,5785,68,1025678,10

A B==

U U

,,,,,,,;

(2) {}{}{}

A B==

U U

奇数偶数整数;

(3) {}{}{}

A B B

===

U U

奇数整数整数;

{}{}

(4)

;

A B=

??

=??

??

U U

等腰三角形直角三角形

等腰直角三角形,等腰非直角三角形,

直角非等腰三角形

(5){}{}{}

132515

A B x x x x x

=≤≤≤≤=≤≤

U U,

如图1-6所示.

3. 补集

观察下列三个集合之间的关系:

I={全班同学}, A={班上男同学} , B={班上女同学}.

容易看出,集合B就是在集合I中,去掉集合A的所有元素之后,由余下来

的元素组成的集合.

在研究集合之间的关系时,如果集合I包含我们要研究的各个集合,则称I

为全集.

设I是全集,A是I的一个子集(即A?I),则由I中所有不属于A的元素

组成的集合,叫作集合A在I中的补集(如图1-7所示),简称集合A的补集.

记作Α

I

C,读作“A补”,即

{}A

x

I

x

x

Α?

=且

I

C.

由全集与补集的定义可得:

I

Α

A=

I

C

Y,o

Α

A/=

I

C

I,

o

I/=

I

C,I

o=/

I

C,

Α

Α=

)

I

I

(C

C.

例3 设{}

I=三角形,{}

A=锐角三角形,求Α

I

C.

解{}

直角三角形,钝角三角

=

Α

I

C.

在求集合的

并集时,同时

属于A和B

的公共元素,

在他们的并

集中只列举

一次

(1)1A 、2A 、3A 、4A 中哪两个集合的交集是非空集合?

(2)求23A A U .

(3)求14A A U .

(4)2A 、3A 、4A 中哪些集合是1A 的真子集.

1.4 区间 设,a b 是两个实数,且a b <,则:

满足不等式a x b ≤≤的所有实数x 的集合,叫做由a 到b 的闭区间,记作[,]a b .

满足不等式a x b <<的所有实数x 的集合,叫做由a 到b 的开区间,记作(,)a b .

满足不等式a x b ≤<(或a x b <≤)的所有实数x 的集合,叫做由a 到b 的半开区间,记作[,)a b (或(,]a b ).

在这里,实数,a b 叫做相应区间的端点. 上述区间[,]a b ,(,)a b ,[,)a b ,(,]a b 统称为有限区间. 满足,,,x a x a x b x b ≥>≤<的实数x 的集合,分别记作),[+∞a ,),(+∞a ,],(b -∞,),(b -∞,这些区间称为无限区间. 其中符号+∞与-∞分别读做正无穷大与负无穷大. 全体实数的集合R 也是无限区间,记作(,)-∞+∞.

区间可以用数轴上的点集来表示,其中用实心点表示端点包括在区间内, 用空心点表示端点不包括在区间内,如图1-8所示.

无限区间也可以用数轴上的点集来表示, 如图1-9所示.

例1 用区间表示下列集合:

(1){}16x x <≤; (2){}

,1,2x x R x x ∈≠≠. 解 各集合用区间分别表示为

(1)(]6,1; (2)(,1)(1,2)(2,)-∞+∞U U . 练一练:

用区间表示下列集合:

(1){}16x x -≤≤; (2){}

5x x ≥;

例2 把下列不等式组的解集用集合、区间及数轴上相应的点集表示:

(1)2,0;x x >-??≤? (2)30,20.x x ->??+>?

解 (1)不等式组2,

0,

x x >-??

≤?解集的集合形式为

{}20x x -<≤.

区间形式为

(2,0]-.

数轴上的点集表示如图1-10(1)所示. (2)不等式组30,

20,x x ->??

+>?

解集的集合形式为

{}3>x x .

区间形式为

)(∞+,3.

数轴上的点集表示如图1-10(2)所示..

例3 设集合{}{}

21,14

A x x

B x x

=-<<=-≤≤,求

,

A B A B

I U,并用区间及数轴上的点集表示.

解{}{}

2114

A B x x x x

=-<<-≤≤

I I

{}

11

x x

=-≤<.

区间形式为[1,1)

-.

数轴上的点集表示如图1-11(1)所示.

{}{}

2114

A B x x x x

=-<<-≤≤

U U

{}

24

x x

=-<≤.

区间形式为(2,4]

-.

数轴上的点集表示如图1-11(2)所示.

今后,我们可以采用不等式、集合、区间、数轴上的点集等不同的方法表示数集.

【习题1-4】

1.用区间表示下列集合:

(1) {}

15

x x

-<<; (2) {}

14

x x

≤≤;

(3) {}3≤x x; (4) {}

53

x x x

≥<-

或.

2. 把下列不等式组的解集用三种方式——集合、区间及数轴上点集表示出来:

(1)

4

7;

x

x

>

?

?

?

(2)

40

30.

x

x

-≤

?

?

+>

?

3. 设集合{}{}

2,22

A x x

B x x

=-<<+∞=-<≤,求,

A B A B

I U,并

用区间及数轴上的点集表示.

1.5 绝对值不等式的解法

一个数的绝对值,表示数轴上与这个数所对应的点到原点的距离.一个实数

a 的绝对值记作a ,是指由a 所唯一确定的非负实数,且

,0;0,0;,0a a a a a a >??

==??-

当时当时当时.

下面,我们学习绝对值不等式的解法.

依据绝对值的定义可知,x 是数轴上表示x 的点到原点的距离.从而当

0a >时,x a <的解集,是数轴上与原点的距离小于a 的点的集合,即

{}x a x a -<<(如图1-12(1)所示)

;x a >的解集,是数轴上与原点的距离大于a 的点的集合, 即{}

x x a x a <->或(如图1-12(2)所示).

例1 解下列不等式:

(1) 3x <; (2)5x ≥. 解 (1) 3x <的解集为{}

33x x -<<; (2)5x ≥ 的解集为{}

55x x x ≤-≥或.

对于,(0)ax b c ax b c c +<+>>型的不等式,可以把ax b +看作一个整体,转化成,x a x a <>型不等式来求解.

例2 解下列不等式,并用区间表示解集: (1) 87x -≤; (2)4214x +>. 解 (1) 由87x -≤,得

787x -≤-≤,

整理得 115x ≤≤, 所以原不等式的解集为 [1,15].

当不等号取

"",""

≤≥时有类似的性质,其解集可简记为“小于在中间,大于在两边”.

(2) 由4214x +> ,得

42144214x x +>+<-或, 解得

43-<>x x 或, 所以原不等式的解集为

(,4)(3,)-∞-+∞U .

【习题1.5】

1. 解下列不等式,将解集表示为集合的形式:

(1)

132x ≥; (2)1

105

x ≤; (3)61x -<; (4)38x <-. 2. 解下列不等式,将解集表示为区间的形式: (1)3813x -<; (2)257x -≤;

(2)

11223x +>; (4)3

214

x -≥.

1.6一元二次不等式的解法

形如

2200(,,,0)ax bx c ax bx c a b c a ++>++<≠或为常数且的不等式称

为一元二次不等式.

这里,我们利用一元二次函数的图像,找出一元二次不等式与一元二次函数及一元二次方程之间的关系,进而得到求解一元二次不等式的方法.

在一元二次函数2

2y x x =--中,令0=y ,得

022=--x x

解得 21=-=x x 或.

观察函数2

2y x x =--的图像(如图1-13),可得 (1) 当12x x =-=或时,0y =; (2) 当12x -<<时,0y <; (3) 当12x x <->或时,0y >.

由此可知

(a)一元二次方程2

20x x --=有两个不同的根1212x x =-=,;

(b)一元二次不等式2

20x x --<的解集为{}

12x x -<<; (c) 一元二次不等式2

20x x -->的解集为{}

12x x x <->或.

该例表明,一元二次函数的图象与x 轴的交点,可以确定相应的一元二次不等式的解集.

练一练:

讨论:当x 取何值时,下列一元二次函数的值0,0,0y y y >=

+-=x x y 下表按一元二次函数2y ax bx c =++(0>a )的判别式000?,,三种情形,给出了一元二次不等式的解集.

如果二次项系数0a <,我们可用(-1)乘不等式两边,将其变形为二次项

系数为正的情况.

例1 解下列不等式:

(1)260x x -->; (2) 2

280x x -++≥. 解 (1)2

(1)41(6)250?=--??-=>, 方程2

60x x --=有两个不相等的实根

2

4b ac ?=-

2

y ax bx c =++

(0)a >的图象

2

0ax bx c ++=(0)a ≠的根

2

0ax bx c ++<(0)a >的解集

2

ax bx c ++>(0)a >的解集

(1)0?>

2

1,242b b ac

x a

-±-=

12()x x <

{}1

2x x

x x <<

{}

1

2

x x x x x <>或

(2)0?=

122b x x a

==-

?

,2b x x R x a ??

∈≠-???

?

(3)0?<

无实根

?

R

思考: 当0?=时,不等式

2≥++c bx ax 的解集是什么?

要解二次不等式,二次系数先变正.

0?>时,

大于在两边,小于在中间.

复习题1 A 组

1.用适当的符号∈?=?“”“”“”“”

“”填空: {}{}5____;____;______;______0;;__.Q Q R R a a b A B A B +-+-?I U -1________N; -5_______Q; 0.6______; -2 3 ____,

2. 用另一种方法表示下列集合: (1){

}

2

2150A x x x =+-=; (2){}

44,B x x x Z =-≤≤∈;

(3){}

4绝对值等于的数; (4){}

215,A x x x Z =+=∈.

3.判断下列各组元素是否构成一个集合?

(1)非常小的数; (2)本班兴趣广泛的同学; (3)0与1之间的实数; (4) 非常漂亮的孩子. 4. 写出集合{}

,,红绿蓝的所有子集和真子集. 5. 设集合{}{}

25,32A x x B x x =-≤<=-<<. 用区间及数轴上相应的点集表示,A B ; (2)求,A B A B I U . 6. 解下列绝对值不等式:

(1) 2x ≤; (2) 5x >; (3) 2515x -<; (4) 212x +≥. 7.解下列不等式:

(1) 2

40x x -+->; (2) 2

43(43)x x >-;

(3)23620x x -+<; (4) 2

9610x x -+<. 8. 解下列不等式:

(1)

3212x x +≥-; (2) 1

111x x +≤-; (3)

4502x x ->-; (4) 34

43

x x -<+.

高一数学集合与不等式测试题.

高一级数学单元测试题 集合与不等式 一、选择题:(4分×15=60分) 1、设{}|7M x x =≤,x = ( ) A. x ∈ M B. x M ? C .{}x M ∈ D .{x }∪M 2、下列不等式中一定成立的是( ). A .x >0 B . x 2≥0 C .x 2>0 D . |x |>0 3、已知集合A =[-1,1],B =(-2,0),则A ∩B =( )。 A .(-1,0) B .[-1,0) C .(-2,1) D .(-2,1] 4、下列表示①{0}=?、②{0}?∈、③{0}??、④0∈?中,正确的个数为( ) A.2 B.1 C.4 D.3 5、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )∪(C U B )= ( ) A {0} B {0,1} C {0,1,4} D {0,1,2,3,4} 6、已知 ?∪A ={1,2,3},则集合A 真子集的个数( ) A 5 B 6 C 7 D 8 设U =[-3,5],C U A =[-3,0)∪(3,5] 7、设p 是q 的必要不充分条件,q 是r 的充要条件,则p 是r 的( )。 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8、不等式()()012<+-x x 的解集是( ) A 、〔—1,2〕 B 、〔2,—1〕 C 、R D 、空集 9、设、、均为实数,且<,下列结论正确的是( )。 A. < B. < C. -<- D. < 10、若x 2-ax -b <0的解集是{x |20的解集为( ) A .11{|}23x x - ≤≤ B .11{|}23x x -<< C .11{|}23x x -<<-D .11{|}23 x x -≤≤- 11、一元二次方程x 2 – mx + 4 = 0 有实数解的条件是m ∈( ) A.(-4,4) B.[-4,4] C.(-∞,-4)∪(4, +∞) D.(-∞,-4]∪[4, +∞) 12、下列不等式中,与 3 2<-x 的解集相同的是 ( ) A 0542 <--x x B 051 ≤-+x x C 0)1)(5(<+-x x D 0542 <-+x x 14、设全集U={(x ,y )R y x ∈,},集合M={(x ,y ) 12 2 =-+x y },N={(x ,y )4-≠x y },那么 (C U M )(C U N )等于( ) A {(2,-2)} B {(-2,2)} C φ D C U N 15、已知集合M={直线},N={圆},则M ∩N 中的元素个数为( ) A 0个 B 0个或1个或2个 C 无数个 D 无法确定 二、填空题(5分×6=30分) 13、 p :a 是整数;q :a 是自然数。则p 是q 的 。

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

集合与不等式测试题

集合与不等式测试题 一、填空题:(每题3分,共30分) 1.已知集合},02{2R x x x x A ∈=--=,集合}31|{≤≤=x x B ,则A ∩B = . 2.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(?U C )=________. 3、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 4.50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人. 5. 不等式13 12>+-x x 的解集是 6. 已知不等式052>+-b x ax 的解集是}23|{-<<-x x ,则不等式052>+-a x bx 的解是 ___________ . 7. 不等式(1+x )(1-x )>0的解集是 8.集合{}52<<-=x x A ,集合{}121-≤≤+=m x m x B ,若A B ?,且B 为非空集合,则m 的取值范围为 . 9. 设{}{}I a A a a =-=-+241222,,,,,若{}1I C A =-,则a=__________。 10.已知集合{}{} A x y y x B x y y x ==-==()|()|,,,322那么集合A B I = 二、选择题(每题3分,共30分) 11、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 12、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 13.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B U 为( ) A .{}1,2,4 B .{}2,3,4 C .{}0,2,4 D .{}0,2,3,4 14、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 15.已知集合U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},则 ( ) A .M ∩N ={4,6} B .M ∪N =U C .(?U N )∪M =U D .(?U M )∩N =N

含绝对值的不等式解法典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.?? ?123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m .

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高一数学 集合与不等式练习题

高一数学 集合与不等式练习题 一、选择题 1*.设a,b ∈R ,集合{1,a+b,a}={0, a b ,b},则b-a 等于( ) A. 1 B.-1 C.2 D.-2 2*.设P 和Q 是两个集合,定义集合P-Q={x| Q x P x ?∈且,},如果P={x|x<0},Q={x||x-2|<1}.那么P-Q 等于( ) A. }10|{<2 二、非选择题(解答题做在背面) 4.已知集合A={x| 01832>-+x x },B={x|(x-k)(x-k-1) ≤0},若φ=?B A , 则k 的范围是__. 5*.已知集合M={ R a x ax R x ∈=+-∈,023|2}.(1)若集合M 中只有一个元素,求a 的值,并求出这个元素;(2)若集合M 中至多只有一个元素,求a 的取值范围。 6.设全集U=R ,集合M={m|方程012=--x mx 有实数根},集合N={m|方程0m 2=+-x x 有实数根},求N M C ?)(u 7*.重点题(1)若方程07)1(82 =-+++m x m x 有两个负根,求实数m 的取值范围。(2)若方程07)5(32=+-+x m x 的一个根大于4,一个根小于4,求m 的取值范围。(3)若方程01222=-+-t tx x 的两个实根都在-2和4之间求t 的取值范围。 8.设A={x|1

解不等式典型例题答案

解不等式典型例题答案 例1 解:(1)原不等式可化为 0)3)(52(>-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5 ,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ???>-<-≠????>-+≠+?>-++2 450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x

2 12 1 310 2730132027301320 )273)(132(222222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或 ∴原不等式解集为),2()1,2 1 ()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法” ∴原不等式解集为),2()1,2 1()31,(+∞??-∞ 例3解法一:原不等式?? ???+<-<-?????+<-≥-?240 424042 222x x x x x x 或 即?? ?>-<<<-?? ?<<--≤≥1 22 2222x x x x x x x 或或或[来源学科网Z|X|X|K] ∴32<≤x 或21<-+<-) 2(42422 x x x x ∴312132<<<-x x x x 故或. 例4解法一:原不等式等价下面两个不等式级的并集: ?????>-+<+-0412,05622x x x x 或?????<-+>+-0 412, 0562 2x x x x ?? ?<-+<--?;0)6)(2(,0)5)(1(x x x x 或? ??>-+>--;0)6)(2(, 0)5)(1(x x x x ; ???<<-<-<><6 ,2, 5,1x x x x 或或 ,51<x .

2019-2020年高中数学第三讲柯西不等式与排序不等式3.3排序不等式达标训练新人教A版选修

2019-2020年高中数学第三讲柯西不等式与排序不等式3.3排序不等式达 标训练新人教A 版选修 基础·巩固 1.如下图所示,矩形OPAQ 中,a 1≤a 2,b 1≤b 2,则阴影部分的矩形的面积之和_________空白部分的矩形的面积之和. 思路分析:这可沿图中线段MN 向上翻折比较即知.当然由图我们可知,阴影面积=a 1b 1+a 2b 2,而空白面积=a 1b 2+a 2b 1.根据顺序和≥反序和可知答案. 答案:≥ 2.设a 、b 、c 为某一三角形三边长,求证: a 2(b+c-a)+ b 2(c+a-b)+ c 2(a+b-c)≤3abc. 思路分析:运用排序原理,关键是弄出有序数组,通常从函数的单调性质去寻找,如f(x)=x 2在R +单调递增,f(x)=在R +单调递减. 证明:不妨设a≥b≥c,易证a(b+c-a)≤b(c+a -b)≤c(a+b -c). 由排序原理得a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c) ≤a·b(c+a -b)+b·c(a+b -c)+c·a(b+c -a)=3abc. 3.对a,b,c∈R +,比较a 3+b 3+c 3与a 2b+b 2c+c 2a 的大小. 思路分析:将式子理解为积的形式a 2·a+b 2·b+c 2·c,a 2b+b 2c+c 2a,再依大小关系可求解. 解:取两组数a,b,c ;a 2,b 2,c 2. 不论a,b,c 的大小顺序如何,a 3+b 3+c 3都是顺序和,a 2b+b 2c+c 2a 都是乱序和; 故由排序原理可得a 3+b 3+c 3≥a 2b+b 2c+c 2a. 4.求证:正实数a 1,a 2,…,a n 的任一排列为a 1′,a 2′,…,a n ′,则有≥n. 思路分析:本题考查如何将和的形式构造为积的形式,本题关键是将n 理解为n 个1相加,而把1理解为x·的形式.这种方法有普遍的应用,应该加以重视. 证明:取两组数a 1,a 2,…,a n ;,,…,. 其反序和为=n ,原不等式的左边为乱序和,有≥n. 5.已知a,b,c∈R +,求证:≥a 10+b 10+c 10. 思路分析:可以发现左右两边的次数相等,因此,应该进行适当的拼凑,使其成为积的形式. 证明:不妨设a≥b≥c>0,则>0且a 12≥b 12≥c 12>0, 则ab c bc b ab a ab c ca b bc a 12 1212121212++≥++ c c b b a a a c c b b a 11 1111111111++≥++==a 10+b 10+c 10. 6.设a 1,a 2, …,a n 是1,2, …,n 的一个排列,求证: n n a a a a a a n n 1322113221-++≤-+++ .

中职数学集合与不等式综合测试题

中职数学集合与不等式综合测试题 一.选择题(12×5=60分) 1.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则=( ) A.{0} B.{2} C.{-1,2} D.{-1,1} 2.下列关系中正确的是( ) A. B.{0}= C.a={a } D. 3.已知a<0,b>0,则下列各式成立的是( ) A.a-b>0 B.ab>0 C. D. 4.已知集合A={0,3,5},B={},则=( ) A.{3} B.{0,3,5} C.{0,1,2,3,4,5} D.{5} 5.已知集合M={},N={-1,0,7},则M N=( ) A.{-1,0,7,-7} B.{7} C.{-1,0,7} D.{-7,7} 6.已知集合M={},U=R,则=( ) A.{} B. C.{} D.{} 7.集合{x|-31},则a 必满足( ) A.a<-3 B.a<0 C.a ≤-3 D.a>-3 9.不等式的解集是( ) A. B. C. D. 10.不等式的解集是( ) B A C U )(Q ∈2ΦR Z ?0>a b a b 1 1>51-|≤<∈x N x B A 49|2=x x 31-2|x x 3|>x x N x ∈x x 222>+),(∞+1),(0-∞),(∞+∞-),(∞+006-x 5-2

A.(2,3) B.(-3,2) C.(-6,1) D.(-1,6) 11.“a=2”是“”的( )条件 A.充分 B.必要 C.充要 D.既非充分也非必要 12.下列结论正确的是( ) (1)若a>b,则ac>bc (2)若则a>b (3)若a>b ,c>d,则a+c>b+d (4)若a>b,c>d,则ac>bd (5)若a>b ,且ab ≠0,则 A.(3) (5) B.(1)(2)(3) C.(2)(3)(4)(5) D.(2)(3) 二.填空题(6×5=30分) 13.集合{}的区间表示____________________ 14.设U={绝对值小于4的整数},A={0,1,3},则=______________ 15.设A={x|-2b a 11<3|≥x x B A A C U },,,{d c b a A ? x x 12492>+)6)(2(42+++x x x 与)(2-3,2x x x +

不等式的解法·典型例题及详细答案

不等式的解法·典型例题 【例1】?(x+4)(x+5)2(2-x)3<0. 【例2】?解下列不等式: 【例3】?解下列不等式 【例4】?解下列不等式: 【例5】?|x 2-4|<x+2. 【例6】?解不等式1)123(log 2122<-+-x x x . 不等式·典型例题参考答案 【例1】?(x+4)(x+5)2(2-x)3<0. 【分析】?如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】?用“穿针引线法”解不等式时应注意: ①各一次项中x 的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】?解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). (2) 【例3】?解下列不等式 解:(1)原不等式等价于 ∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】?解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】?解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】?|x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3). 这是解含绝对值不等式常用方法. 【例6】?解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于 (1)当a >1时,①式等价于 ② (2)当0<a <1时,②等价于 ③

高一数学集合与不等式测试题

高一级数学单元测试题 集合与不等式 一、选择题:(4分×15=60分) 1、设{}|7M x x =≤,43x =,则下列关系中正确的是 ( ) A. x ∈ M B. x M ? C .{}x M ∈ D .{x }∪M 2、下列不等式中一定成立的是( ). A .x >0 B . x 2≥0 C .x 2 >0 D . |x |>0 3、已知集合A =[-1,1],B =(-2,0),则A ∩B =( )。 A .(-1,0) B .[-1,0) C .(-2,1) D .(-2,1] 4、下列表示①{0}=?、②{0}?∈、③{0}??、④0∈?中,正确的个数为( ) A.2 B.1 C.4 D.3 5、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )∪(C U B )= ( ) A {0} B {0,1} C {0,1,4} D {0,1,2,3,4} 6、已知 ? ∪A ={1,2,3},则集合A 真子集的个数( ) A 5 B 6 C 7 D 8 设U =[-3,5],C U A =[-3,0)∪(3,5] 7、设p 是q 的必要不充分条件,q 是r 的充要条件,则p 是r 的( )。 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8、不等式()()012<+-x x 的解集是( ) A 、〔—1,2〕 B 、〔2,—1〕 C 、R D 、空集 9、设、、均为实数,且<,下列结论正确的是( )。 A. < B. < C. -<- D. < 10、若x 2-ax -b <0的解集是{x |20的解集为( ) A .11{|}23x x - ≤≤ B .11{|}23x x -<< C .11{|}23x x -<<-D .11{|}23 x x -≤≤- 11、一元二次方程x 2 – mx + 4 = 0 有实数解的条件是m ∈( ) A.(-4,4) B.[-4,4] C.(-∞,-4)∪(4, +∞) D.(-∞,-4]∪[4, +∞) 12、下列不等式中,与3 2<-x 的解集相同的是 ( ) A 0542<--x x B 051 ≤-+x x C 0)1)(5(<+-x x D 0542 <-+x x 14、设全集U={(x ,y )R y x ∈,},集合M={(x ,y ) 12 2 =-+x y },N={(x ,y )4-≠x y },那么 (C U M )(C U N )等于( ) A {(2,-2)} B {(-2,2)} C φ D C U N 15、已知集合M={直线},N={圆},则M ∩N 中的元素个数为( ) A 0个 B 0个或1个或2个 C 无数个 D 无法确定 二、填空题(5分×6=30分)

集合不等式试题及答案

集合与简易逻辑 不等式 1.已知),0(+∞=U ,}0sin |{>=x x A ,}1)1(log |{4>+=x x B ,=)(B C A U U A.}0|{π≤--<-=x x x q a x x A p ,且非p 是非q 的充分条件,则a 的取值范围为( ) A. -1-++;②)1(22 2--≥+b a b a ;③3322 a b a b ab +>+;④ 2>+a b b a 。上述4个式子中恒成立的有 ( ) (A )1个 (B )2个 (C )3个 (D )4个 6、对于实数a b 、,“()0b b a -≤”是“ 1a b ≥”成立的( ) (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分又不必要条件 7、若关于x 的不等式4)1(4 2 +≤+k x k 的解集是M ,则对任意实数k ,总有 ( ) A .2∈M ,0?M B .2?M ,0?M C .2?M ,0∈M D .2∈M ,0∈M 8、若A 为不等式组002x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫 过A 中的那部分区域的面积为 ( ) A . 34 B .1 C . 7 4 D .5 9、已知,,x y z R + ∈,230x y z -+=,则2 y xz 的最小值 . 10、记关于x 的不等式 01 x a x -<+的解集为P ,不等式11x -≤的解集为Q .

高中数学知识点精讲精析 排序不等式

2 排序不等式 先来看一个问题: 设有10个人各拿一只水桶去接水,若水龙头注满第i 个人的水桶需要i a 分钟,且这些i a 各不相同。那么,只有一个水龙头时,应如何安排10个人接水的顺序,才能使它们等待的总时间最少?这个最少的总时间等于多少? 解决这一问题,就需要用到排序不等式的有关内容。在没有找到合理的解决办法之前,同学们可以猜测一下,怎样安排才是最优的接水顺序? 为了解决这一问题,先来了解排序不等式。 一般地,设有两组正数n a a a ,,,21 与n b b b ,,,21 ,且n a a a ≤≤≤ 21,n b b b ≤≤≤ 21. 若将两组中的数一对一相乘后再相加, 则其和同序时最大,倒序时最小.即 (倒序)(乱序)(同序)1 12121221121b a b a b a b a b a b a b a b a b a n n n i n i i n n n +++≥+++≥+++- 其中n i i i ,,,21 是n ,,2,1 的任一个排列,等号当且仅当n a a a === 21或 n b b b === 21时成立。 下面采用逐步调整法证明排序不等式。 证明:考察任意和式n i n i i b a b a b a s +++= 2121。 若1i b 是1b ,则转而考察2i b ; 若1i b 不是1b ,而某一k i b 是1b 。将1i b 与k i b 调整位置,得 n k i n i k i i b a b a b a b a s +++++=' 1221 则 0))(()()(111111≥--=-+-=-'i k i i k i i b b a a b b a b b a s s k k 这就是说,当把第一项调整为11b a 后,和不会减少。同样,可将第二项调整为22b a ,…,

中职数学试卷:集合与不等式

《集合与不等式》测试 时间:90分钟 分数:150分 一、选择题(每题5分,共50分) 1.下列写法正确的是( ) A.0{(0,1)}∈ B.1{(0,1)}∈ C.(0,1){(0,1)}∈ D.(0,1){0,1}∈ 2.设集合M={a ,b},则满足M ∪N {a ,b ,c}的集合N 的个数为( ) A .1 B .4 C .7 D .8 3.b =c =0是抛物线y =ax 2+bx +c 经过原点的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4.2--x 成立的( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D.非充分非必要条件 5.下列表示同一集合的是( ) A .{}M =(2,1),(3,2) {}N =(1,2),(2,3) B .{} {}M N ==1,22,1 C .{}2|1M y y x x R ==+∈, {}2|1N y y x x N ==+∈, D .{}2|1M x y y x x R ==-∈(,) , {}2|1N y y x x N ==-∈, 6.已知集合}{,,S a b c =中的三个元素是ABC ?的三边长,那么ABC ?一定不是 ( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 7.集合{}2|210,A x x x x R =--=∈的所有子集的个数为( ) A.4 B.3 C.2 D.1 8.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则=A C U ( ). A. ? B. {}2,4,6 C. {}1,3,6,7 D. {}1,3,5,7

不等式经典题型专题练习(含答案)

不等式经典题型专题练习(含答案) 姓名:__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 2 5233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21 { 23x a x b -<->的解集为-1

3.已知关于x ,y 的方程组?? ?=+=+3135y x m y x 的解为非负数,求整数m 的值. 4.由方程组212x y x y a +=?? -=?得到的x 、y 的值都不大于1,求a 的取值范围. 5.解不等式组: 并写出它的所有的整数解.

6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,求实数a的取 值范围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.

8.已知关于x的不等式组3的整数解共有5个,求a的取值范围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值范围. 10.解不等式组 5134 1 2 2 x x x x ->- ? ? ? -- ??≤ 并求它的整数解的和. 23 x y m +=- ?①

12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225x y m x y m +=+??-=-? 的解是一对正数,则: (1)求m 的取值范围 (2)化简:42 m m -++

集合不等式函数测试试卷.doc

集合不等式函数测试试卷 (: 120 分分:120分) 班姓名分 一.(本大共10 小;每小 4 分,共 40 分. 在每小出的四个中,只有 一是符合目要求的) 1.集合 {1,2, 3}的真子集共有() A、 5 个 B、 6 个 C、 7 个 D、 8 个 2.中的阴影表示的集合是() A .A C u B B.B C u A A B C.C u( A B) D.C u( A B) U 3. 以下五个写法中:①{0}∈{ 0,1,2};②{1,2};③{ 0,1,2 }={ 2,0,1 };④0 ; ⑤ A A ,正确的个数有() A .1 个B. 2 个C.3 个D. 4 个 4.已知y f x 是定义在 R 上的奇函数,则下列函数中为奇函数的是( ) ① y f x ② y f x ③ y xf x ④ y f x x A.①③B.②③C.①④D.②④ 5.函数y x 4 )| x | 的定域( 5 A.{ x | x 5} B.{ x | x 4} C.{ x | 4 x 5} D. x x 4且x 5 6.若函数f (x) x 1, ( x 0) , f ( 3) 的()f ( x 2), ( x 0) A .5 B.- 1 C.- 7 D .2 7.已知函数y f x , x a,b ,那么集合 x, y y f x , x a,b x, y x 2 中元素的个数?() A . 1B. 0C. 1 或 0D. 1 或 2 8.已知函数 f (x) 的定域 [ a, b] ,函数 y f (x) 的象如甲所示,函数y f ( x )

的象是乙中的()

(新)高中数学柯西不等式与排序不等式

1 3.1 3.2 柯西不等式 1.二元均值不等式有哪几种形式? 答案:(0,0)2 a b a b +≥>>及几种变式. 2.已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 定理:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 2 22|| c d ac bd +≥+ 或222||||c d ac bd +≥+ 22c d ac bd +≥+. 定理:设1212,,,,,,,n n a a a b b b R ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++ (当且仅当12 12 n n a a a b b b === 时取等号,假设0i b ≠) 变式: 2222 12121 ( )n n a a a a a a n ++ ≥++???+. 定理:设,αβ是两个向量,则||||||αβαβ≤. 等号成立?(β是零向量,或者,αβ共线) 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 三角不等式: ① 定理:设1122,,,x y x y R ∈ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 例1:求函数y = 分析:如何变形? → 构造柯西不等式的形式 变式:y =→ 推广:,,,,,)y a b c d e f R +=∈

集合、不等式基础测试题

集合、不等式测试卷 班级 姓名 得分 一、单项选择题(本大题共10小题,每小题4分,共40分) 1. 1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T =U A. },4|{N n n x x ∈= B. },2|{N n n x x ∈= C. },|{N n n x x ∈= D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 A .充要条件 B. 必要而非充分条件 C .充分而非必要条件 D. 既非充分也非必要条件] 3. 若a >b >0,c ∈R ,则下列不等式中不正确的是( ) A . a > b B . ab >b 2 C.a + c >b +c D. ac >bc 4. 已知集合{} 12≤-=x x A ,=B {}2>x x ,则=B A I A .{}32≤x x D . {}3≥x x 5. 设集合{|03,},M x x x N =≤<∈则M 的真子集个数为 A.3 B.6 C.7 D.8 的 是则有实根, 的方程关于>设q p a c bx ax x q a ac b p )0(0:,)0(04:.622≠=++≠- A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 {}{} {}2101,1,3,221.7....的值为 则实数若,,.已知集合D C B A x N M N M x -===I 8. 已知集合A={1,3,m },B={1,m},A ∪B=A ,则m= A.0或3 B.0或3 C.1或3 D.1或3 9.已知集合{}13M x x =-<,集合{} 260N x x x =--<,则A B =I A. {}23x x -<< B. {}24x x -<< C. {}3x x < D. {} 34x x << 10. 设集合{}|13,A x x x Z =-<∈,{}2|16,B x x x Z =≤∈ A B I = A . {1,2,3} B .{1,2,3,4} C . {-1,0,1,2,3} D .{0,1,2,3}

高中不等式练习题及答案知识讲解

高中不等式练习题及 答案

收集于网络,如有侵权请联系管理员删除 不等式 1、解不等式:1 211922+-+-x x x x ≥7. 2、解不等式:x 4-2x 3-3x 2<0. 3、解不等式:6 5592+--x x x ≥-2. 4、解不等式:2269x x x -+->3. 5、解不等式:232+-x x >x +5. 6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。 7、若x,y >0,求y x y x ++的最大值。 8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大, 求参数m 的取值范围。 9、解不等式:log a (x +1-a)>1. 10解不等式38->-x x . 11.解log (2x – 3)(x 2-3)>0 12.不等式04 9)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。

收集于网络,如有侵权请联系管理员删除 13.求y x z +=2的最大值,使式中的x 、y 满足约束条件?? ???-≥≤+≤.1,1,y y x x y 14在函数x y 1=的图象上,求使y x 11+取最小值的点的坐标。 15函数4522++= x x y 的最小值为多少? 16.若a -1≤x 2 1log ≤a 的解集是[41,21],则求a 的值为多少?

收集于网络,如有侵权请联系管理员删除 17.设,10<a ,求证:()()1log log 1+>-a a a a 20.已知集合A=??????-<-=?? ??????????? ??<---)26(log )9(log |,212|31231)1(3322x x x B x x x x , 又A ∩B={x|x 2+ax+b <0},求a+b 等于多少?

相关文档
相关文档 最新文档