文档库 最新最全的文档下载
当前位置:文档库 › 静电场中的电介质习题及答案

静电场中的电介质习题及答案

静电场中的电介质习题及答案
静电场中的电介质习题及答案

第三章静电场中的电介质

一、判断题

1、当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的倍。×

2、对有极分子组成的介质,它的介电常数将随温度而改变。

3、在均匀介质中一定没有体分布的极化电荷。(内有自由电荷时,有体分布)

×

4、均匀介质的极化与均匀极化的介质是等效的。

×

5、在无限大电介质中一定有自由电荷存在。

6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。

7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。

8、在均匀电介质中,只有为恒矢量时,才没有体分布的极化电荷。

=恒矢量

×

9、电介质可以带上自由电荷,但导体不能带上极化电荷。

10、电位移矢量仅决定于自由电荷。

×

11、电位移线仅从正自由电荷发出,终止于负自由电荷。

12、在无自由电荷的两种介质交界面上,线不连续。(其中,为自由电荷产生的电场,为极化电荷产生的电场)

13、在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。

14、在两种介质的交界面上,电场强度的法向分量是连续的。

×

15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力作的功。

×

16、当均匀电介质充满电场存在的整个空间时,介质中的场强为自由电荷单独产生的场强的分之一。

二、选择题

1.一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为的均匀电介质

充满电容器。则下列说法中不正确的是:

(A)介质中的场强为真空中场强的倍。

(B)介质中的场强为自由电荷单独产生的场强的倍。

(C)介质中的场强为原来场强的倍。

(D)介质中的场强等于真空中的场强。

D

2.如果电容器两极间的电势差保持不变,这个电容器在电介质存在时所储存的自由电荷与

没有电介质(即真空)时所储存的电荷相比

(A)增多(B)减少(C)相同(D)不能比较

A

3.在图中,A是电量的点电荷,B是一小块均匀的电介质,都是封闭曲面,下列说法中不

正确的是:

(A)

(B)

(C)

(D)

D

4.在均匀极化的电介质中,挖出一半径为r,高度为h的圆柱形空腔,圆柱的轴平行于极

化强度垂直,当h?r时,则空腔中心的关系为:

(A)

(B)

(C)

(D)

C

5.在均匀极化的,挖出一半径为r,高度为h的圆柱形空腔,圆柱的轴平行于极化强度垂

直,当h?r时,则空腔中心的关系为:

(A)

(B)

(C)

(D)

B

6.一个介质球其内半径为R,外半径为R+a,在球心有一电量为的点电荷,对于R

电场强度为:

(A) (B) (C) (D)

A

7.一内半径为a,外半径为b的驻体半球壳,如图所示,被沿+Z轴方向均匀极化,设极化

强度为,球心O处的场强是:

(A)

(B)

(C)

(D)

D

8.内外半径为的驻极体球壳被均匀极化,极化强度为的方向平行于球壳直径,壳内空腔中

任一点的电场强度是:

(A) (B)

(C) (D)

B

9.半径为R相对介电常数为的均匀电介质球的中心放置一点电荷q,则球内电势的分布规

律是:

(A)

(B)

(C)

(D)

C

10.球形电容器由半径为的导体球和与它同心的导体球壳所构成,球壳的内半径为,其间一

半充满相对介电常数为的均匀电介质,另一半为空气,如图所示,该电容器的电容为:(A)

(B)

(C)

(D)

D

11.把一相对介电常数为的均匀电介质球壳套在一半径为a的金属球外,金属球带有电量q,

设介质球壳的内半径为a,外半径为b,则系统的静电能为:

(A)

(B)

(C)

(D)

B

三、填空题

1、如图,有一均匀极化的介质球,半径为R,极

化强度为P,则极化电荷在球心处产生的场强

是()在球外Z轴上任一点产生

的场强是()

2、带电棒能吸引轻小物体的原因是()。

轻小物体由于极化在靠近带电棒一端出现与带电棒异号的极化电荷

3、附图给出了A、B两种介质的分界面,设两种介质

A、B中的极化强度都是与界面垂直,且,当

取由A指向B时,界面上极化电荷为()号。

当由B指向A时,界面上极化电荷为()号。

正负

4、如果电介质中各的()相同,这种介质为均匀电介质。如果电介质的总体或某区域内各点的()相同,这个总体或某区域内是均匀极化的。

5、成立的条件是()。

介质为均匀介质

6、在两种不同的电介质交界面上,如果交界面上无自由电荷,则= ( )。

7、介质中电场能量密度表示为只适用于()介质。适用于( )介质。

各向同性的均匀线性线性

8、若先把均匀介质充满平行板电容器,(极板面积为S,极反间距为L,板间介电常数为)然后使电容器充电至电压U。在这个过程中,电场能量的增量是()。

9、平行板电容器的极板面积为s,极板间距为d中间有两层厚度各为的均匀介质(),它们的相对介电常数分别为。(1)当金属板上自由电荷的面密度为时,两层介质分界面上极化电荷的面密度= ( )。(2)两极板间的电势差( )。(3)电容C= ()。

10、如图所示一平行板电容器充满三种不同的电

介质,相对介电常数分别为。极

板面积为A,两极板的间距为2d,略去边缘效

应,此电容器的电容是( )。

11、无限长的圆柱形导体,半径为R,沿轴线单位长度上带电量λ,将此圆柱形导体放在无

限大的均匀电介质中,则电介质表面的束缚电荷面密度是()。

12\半径为a的长直导线,外面套有共轴导体圆筒,筒的内半径为b,导线与圆筒间充满介

电常数为的均匀介质,沿轴线单位长度上导线带电为λ,圆筒带电为-λ,略去边缘效应,

则沿轴线单位长度的电场能量是()。

13、一圆柱形的电介质截面积为S,长为L,被沿着轴线方向极化,已知极化强度沿X方向,且P=KX(K为比例常数)

坐标原点取在圆柱的一个端面上,如图所示

则极化电荷的体密度()

在X=L的端面上极化电荷面密度为()

极化电荷的总电量为()。

14、在如图所示的电荷系中相对其位形中心的偶极矩为()。

四、问答题

1、电介质的极化和导体的静电感应,两者的微观过程有何不同?

答:从微观看,金属中有大量自由电子,在电场的作用下可以在导体内位移,使导体中的电荷重新分布。结果在导体表面出感应电荷。达到静电平衡时感应电荷所产生的电场与外加电场相抵消,导体中的合场强为零。导体中自由电子的宏观移动停止。在介质中,电子与原子核的结合相当紧密。电子处于束缚状态,在电场的作用下,只能作一微观的相对位移或者它们之间连线稍微改变方向。结果出现束缚电荷。束缚电荷所产生的电场只能部分地抵消外场,达到稳定时,电介质内部的电场不为零。

2、为什么要引入电位移矢量D?E与D哪个更基本些?

答:当我们研究有电介质存在的电场时,由于介质受电场影响而极化,出现极化电荷,极化电荷的场反过来改变原来场的分布。空间任一点的场仍是自由电荷和极化电荷共同产生即:

因此,要求介质中的,必须同时知道自由电荷及极化电荷的分布。而极化电荷的分布取决于介质的形状和极化强度,而,而正是要求的电场强度。这样似乎形成计算上的循环,为了克服这一困难,引入辅助量。由知,只要已知自由电荷,原则上即可求,再由求。故更基本些。

3、把平行板电容器的一个极板置于液态电介质中,极板平面与液面平行,当电容器与电源连接时会产生什么现象?为什么?

答:当电容器与电源连接时,电容器将离开电介质。这是因为当考虑电容器边缘效应时两极板外表面也带上等量异号电荷,当其中一极板平面与液面平行时,由于介质极化,该极板电荷所受到的静电力小于另一极板电荷所受到静电力。且二者方向相反电容器整体受一个向上的合力作用。

五、证明题

1、一个半径为R的电介质球,球内均匀地分布着自由电荷,体密度为,设介质是线性、各向同性和均匀的,相对介电常数为,试证明球心和无穷远处的电势差是:

证明:当时以球心为心,为半径作球面(高斯面)

如图虚线所示,由对称性和的高斯定理得

由得

当时取高斯面如图虚线所示,同理得

取无限远处电势为零,则球心与无限远处的电势差等于球心电势。根据电势与场强的关系得

六、计算题

1、将一个半径为a的均匀介质球放在电场强度为E0的均匀电场中;电场E0由两块带等量异号电荷的无限大的平行板所产生,假定介质球的引入未改变平板上的电荷分布,介质的相对介电常数为εr,

(1)求介质小球的总电偶极矩

(2)若用一个同样大小的理想导体做成的小圆球代替上述介质球(并设E0不变),求导体球上感应电荷的等效电偶极矩。

解:(1)均匀介质球放在均匀电场中将被均匀极化,故只有球面上有极化电荷,设极化电荷面密度为,在球心产生的电场强度为,则球心的场强为

……①

如图1-1因

……②

由于余弦分布带电球面在球内产生匀强电场,所以根据对称性可得球内的场强为

……③图1-1

其方向与方向相反

所以

……④

根据与的关系

……⑤

由④、⑤式得

由极化强度定义得介质球的总电偶极矩为

……⑥

(2)将导体球放在均匀电场中,导体球感应电荷面密度为余弦分布,如图1-2所示设

根据对称性则球内的场强为

……⑦

其方向与方向相反

由静电平衡条件得

图1-2

……⑧

在球面上取一电偶极子,电量为偶极子臂为,根据对称性,元电偶极矩为

……⑨

由⑧、⑨式得感应电荷的等效电偶极矩为

2、一圆柱形电介质长为L,其横截面的半径为R,被沿着轴线方向极化,极化强度(k为一常数),设坐标原点O在介质圆柱内左端面的中心,此外无其它电场源,试求:

(1)在介质圆柱中心一点的电场强度E和电位移D;

(2)在坐标原点O处的电场强度E和电位移D。

解:极化电荷的体密度为

即介质内均匀地分布差负的体极化电荷,在的端面上的极化电荷面密度为

在的端面上的极化电荷密度为

(1)在圆柱中心体极化电荷不产生场,只有在X=L处而极化电荷产生场,根据均匀带电圆盘轴线上的场强公式得

由电位移矢量定义式得中心处的为

(2)在圆柱端部中心的场由体极化电荷和面极化电荷共同产生。在距原点处,取一圆盘,厚度如图所示,其上电量为

圆盘上电荷面密度为

该圆盘在原点O处产生的电场为

体极化电荷在原点O处产生的电场强度为

面极化电荷在原点O处产生的电场强度为

原点处电位移矢量为

3、一块柱极体圆片,半径为R,厚度为t,在平行于轴线的方向上永久极化,且极化是均匀的,极化强为P,试计算在轴线上的场强E和电位移D(包括圆片内外)。

解:在垂直x轴的两个外表面均匀带正负面极化电荷,如图所示,其面密度为

对在圆片内任一点而言两表面相当无穷大均匀带电平面,圆片内电场强度为

电位移矢量为

对圆片内外轴线任一点而言,两表面相当于均匀带电圆盘。

在距原点处,正负带电圆盘产生的场强分别为

该处的总电场强度为

因为t很小,用台劳级数将上式在t=0处展开,取前两项

则有

所以

电位移矢量为

4、半导体器件的p-n结中,n型内有不受晶格束缚的自由电子、p型区内则有相当于正电荷

的空穴。由于两区交界处自由电子和空穴密度不同,电子向p区扩散,空穴向n区扩散,在结的两边留下杂质离子,因而产生电场,阻止电荷继续扩散,当扩散作用与电场的作用相平衡时,电荷及电场的分布达到稳定状态,而在结内形成了一个偶电区(如图如示),称为阻挡层。现设半导体材料的相对介电常数为,结外电荷体密度,结内电荷的体分布为式中e

为电子电量,k为常数,试求p-n结内电场强度和电势的分布,并画出、和随变化的曲线。解:建立坐标轴如图4-1所示,在结内距原点处取宽度为的无限大平面,该平面电荷密度为

该带电平面在结内P点产生的场强为

OB区电荷在P点产生的场强为

图4-1

所以

OP区电荷在P点产生的场强为图4-2

所以

PA区电荷在P点产生的场强为图4-3

所以

图4-4

由叠加原理得P点的总场强为

场强随变化曲线如图4-3所示

由高斯定理知,结外的场强为

在结内任意点P的电势为

电势随变化曲线如图4-4所示,结内电荷体密度随变化曲线如图4-2所示。

5、半导体器件的p-n结中,n型内有不受晶格束缚的自由电子、p型区内则有相当于正电荷的空穴。由于两区交界处自由电子和空穴密度不同,电子向p区扩散,空穴向n区扩散,在结的两边留下杂质离子,因而产生电场,阻止电荷继续扩散,当扩散作用与电场的作用相平衡时,电荷及电场的分布达到稳定状态,而在结内形成了一个偶电区(如图5-1所示),称为阻挡层。现设半导体材料的相对介电常数为,如果电荷的体分布为

n区:(突变结)

p区:

式中是常数,为电子数且,其中各为p区和n区的厚度,试求结内电场强度和电势的分布并

画出、和随变化的曲线。

解:建立坐标轴,如图5-1所示,在P区内距原点处找一个考察点P,P点的场强由三部分即BO段、OP段和PA段体分布电荷产生的。每一段即可看成是由许多无限大带电平面组成的,其电荷面密度为

图5-1 图5-2 图5-3

由得

图5-4

所以,P点的总场强为

图5-5

取原点电势为零,由电势定义得

在n区内取一点P,如图5-2所示

同理得各段在P点的场强为

所以,P点的总场强为

同理可得P点的电势为

画出、和随变化曲线如图5-3、5-4、5-5所示

6、平行板电容器的极板面积为S,间距为d,其间充满线性的、各向同性的电介质。介质的相对介电常数εr在一极板处为εrl,线性地增加到另一极板处为εr2。略去边缘效应。(1)求这电容器的电容C;

(2)当两极板上的电荷分别为Q和-Q时,求介质内极化电荷体密度和表面上极化电荷的面密度。

解:(1)建立坐标轴,如图所示

设,

由此得

因此板间任一点的介电常数为

将平行板电容器的电容视为无限多个平行板电容元组成,如图所示,取距坐标原点为,厚度为一个电容元,该电容元的电容为

其倒数为

积分得

所以

(2)作一圆柱形高斯面S,如图中虚线所示,由介质中的高斯定理,得电位移矢量为

由与的关系和根据电位移矢量定义式得,极化强度为

极化电荷体密度为

正极板处的极化强度为

板表面上的极化电荷面密度为

负极板处的极化强度为

板表面上的极化电荷面密度为

7、一半径为a的导体球被内半径为b的同心导体球壳所包围,两球间充满各向同性的电介质,在离球心为r处介质的相对介电常数(A为常数)。如果内球带电荷Q,外球壳接地,试求:

(1)在电介质中离球心为r处的电势;

(2)介质表面上的极化电荷面密度和介质中任一点处极化电荷的体密度;

(3)介质中极化电荷的总量。

解:(1)根据对称性,以球心为心,为半径在介质内作球面(高斯面),由的高斯定理得

所以

因球壳的电势为零,故有

(2)半径为球面上的极化强度为

该表面上极化电荷面密度为

半径为的球面上的极化强度为

该表面上极化电荷面密度为

半径为球面上的极化强度为

介质内极化电荷体密度为

(3)介质中极化电荷总量包括介质表面上的极化电荷和介质中极化电荷,即

8、为了使金属球的电势升高而又不使其周围空气击穿,可以在金属球表面上均匀地涂上一

层石蜡。设球的半径为1cm,空气的击穿场强为,石蜡的击穿场强为,其相对介电常数为,

问为使球的电势升到最高,石蜡的厚度应为多少?其中球的电势之值是多少?

解:设金属球带电量为Q,由对称性和介质中高斯定理得介质内外的场强为

……①

……②

取,代入上两式,得介质球壳内外表面的最大场强为

……③

……④

由③式和④式联立得

……⑤

……⑥

将已知数值代入⑥式得

由电势与场强积分关系得

……⑦

将代入⑦式得

……⑧

将已知数据代入⑧式得

9、如图所示的圆柱形电容器,内圆柱的半径为R1,与它同轴的外圆筒的内半径为R2,长为L、其间充满两层同轴的圆筒形的均匀电介质,分界面的半径为R,它们的相对介电常数分

别为,设两导体圆筒之间的电势差略去边缘效应,求:介质内的电场强度。

解:设充电后,单位长度的电量为,由对称性和介质中的高斯定理得

由与的关系得两介质内的场强分别为

……①

……②

圆筒之间的电势差为

……③

由③式得导体圆筒电荷的线密度为

……④

将④式分别代入①式和②式,得介质内的场强分别为

10、为了提高输电电缆的工作电压,在电缆中常常放几种电介质,以减小内、外导体间电场

强度变化,这叫分段绝缘。图中所示是这种电缆的剖面图。若相对介电常数的三种电介质作为绝缘物时,设内部导体每单位长度上带电量为。试求:(1)各层内的电场强度;(2)各层电场强度极大值;(3)在什么条件下,才能使介质内的电场强度保持为常数值?

解:(1)根据对称性和高斯定理,求得电位移矢量为

根据知,介质中离轴心分别为处的电场强度为

(2)当分别等于时,各层电场强度为极大值,其值为

(3)当时,有

所以常数时,常数

11、平行板电容器的两极板相距为a,极板面积为S,两极板之间填满电介质,绝对介电常数按下列规律变化,x轴的方向与平板垂直,x轴的原点在一块极板内表面上,若已知两极板间电势差为U,略去边缘效应,求电容及束缚电荷分布。

解:在距原点为处取一厚度为的平行板电容器,其元电容为

其倒数为

积分得

所以

极板上的自由电荷为

由如图虚线所示作高斯面,由高斯定理得板内的电位移矢量为

板内的场强为

板内的极化强度为

在介质表面上,束缚电荷面密度为

在介质表面上束缚电荷面密度为

介质中束缚电荷体密度为

12、一空心的电介质球,其内半径为R1,外半径为R2,所带的总电荷量为Q,这些电荷均匀分布于R1和R2之间的电介质球壳内。求空间各处的电场强度。介质的相对介电常数为.解:由对称性和高斯定理得

当r>R1时E=0

当时

所以

当时

所以

13、今有A、B、C三导体板互相平行地放置,AB、BC之间的距离均为之间充满相对介电常

数为的介质,AB之间为真空,今使B板带+Q,试求各导体板上的电荷分布。忽略边缘效应。解:A、B板和B、C板各组成电容器,其电容分别为

取垂直B板的圆柱形高斯面,如图所示,根据高斯定理得

由D的法线连续性 D1=D2=D得

再根据得

由此可得AB之间和BC之间的电势差为

A、B极板所带电量为

B、C极板所带电量为

由电荷守恒定律知

A 、C板的内侧带-Q/2 电荷,外侧带Q/2电荷。B板两侧各带Q/2电荷。

14、在一块均匀的瓷质大平板表面处的空气中,电场强度为E的大小为220V/cm,其方向是指向瓷板且与它的表面法线成角。设瓷板的相对介电常数,求:(1)瓷板中的场强;(2)瓷板表面上极化电荷面密度。

解:均匀极介板内无极化电荷,设表面上极化电荷的面密度为,如图13-1所示。

在板内,极化电荷产生的电场强度为

……①

式中为表面外法线方向上的单位矢量

根据场强叠加原理,板内的电场强度为

以上三者关系如图13-2所示,由图可知

……②

极化电荷电密度为

图13-1

整理上式得

……③

将已知数据代入③式得

图13-2

15、在相对介电常数为的煤油中,离煤油表面深度h处,有一带正电的点电荷q,如将煤油看作为无限大均匀介质,:求(1)在煤油表面上,该电荷的正上方A点处的极化电荷面密度;(2)在煤油表面与点电荷相距r处的B点的极化电荷面密度;(3)煤油表面极化电荷的总量。

解:(1)在点电荷q的周围将出现负的极化电荷,煤油表面出现正的极化电荷。(如图)在煤油表面A点,极化电荷面密度最大,随着离A的距离增加,极化电荷面密度迅速减少,A 点附近的液面两边的场强法向分量,可用叠加原理求得

在空气中

在煤油中

由边界条件,即,得

整理上式得

2)同理,B点附近的液面两边场强法向分量为

在空气中

在煤油中

由边界条件,得

整理上式得

3)以A点为圆心,在液面上距A为处选一小圆环,设小圆环边缘离q的间距为r。显然,小圆环面积,小圆环上极化电荷为

所以

16、两个相同的空气电容器,电容都是900uF,分别充电到900V电压后切断电源,若把一

个电容器浸入煤油中,(煤油的介电常数=),再将两电容并联。

(1)求一电容器浸入煤油过程中能量的损失;

(2)求两电容器并联后的电压;

(3)求并联过程中能量的损失。

(4)问上述损失的能量到那里去了?

解:(1)电容器极板上的电量为

电容器在空气中的储蓄的能量为

能量损失为

(2)并联后总电容为

并联后总电量为

所以并联后电压为

(3)并联前的能量:

并联后的能量:

并联过程中的能量损矢为

4)损失的能量转化为介质的动能,最后通过磨擦转化为热能(内能)。

17、一平行板电容器的极板面积为S,间距为d(d2<

常数为的均匀导电介质。设在t=0时,给两极板各充上电量+ Q和-Q,然后撤去电源。试求:(1)t=0时刻介质内的电场强度;(2)t=t时刻介质内的传导电流;(3)t=0→t=∞过程中,从介质内释放的总焦耳热。

解:(1)时刻,极板上的电量仍然为Q,由高斯定理知,此时板内电位移矢量为

电场强度为

(2)由欧姆定理的微分形式知,时刻有

其中,而

所以

由初始条件,,解微分方程得

所以时刻介质内的传导电流为

(3)由焦耳定律得

所以介质释放的总焦耳热为

18、一个圆柱形电容器的内圆筒的半径为R1,外圆筒的内半径为R2,筒长L>>R2,在R1和之间的空间填满长为L、相对介电常数为的圆筒形均匀电介质,其余的容积是空气间隙,如图18-1所示。假设电容器两极与一电源相连而维持其电势差为U,试求将介质圆筒抽出该电容器所需作的机械功?

解:把圆住形电容器看成两个电容器串联而成,如图18-2所示

根据圆柱形电容器电容公式知,每个电容器电容为

根据电容器串联性质得

图18-1

所以,总电容为

图18-2

当介质抽出距离时,如图18-3所示,把电容器看作两个电容器并联,如图18-4所示

其中

所以

图18-3

电容器储存的能量为

由虚功原理得

图18-4

外力作功为

=

另解:介质全部抽出时,电容器的能量为

介质未抽出时,电容器的能量为

根据功能关系知,全部抽出介质时,外力所作的机械功为

19、一平行板电容器由两块平行的矩形导体平板构成,平板宽为b,面积为S,两板间距为d,设两极板间平行地放一块厚度为t、大小与极板相同、相对介电常数为的电介质平板,两极板所带的电量分别为+Q和-Q。现将介质平板沿其长度方向从电容器内往外拉,以至它只有长度为x的一段还留在两板之间。

(1)问这时介质平板受到的电场力的方向如何?

(2)试证明,这时介质平板受到的电力为

其中(忽略边缘效应)

解:(1)在电场中电介质被极化,其表面上产生极化电荷。在平行板电容器的边缘,由于边缘效应,电场是不均匀的,场强对电介质中正负电荷的作用力都有一个沿板面向右的分量,因此,电介质将受到一个向右的合力

(2)电容器由两部分并联而成,这两部分的电容分别为

电容器的电容为

其中

电容器所储蓄的静电能为量

由虚功原理知,作用在介质片上的力为

20、一半径为R的电介质球,球内均匀地分布着自由电荷,体密度为,设介质是线性、各向同性和均匀的,相对介电常数为,求(a)电介质球内的静电能;(b)这一带电系统的总静电能。

解:(a)根据对称性和高斯定理得球内外的电位移矢量和电场强度分别为

电介质球内的静电能为

(b)带电系统的总静电能为

21、平行板空气电容器两极板A、B相距为,竖直地插在相对介电常数为、密度为的均匀液态电介质中(如图21-1所示),两极板间保持着一定的电势差U,则液态电介质在两板间会上升一定高度h,若不计表面张力作用,试求作用在液体电介质表面单位面积上的平均牵引力T和液面上升的高度h。

解:带电的平行板电容器插入液态电介质中使液体沿与平板电容器两板的分界面产生极化电荷,在静电吸引力作用下液体被吸上来,直至液体重力与静电吸引力平衡为止。

如图21-2所示,高度为h的液态电介质所受到的重力为

电容器是由两部分并联组成,设介质进入极板间的高度为时,两部分的电容分别为,

电容器的电容为

电容器储能为

由虚功原理知,静电力作功为图21-1

根据平衡条件得

整理上式介质的高度为图21-2

作用在液态电介质表面单位面积上的平均牵引力为

22、当用高能电子轰击一块有机玻璃时,电子渗入有机玻璃并被内部玻璃所俘获。例如,当一个的电子束轰击面积为25cm2、厚为12mm的有机玻璃板(相对介电常数)达1s,几乎所有的电子都渗入表面之下约5~7mm的层内。设这有机玻璃板的两面都与接地的导体板接触,忽略边缘效应,并设陷入的电子在有机玻璃中均匀分布,如图22-1所示。

(1)求带电区的极化电荷的密度;

(2)求有机玻璃表面的极化电荷密度;

(3)画出D、E、(电势)作为电介质内部的位置函数的图形;

(4)求带电层中心的电势;

(5)求在两接地导体板之间的没有电荷区域内的场强;

(6)求这有机玻璃板里贮存的静电能。

解(1)由电流强度定义知

带电区电荷体密度为

……①图22-1

如图22-2所示在带电区内作柱形高斯面,坐标原点在对称中心,由高斯定理得层内任一点处的值为

……②

……③图22-2

……④

取,得带电层表面处的极化强度为

……⑤

带电层表面极化电荷面密度为

……⑥

(2)作一个包围带电层的柱形高斯面,如图22-2所示,由高斯定理得

……⑦

……⑧

……⑨

有机玻璃表面的极化电荷面密度为

……⑩

(3)带电层内任一点电势为

……

带电层外任一点电势为

……

随x变化规律曲线如图22-3所示

图22-3

(4)取x=0代入?式得,带电层中心处的电势为

(5)由⑧式得带电层外的场强为

(6)有机玻璃内贮存的静电能为

23、在一无限大均匀介质内,挖出一无限长圆柱形真空区,圆柱形的横截面半径为R。设

介质内场强E均匀,且与圆柱形轴线垂直,求圆柱形轴线上的一点的场强。

解:介质在与真空的分界面上出现极化电荷,轴线上一点O的场强是介质中场强和极化电荷在轴线上O点的场强的矢量和。极化电荷面密度为

(为极化强度,n为表面法线方向)

如图所示,取一宽度为的无限长带电线,其上电荷线密度为

该带电线在轴线上产生的场强为

极化电荷在轴线上产生的场强为

所以轴线上一点的总场强为

24、一平行板电容器两极板间距为d,其间放置一块厚度为t的介质平板,板面与极板成倾角,介质的相对介电常数为,若两极分别带上面密度为的电荷,试求两极板间的电势差。(设倾角为较小,边缘效应可以忽略)

解:设两极板的边长为和的长方形,建立坐标如图所示,上、下两板一小面积构成平行板电容器,该电容器看成由两个电容器串联而成,其中一个是空气,另一个是介质,每个电容器中电容分别为

根据电容器串联性质得

式中为极板面积

极板上电量为

极板间的电势差为图24-1

25、半径为R1的半导体球,一半浸没在相对介电常数为的半无限而均匀的液体介质中,另一半露在真空中,若此导体球所带的电量为Q,(1)证明:导体球外任一点的电场强度均沿求的径向;(2)求出导体球表面上的面电荷分布

解:(1)如果导体球外任一点的电场强度不沿径向则上半球和下半球表面电荷分布将不均匀。它们在球心处产生的合场强不为零,这与导体球内场强为零相矛盾。故球外任一点的场必沿径向

(2)导体球与无限远处构成球形电容器如图所示

根据球形电容器的电容公式有:

当时

根据上式得半球形电容器的电容为:

本题中的球形电容器可看作是两个半球形电容器并联而成。其中一个是空气,别一个是介质,每个半球形电容器电容为

根据电容并联性质得,电容器的总电容,总电压分别为

两个半球形电容器所带电量分别为

两个半球表面上的电荷面密度分别为

26、两导体球,半径均为R,球心间距为d,有一均匀电场E0,其方向垂直于两球心的联线,假设Rd,球两球之间的相互作用力。

解:

图26-1 图26-2

设导体球表面的感应电荷为余弦分布,如图26-1所示,在球内产生的附加电场为,则附加电场与外电场抵消(不考虑另一导体球感应电荷影响),使球内场强为零满足静电平衡条件。由此得

在球外可将余弦分布的带电球壳等视为偶极子,如图26-2所示,其电偶极矩为

电偶极子处产生场强

电偶极子中具有的电势能(之间的相互作用能)为

两球间的相互作用力为

27、一半径为R的导体球浮在某种介质溶液中,导体球的质量密度为,介质溶液的相对介电常数为,质量密度为,且,试用计算必须在此导体球上放置多少电量的电荷,才能使它正好有一半浸没在介质溶液中。

解:设导体球放置电量为Q的电荷时,它正好一半浸没在介质溶液中。导体球在介质溶液中受到三个力的作用即导体球自身的重力、导体球受到的浮力和极化电荷对它的吸力,如图27-1所示,处于平衡状态时,有

……①

导体球所受浮力为

……②

导体球所受到的重力为

图27-1

为了球极化电荷对导体球的吸力为,先求极化电荷密度,导体球表面各介质表面电荷分布如图27-2所示,作球面为高斯面,根据高斯定理得

……④图27-2

在介质交界面上有

……⑤

由④、⑤式得

极化电荷密度为

……⑥

极化电荷为半球面分布,在球心处产生的场为

……⑦

极化电荷对导体球的吸力为

……⑧

将②、③、⑧式代入①式得

整理得

28、有一半径为a,相对介电常数为的均匀介质小球,与另一半径为b,电势为的导体小球相距为r(r>>a、b)。求介质小球受力的近似表达式。

解:设导体球带电量为,由高斯定理得

导体球的电势为

由此得导体球所带电量为

导体球在介质球处产生的场可视为匀强场,即在介质球心处产生的场强为

介质球在均匀外场作用下发生极化,设极化强度为,极化电荷为余弦分布,即

极化电荷在介质球内产生的场强为

介质球内总场强为

介质极化强度为

所以

介质球的等效电偶极矩为

介质球的等效电偶极矩与外场之间的相互作用能为

介质球外场中所受的力为

29、两均匀带有等量异号电荷的无限大平面导体板之间放一均匀的介质球,球的半径为R 极化率为,求球内的场强,假定介质球离两平板都相当远,球处在场中时,带电板上的电荷仍然均匀分布,因此,自由电荷单独产生的场仍是均匀场。

解法1:分步极化法

设想介质球的极化是分若干阶段进行的,最终达到静电平衡。在介质球刚放在电场中瞬时,极化电荷尚未形成,因而介质球内的场强就是外场,它使球均匀极化,极化强度为

由引起的极化电荷在球内所产生的附加场强为

附加电场引起的附加极化,附加的极化强度为

附加的极化强度产生的附加场强为

附加场强又引起新的附加极化,这样的过程一步一步继续下去,在第n步,附加极化强度为于是介质球内的场强等于自由电荷的场强和附加场强之总和,即

根据得

静电场中的电介质

3.1 填空题 3.1.1 电介质的极化分为( )和( )。 3.1.2 分子的正负电荷中心重合的电介质叫做( )电介质;在外电场作用下,分子的正负电荷中心发生相对位移形成( )。 3.1.3 如果电介质中各点的( )相同,这种介质为均匀电介质;满足( )关系的电介质称为各向同性电介质。 3.1.4 平行板电容器两极板间相距为0.2 mm ,其间充满了相对介电常数r ε=5.0的玻璃片,当 两极间电压为400 V 时,玻璃面上的束缚电荷面密度为( )。 3.1.5 一平行板电容器充电后断开电源,这时储存的能量为0w ,然后在两极板间充满相对介电常数为r ε的电介质,则电容器内储存的能量变为( )。 3.1.6 一平行板电容器,充电后与电源保持连接,然后使两极板间充满相对介电常数为r ε的 各向同性均匀电介质,这时两极板上的电量是原来的( )倍;电场强度是原来的( )倍;电场能量是原来的( )倍。 3.1.7 两个电容器1和2,串联以后接上电动势恒定的电源充电。在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差( ),电容器1极板上的电量( )(填增大、减小、不变)。 3.1.8 一平行板电容器两板充满各向同性均匀电介质,已知相对介电常数为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D =( ),电场强度的大小E =( )。 3.2 选择题 3.2.1 两个相距很近而且等值异号的点电荷组成一个( )。 A :重心模型; B :电偶极子; C :等效偶极子; D :束缚电荷。 3.2.2 可以认为电中性分子中所有正电荷和所有负电荷分别集中于两个几何点上,这称为分 子的( ) A :电介质; B :电偶极子; C :重心模型; D :束缚电荷。 3.2.3 电偶极子的电偶极矩定义为( ) A :E p M ?=; B :l q p =; C :l q p ?=; D :l q p ?= 3.2.4 在电场E 的作用下,无极分子中正负电荷的重心向相反方向作微小位移, 使得分子偶 极矩的方向与场强E 一致,这种变化叫做( ) A :磁化; B :取向极化; C :位移极化; D :电磁感应。 3.2.5 在真空平行板电容器的中间平行插一片介质,当给电容器充电后,电容器内的场强为( ) A :介质内的电场强度为零; B :介质内与介质外的电场强度相等; C :介质内的场强比介质外的场强小; D :介质内的场强比介质外的场强大。 3.2.6 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。则下列说法中不正确的是( ) A :介质中的场强为真空中场强的r ε1 倍;

静电场经典例题

静电场练习题一 1、一个挂在绝缘细线下端的带正电的小球B,静止在图示位置,若固定的带正电小球A的电荷量为Q,B球的质量为m,带电荷量为q,θ=37°,A和B在同一条水平线上,整个装置处于真空中,求A,B两球间的距离. 2、如图所示,有一水平方向的匀强电场,场强大小为900 N/C,在电场 内一水平面上作半径为10 cm的圆心为O的圆,圆上取 A,B两点,AO沿电场方向,BO⊥OA,另在圆心处放一电荷 量为10-9 C的正点电荷,求A处和B处场强大小。 3、如图,光滑斜面倾角为37°,一质量m=1×10-2 kg、电荷量q=+1×10-6 C的小物块置于斜面上,当加上水平向右的匀强电场时,该物体恰 能静止在斜面上,g=10 m/s2,求: (1)该电场的电场强度大小; (2)若电场强度变为原来的,小物块运动的加速度大小.

4、如图所示,真空中,带电荷量分别为+Q和-Q的点电荷A,B相距r, 则: (1)点电荷A,B在中点O产生的场强分别为多大?方向如何? (2)两点电荷连线的中点O的场强为多大? (3)在两点电荷连线的中垂线上,距A,B两点都为r的O′点的场强如何? 5、一试探电荷q=+4×10-9 C,在电场中P点受到的静电力F=6×10-7N.则: (1)P点的场强大小为多少; (2)将试探电荷移走后,P点的场强大小为多少; (3)放一电荷量为q′=1.2×10-6 C的电荷在P点,受到的静电力F′的大小为多少? 6、竖直放置的两块足够长的平行金属板间有匀强电场. 其电场强度为E,在该匀强电场中,用丝线悬挂质量为m 的带电小球,丝线跟竖直方向成θ角时小球恰好平衡, 此时小球与极板间的距离为b,如图所示.(重力加速度

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

电介质中电场

第九章 导体和电介质中的静电场 §9-1静电场中的导体 一.导体的静电平衡条件 1.静电感应现象 a.静电感应:外电场的作用导致导体中电荷重新分布而呈现出带电的现象 b.静电平衡状态:导体内部和表面上都没有电荷的定向移动状态 2.导体的静电平衡条件 (1).静电平衡条件: a.导体内部任何一点的场强为零 b.导体表面上任何一点的场强方向垂直于该点的表面 (2).等价条件: 静电平衡时,导体为等势体. 证:设a 和b 为静电平衡导体上任意两点 单位正电荷由a 移到b ,电场力的功为 b a b a U U l d E -=?? U ?= (1).a 、b 在导体内部: 0=E 0=?∴U (2).a 、b 在导体表面: l d E ⊥0=?∴l d E 即0=?U ----静电平衡的导体是等势体 二.静电平衡导体的电荷分布 1.导体处于静电平衡时,导体内部没有净电荷,电荷只能分布在导体表面上 证:在导体内任一点P 处取一任意小的高斯面S 静电平衡导体内0≡E ?=?∴S S d E 0 →0=∑内 S i q ----体内无净电荷 即电荷只能分布在导体表面上 2.有空腔的导体:设空腔导体带电荷Q 空腔内没有电荷时:导体内部和空腔内表面上都没有净电荷存在,电荷只分布在导体外表面 证:在导体内作一包围空腔的高斯面 S 导体内0≡E ?=?∴S S d E 0 导体的静电感应过程 静电平衡状态 + + + +

即 0=∑内 S i q ----S 内无净电荷存在 问题:会不会出现空腔内表面分布有等量 异号电荷的情况呢? 空腔内有电荷q 时:空腔内表面感应出等值异号电量-q ,导体外表面的电量为导体原带电量Q 与感应电量q 的代数和 由高斯定理和电荷守恒定律可证 3.静电平衡导体,表面附近场强的大小与 该处表面的电荷面密度成正比 证:过紧靠导体表面的P 点作垂直于导体 表面的小圆柱面,下底△S ’在导体内部 ??S S d E ???=S S d E S E ?=0 εσS ??= εσ= ∴E 4.静电平衡导体,表面曲率越大的地方,电荷面密度越大 以一特例说明: 设有两个相距很远的导体球,半径分别 为R 和r (R >r ),用一导线将两球相连 R Q U R 041πε= R R R 02 44πεσπ= εσR R = r q U r 041 πε=r r r 0244πεσπ= 0εσr r = r R R r =∴ σσ 三.导体静电平衡特性的应用 1.尖端放电 年美富兰克首先发明避雷针 2.静电屏蔽 静电屏蔽:隔绝电的相互作用,使内外互不影响的现象. a.对外电场的屏蔽 ++ ++ +

静电场典型例题集锦(打印版)

静电场典型题分类精选 一、电荷守恒定律 库仑定律典型例题 例1 两个半径相同的金属小球,带电量之比为1∶7,相距为r ,两者相互接触后再放回原来的位置上,则 相互作用力可能为原来的多少倍? 练习.(江苏物理)1.两个分别带有电荷量Q -和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F 。两小球相互接触后将其固定距离变为2 r ,则两球间库仑力的大小为 A . 112F B .34F C .4 3 F D .12F 二、三自由点电荷共线平衡.. 问题 例1.(改编)已知真空中的两个自由点电荷A 和B, 94 A Q Q =,B Q Q =-,相距L 如图1所示。若在直线AB 上放一自由电荷C,让A 、B 、C 都处于平衡状态,则对C 的放置位置、电性、电量有什么要求? 练习 1.(原创)下列各组共线的三个自由电荷,可以平衡的是( ) A 、4Q 4Q 4Q B 、4Q -5Q 3Q C 、9Q -4Q 36Q D 、-4Q 2Q -3Q 2.如图1所示,三个点电荷q 1、q 2、q 3固定在一直线上,q 2与q 3的距离为q 1与q 2距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电量之比q 1∶q 2∶q 3为( ) A .-9∶4∶-36 B .9∶4∶36 C .-3∶2∶-6 D .3∶2∶6 三、三自由点电荷共线不平衡... (具有共同的加速度)问题 例1.质量均为m 的三个小球A 、B 、C 放置在光滑的绝缘水平面的同一直线上,彼此相隔L 。A 球带电量10A Q q =,B Q q =, 若在小球C 上外加一个水平向右的恒力F ,如图4所示,要使三球间距始终保持L 运动,则外力F 应为多大?C 球的带电量C Q 有多大? 图1 图4

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

静电场中的电介质

静电场中的电介质 (一)要求 1、了解电介质极化的微观机制,掌握极化强度矢量的物理意义 2、理解极化电荷的含义,掌握极化电荷、极化电荷面密度与极化强度矢量P 之间的关系 3、掌握有介质时场的讨论方法,会用介质中的高斯定理来计算静电场;明确E 、P 、D 的联系和区别 4、了解静电场的能量及能量密度 5、演示实验:介质对电容器电容的影响 (二)要点 1、电介质的极化 (1)电介质的电结构 (2)电介质的极化 2、极化强度矢量 (1)极化强度矢量 (2)极化电荷 (3)极化电荷体密度与面密度 3、有介质时的静电场方程 (1)电位移矢量

(2)介质中的高斯定理 (3)介质中的电场方程 *4、静电场的边值关系 5、静电场的能量和能量密度 (三)难点 求解介质中静电场的具体问题,如极化电荷的分布,介质中电场的分布等 § 3-1电介质的极化 一、介质中的电场强度 实验表明,电容器中填充介质后电容增大,增大程度由填充介质的相对介电常数£决定。由于引入外电场后,电介质表面出现电荷,产生附加电场比方向与外电场方向相反,削 弱了电介质内部的外电场,这样

f f f 4 E=E^ + E f 但 E t丰E‘,辰工On 二、电介质的极化 在外电场作用下电介质表面出现电荷的现象叫做电介质的极化,在表面出现的这种电荷叫极化电荷(束缚电荷)。 由于极化电荷比自由电荷少得多,极化电场比感应电场也小得多,因此介质内部合场强不为零但要注意极化电荷与自由电荷、极化电场与感应电场的区别。 §3-2极化强度矢量 一、极化的微观机制1无极分子的位移极化 在外电场作用下,无极分子正负电荷“中心”发生相对位移而出现极化电荷的现象,称为位移极化。 2、有极分子的取向极化 在外电场作用下,有极分子的电偶极矩受到电场的力矩而转向外电

高中物理静电场经典习题30道 带答案

一.选择题(共30小题) 1.(2014?山东模拟)如图,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若 三个小球均处于静止状态,则匀强电场场强的大小为( ) D c 的轴线上有a 、b 、 d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ) D 系数均为k 0的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧长度为l .已知静电力常量为k ,若不考虑弹簧的静电感应,则每根弹簧的原长为( ) ﹣ 个小球,在力F 的作用下匀加速直线运动,则甲、乙两球之间的距离r 为( ) D

7.(2015?山东模拟)如图甲所示,Q1、Q2为两个被固定的点电荷,其中Q1带负电,a、b两点在它们连线的延长线上.现有一带负电的粒子以一定的初速度沿直线从a点开始经b点向远处运动(粒子只受电场力作用),粒子经过a、b两点时的速度分别为v a、v b,其速度图象如图乙所示.以下说法中正确的是() 8.(2015?上海二模)下列选项中的各圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各圆环间 D 12 变化的关系图线如图所示,其中P点电势最低,且AP>BP,则() 以下各量大小判断正确的是()

11.(2015?丰台区模拟)如图所示,将一个电荷量为1.0×10C的点电荷从A点移到B点,电场力做功为2.4×10﹣6J.则下列说法中正确的是() 时速度恰好为零,不计空气阻力,则下列说法正确的是() 带电粒子经过A点飞向B点,径迹如图中虚线所示,以下判断正确的是() 实线所示),则下列说法正确的是()

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

静电小常识

静电小常识 —除静电装置的基础 目录 1、什么是静电 2、什么是物体带电 3、什么时候会产生静电 4、带电列和带电量的关系 5、使之附着的力量、库仑力 6、除电的方法 7、电晕放电式静电除去器的除电装置 8、除电时间和离子平衡 9、除静电装置的类型 10、除静电装置的设置场所 11、放电针的维护 12、有效的除电想法

1、什么是静电? 1)、电分静电和动电。在干燥的冬天,从汽车下来时接触门时啪的一声就是静电。用垫子摩擦头发头发粘在一起也是因为静电。也就是说电子在汽车或垫子中“停留”的状态就是静电。动电就是在电线中电子“流过”的状态。 物质都是由带负极(-)的电子,带正极(+)的质子,形成电性中和的中子组成的。但当两物体摩擦或剥离时,一侧的物体的电子飞出正电荷增加,另一侧的电子粘连负电荷增加。这被称为带电,例如下方所示垫子带负电,毛发带正电。 2)、所谓物体是什么,让我们再看一下。物质都是由带负极(-)的电子,带正极(+)的质子,形成电性中和的中子组成的。就是说电子构成物体。 ■带静电的情况 带电状态不是指物体上“载有”静电,而是物体本身“发生变化”。 POINT!带静电状态是物体本身发生变化的状态。 2、什么是物体带电? 容易通电的物体被称为“导电体”,铁、 铜、铝等是该代表。相反不容易通电的物体 被称为“绝缘体”,丙烯、橡胶、玻璃等就是

这种物体。但不论通电易否,物体带电。 带电方法(带电分布),导电体和绝缘体是不一样的。 3、什么时候会产生静电? 例如摩擦电子和毛发这两个物体就会产生静电。此外剥离两个粘在一起的物体、或者单纯接触也会产生静电。用科学的定义来说的话就是“静电就是由于两个物体的接触和剥离、摩擦、物体变形、附着离子而产生的现象”。 ■静电此时产生 ①摩擦两个物体②剥离接触的物体 4、带电列和带电量的关系 两物体摩擦时,哪个物体带+、哪个带-电,统称为“带电列”。根据物体本身性质不同而产生容易带+电或容易带-电的现象。 一般来说此带电列中位置关系近的物体间摩擦带电量(携带静电量)减少,位置关系远的物体间摩擦带电量增多。 但是摩擦带电根据湿度、温度、摩擦物体形状状态不同而有所变化,也不是所有情况都有该现象。另外摩擦同种物体,虽然带电量少,但是肯定有一方是带+电,另一方是带-电。 ■带电列(摩擦顺序) ●铝和丙烯摩擦……铝→+ 丙烯→- ●铝和丙烯摩擦产生的带电量<铝和氯乙烯摩擦产生的带电量 带电量用V(伏特),下表总结了人体带电量和打雷的关系,人能够感觉到的静电一般从3kV起。1kV以下的静电虽然人体不能感觉到,但是在制造现场这样微弱的静电也有可能导致故障。

大学物理练习题 静电场中的电介质

练习八 静电场中的电介质 一、选择题 1. 极化强度P v 是量度介质极化程度的物理量,有一关系式为()E P v v 1r 0?=εε,电位移矢量公 式为P E D v v v +=0ε,则 (A ) 二公式适用于任何介质。 (B ) 二公式只适用于各向同性电介质。 (C ) 二公式只适用于各向同性且均匀的电介质。 (D ) 前者适用于各向同性电介质,后者适用于任何电介质。 2. 电极化强度P v (A ) 只与外电场有关。 (B ) 只与极化电荷产生的电场有关。 (C ) 与外场和极化电荷产生的电场都有关。 (D ) 只与介质本身的性质有关系,与电场无关。 3. 真空中有一半径为R ,带电量为Q 的导体球,测得距中心O 为r 处的A 点场强为() 30π4r r Q E A εv v =,现以A 为中心,再放上一个半径为ρ,相对电容率为ε r 的介质球,如图所示,此时下列各公式中正确的是 (A ) A 点的电场强度r εA A E E v v =′。 (B ) ∫∫=?S Q S D v v d 。 (C ) ∫∫?S S E v v d =Q /ε0。 (D ) 导体球面上的电荷面密度σ = Q /(4πR 2)。 4. 在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所 在处为球心作一球形闭合面,则对此球形闭合面: 电介质 (A ) 高斯定理成立,且可用它求出闭合面上各点的场强。 (B ) 高斯定理成立,但不能用它求出闭合面上各点的场强。 (C ) 由于电介质不对称分布,高斯定理不成立。 (D ) 即使电介质对称分布,高斯定理也不成立。 5. 关于高斯定理,下列说法中哪一个是正确的? (A ) 高斯面内不包围自由电荷,则面上各点电位移矢量D r 为零。 (B ) 高斯面上处处D r 为零,则面内必不存在自由电荷。 (C ) 高斯面的D r 通量仅与面内自由电荷有关。 (D ) 以上说法都不正确。 6. 关于静电场中的电位移线,下列说法中,哪一种是正确的? (A ) 起自正电荷,止于负电荷,不形成闭合线,不中断。 (B ) 任何两条电位移线互相平行。 (C ) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交。 (D ) 电位移线只出现在有电介质的空间。 7. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为: (A ) ε0E 。 (B ) ε0εr E 。 (C ) εr E 。 (D ) (ε0εr ?ε0)E 。

静电场典型例题分析

例1 在边长为30cm的正三角形的两个顶点A,B上各放一个带电小球,其中Q1=4×10-6C,Q2=-4×10-6C,求它们在三角形另一顶点C处所产生的电场强度。 解:计算电场强度时,应先计算它的数值,电量的正负号不要代入公式中,然后根据电场源的电性判断场强的方向,用平行四边形法求得合矢量,就可以得出答案。 由场强公式得: C点的场强为E1,E2的矢量和,由图8-1可知,E,E1,E2组成一个等边三角形,大小相同,∴E2= 4×105(N/C)方向与AB边平行。 例2 如图8-2,光滑平面上固定金属小球A,用长L0的绝缘弹簧将A与另一个金属小球B连接,让它们带上等量同种电荷,弹簧伸长量为x1,若两球电量各漏掉一半,弹簧伸长量变为x2,则有:() 解:由题意画示意图,B球先后平衡,于是有 例3点电荷A和B,分别带正电和负电,电量分别为4Q和Q,在AB连线上,如图,电场强度为零的地方在() A.A和B之间B.A右侧 C.B左侧 D.A的右侧及B的左侧 解:因为A带正电,B带负电,所以只有A右侧和B左侧电场强度 方向相反,因为Q A>Q B,所以只有B左侧,才有可能E A与E B等量反向,因而才可能有E A和E B矢量和为零的情况。

例4 如图8-4所示,Q A=3×10-8C,Q B=-3×10-8C,A,B两球相距5cm,在水平方向外电场作用下,A,B保持静止,悬线竖直,求A,B连线中点场强。(两带电小球可看作质点) 解:以A为研究对象,B对A的库仑力和外电场对A的电场力平衡, E外方向与A受到的B的库仑力方向相反,方向向左。在AB的连线中点处E A,E B的方向均向右,设向右为正方向。则有E总=E A+E B-E外。 例5在电场中有一条电场线,其上两点a和b,如图8-5所示,比较a,b两点电势高低和电场强度的大小。如规定无穷远处电势为零,则a,b处电势是大于零还是小于零,为什么? 解:顺电场线方向电势降低,∴U A>U B,由于只有一条电力线,无法看出电场线疏密,也就无法判定场强大小。同样无法判定当无穷远处电势为零时,a,b的电势是大于零还是小于零。若是由正电荷形成的场,则E A>E B,U A>U B>0,若是由负电荷形成的场,则E A<E B,0>U A>U B。 例 6 将一电量为q =2×106C的点电荷从电场外一点移至电场中某点,电场力做功4×10-5J,求A点的电势。 解:解法一:设场外一点P电势为U p所以U p=0,从P→A,电场力的功W=qU PA,所以W=q (U p-U A), 即4×10-5=2×10-6(0-U A) U A=-20V 解法二:设A与场外一点的电势差为U,由W=qU, 因为电场力对正电荷做正功,必由高电势移向低电势,所以U A=-20V 例7 如图8-6所示,实线是一个电场中的电场线,虚线是一个负检验电荷在这个电场中的轨迹,若电荷是从a处运动到b处,以下判断正确的是: [ ]

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球 A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有 ∑=0q 而导体的电势V ≠0。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答:必须注意以下两点: (1)这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6为什么不能使一个物体无限制地带电? 答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q′。其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与

第三章静电场中的电介质

第 三 章 静电场中的电介质(6学时) 一、目的要求 1.掌握电介质极化机制,熟悉极化强度、极化率、介电常数等概念。 2.会求解极化强度和介质中的电场。 3.掌握有介质时的场方程。 4.理解电场能量、能量密度概念,会求电场的能量 。 二、教学内容与学时分配 1.电介质与偶极子( 1学时) 2.电介质的极化(1学时) 3.极化电荷(1学时) 4.有电介质时的高斯定理(1学时) 5.有介质的场方程(1学时) 6.电场的能量(1学时) 三、本章思路 本章主要研究电介质在静电场中的特性,其基本思路是:电介质与偶极子→电介质的极化→电介质的极化规律 →有介质的静电场方程 →静电场的能量。 四、重点难点 重点:有介质的静电场方程 难点:电介质的极化规律。 五、讲授要点 §3.1 电介质与偶极子 一、教学内容 1.电介质概述 2.电介质与偶极子 3.偶极子在外电场中受到的力矩 4.偶极子激发的静电场 二、教学方式、 讲授 三、讲课提纲 1.电介质概述 电介质是绝缘材料,如橡胶、云母、玻璃、陶瓷等。 特点:分子中正负电荷结合紧密,处于束缚状态,几乎没有自由电荷。 当导体引入静电场中时,导体对静电场有很大的影响,因静电感应而出现的感应电荷 产生的静电场在导体内部将原场处处抵消,其体内00='+=E E E ,且表现出许多特性,如导体是等势体、表面是等分为面、电荷只能分布在表面等;如果将电介质引入电场中情况又如何呢?实验表明,电介质对电场也有影响,但不及导体的影响大。它不能将介质内

部的原场处处抵消,而只能削弱。介质内的电场00≠'+=E E E 。 2.电介质与偶极子 (1)电介质的电结构 电介质原子的最外层电子不像金属导体外层电子那样自由,而是被束缚在原子分子上,处于事缚状态。一般中性分子的正负电荷不止一个,且不集中于一点,但它们对远处一点的影响可以等效为一个点电荷的影响,这个等效点电荷的位置叫做电荷“重心”。分子中电荷在远处一点激发的场近似等于全部正负电荷分别集中于各自的“重心”时激发的场,正负电荷“重心”重合在一起的称无极分子,如 H ,N ,CO 等。正负电荷“重心”不重合在一起的称有极分子,像SO ,H O,NH 等。这样一个分子等效为一个偶极子。 (2)偶极子 两个相距很近,带等量异号电量的电荷系统叫做偶极子 ①偶极子在外场中受到的力矩 均匀外场中,0=∑F 但受到一个力矩:θθθsin sin *2*sin *2*qLE L F L F T =+= 定义:L q P = 称为偶极子的偶极矩,上式可写为: E P T ?= 满足右手螺旋关系 Q 、L 可以不同。但只要其乘积qL 相同,力矩便相同。此力矩总是企图使偶极距转到 外电场的方向上去; 非均匀外场中,0≠∑F ∑≠0T 如摩擦事的笔头吸引纸屑,其实质就是纸屑在笔头电荷的非均匀电场中被极化,等效为偶极子,偶极子受到非均匀电场的作用力(指向场强增大的方向)而向笔头运动。 ②偶极子的场 中垂面上一点的场强:场点到的距离相等,产生的场强大小相等为: 但它们沿垂线方向分量互相抵消,在平行于连线方向分量 相等,故有: 延长线上一点的场强 向右,向左,故总场强大小为 偶极子在空间任一点的场强 4 412 20l r q E E + = =-+πε2322 )4(41 2l r ql COS E E πεθ+==+⊥20)2(41l r q E -= +πεE =-3 02220220//42]) 4 (241 )2(1 )2(1 [4r P l r qlr l r l r q E E E πεπεπε≈-=+--=-=-+ 图3-3 图3-4 +q -q 图3-1 图 3-2

防静电知识完全版综述

防静电知识讲座

日常生活中的静电 从地毯上走过,抓住门的把手,梳头,脱毛线衣,火花产生了。这个现象就是人们所知的静电放电(ESD, electrostatic ischarge) 。人类通过日常活动可产生高达25,000V的静电放电。人类手的神经可感觉到低至大约3,000V的静电放电。只需要10V的ESD就可毁坏今天IC内部的某些极小零件和迹线。其结果是,虽然ESD看不见、听不到或感觉不到,但可重大地损伤或毁坏电子产品。

人类对静电的认识 ?静电学是电学中最古老的学科 ?据有资料记载,古希腊哲学家塔勒斯(Thales)公元前640-546年在研究天然磁石的磁性时发现用丝绸、法兰绒摩擦琥珀(Amber)之后也有类似于磁石能吸引轻小物体的性质。电这个词起源于希腊语(琥珀)

二十世纪中后期静电危害震 惊世界 ?美国从1960年到1975年由于静电引起的火灾爆炸事故达116起。 ?1969年底在不到一个月的时间内荷兰、挪威、英国三艘20万吨超级油轮洗舱时产生的静电引起相继发生爆炸以后引起了世界科学家对静电防护的关注。 ?我国在石化企业发生了30多起较大的静电事故,其中损失达百万元以上的有数起。

高科技工业生产中静电危害的 形成 ?高工业生产的高速发展以及高分子材料的迅速推广应用,一些电阻率很高的高分子材料如塑料,橡胶等的制品的广泛应用以及现代生产过程的高速化,使得静电能积累到很高的程度,?另一方面,静电敏感材料的生产和使用,如轻质油品,火药,固态电子器件等,工矿企业部门受静电的危害也越来越突出,静电危害造成了相当严重的后果和损失。

(完整word版)高中物理静电场必做经典例题(带答案)

1 高中物理阶段性测试(一) 一、选择题(每题4分,共40分) 1.下列说法正确的是 ( ) A .元电荷就是质子 B .点电荷是很小的带电体 C .摩擦起电说明电荷可以创造 D .库仑定律适用于在真空中两个点电荷之间相互作用力的计算 2.在电场中某点用+q 测得场强E ,当撤去+q 而放入-q/2时,则该点的场强 ( ) A .大小为E / 2,方向和E 相同 B .大小为E /2,方向和E 相反 C .大小为E ,方向和E 相同 D .大小为 E ,方向和E 相反 3.绝缘细线的上端固定,下端悬挂一只轻质小球a ,a 表面镀有铝膜,在a 的近 端有一绝缘金属球b ,开始时,a 、b 均不带电,如图所示.现使b 球带电,则( ) A .a 、b 之间不发生静电相互作用 B .b 立即把a 排斥开 C .b 将吸引a ,吸住后不放开 D .b 将吸引a ,接触后又把a 排斥开 4.关于点电荷,正确的说法是 ( ) A .只有体积很小带电体才能看作点电荷 B .体积很大的带电体一定不能视为点电荷 C .当两个带电体的大小与形状对它们之间的相互静电力的影响可以忽略时,这两个带电体便可看作点电荷 D .一切带电体在任何情况下均可视为点电荷 5.两只相同的金属小球(可视为点电荷)所带的电量大小之比为1:7 ,将它们

相互接触后再放回到原来的位置,则它们之间库仑力的大小可能变为原来的() A.4/7 B.3/7 C.9/7 D.16/7 6.下列对公式 E =F/q的理解正确的是() A.公式中的 q 是场源电荷的电荷量 B.电场中某点的电场强度 E 与电场力F成正比,与电荷量q 成反比 C.电场中某点的电场强度 E 与q无关 D.电场中某点的电场强度 E 的方向与电荷在该点所受的电场力 F 的方向一致 7.下列关于电场线的说法正确的是() A.电场线是电荷运动的轨迹,因此两条电场线可能相交 B.电荷在电场线上会受到电场力,在两条电场线之间的某一点不受电场力C.电场线是为了描述电场而假想的线,不是电场中真实存在的线 D.电场线不是假想的东西,而是电场中真实存在的物质 8.关于把正电荷从静电场中电势较高的点移到电势较低的点,下列判断正确的是() A.电荷的电势能增加 B.电荷的电势能减少 C.电场力对电荷做正功 D.电荷克服电场力做功 9.一个带负电的粒子只在静电力作用下从一个固定的点电荷附近飞过,运动轨迹如图中的实线所示,箭头表示粒子运动的方向。图中虚线表示点电荷电场的两个等势面。下列说法正确的是() A.A、B两点的场强大小关系是E A

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

相关文档
相关文档 最新文档