文档库 最新最全的文档下载
当前位置:文档库 › 点线圆与圆的位置关系

点线圆与圆的位置关系

点线圆与圆的位置关系
点线圆与圆的位置关系

1. 点与圆的位置关系的判断

点与圆的位置关系

设O

⊙的半径为r,点P到圆心O的距离为d,则有:

点在圆外?d r

<.

>;点在圆上?d r

=;点在圆内?d r

2. 三角形外接圆的圆心与半径

三角形的外接圆

⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.

⑵三角形外心的性质:

①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;

②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.

⑶锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.

二:直线与圆的位置关系:

1.直线与圆的位置关系

2.切线的性质

定理:圆的切线垂直于过切点的半径.

推论1:经过圆心且垂直于切线的直线必经过切点.

推论2:经过切点且垂直于切线的直线必经过圆心.

3.切线的判定

距离法:到圆心距离等于半径的直线是圆的切线;

定理法:经过半径的外端并且垂直于这条半径的直线是圆的切线.

4.切线长定理及三角形内切圆

⑴切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.

⑵切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平

分两条切线的夹角.

三:圆与圆的位置关系:

一:点与圆的位置关系:

1.点与圆的位置关系的判断:

例题1:⑴【易】一点到圆周上点的最大距离为18,最短距离为2,则这个圆的半径为___________ 【答案】10或8

【解析】当点在圆内时,圆的直径为18+2=20,所以半径为10. 当点在圆外时,圆的直径为18-2=16,所以半径为8.

⑵【易】已知如图,在△ABC 中,∠C=90°,AC=4,BC=5,AB 的中点为点M . ①以点C 为圆心,4为半径作⊙C ,则点A 、B 、M 分别与⊙C 有怎样的位置关系

②若以点C 为圆心作⊙C ,使A 、B 、M 三点中至少有一点在⊙C 内,且至少有一点在圆外,求⊙C 的半径r 的取值范围.

【答案】①∵在△ABC 中,∠C=90°,AC=4,BC=5,AB 的中点为点M

∴AB ,

122

CM AM =

=

, ∵ 以点C 为圆心,4为半径作⊙C ,

∴AC=4,则A 在圆上,42

CM =

<,则M 在圆内,BC=5>4,则B 在圆外;

②以点C 为圆心作⊙C ,使A 、B 、M 三点中至少有一点在⊙C 内时,2

r >, 当至少有一点在⊙C 外时,r <5,

故⊙C 的半径r 的取值范围为:52

r <<.

测一测1:【易】在△ABC 中,90,45,C AC AB ∠=?==, 以点C 为圆心,以r 为半径作

圆,请回答下列问题,并说明理由.

⑴当r _____时,点A 在⊙C 上,且点B 在⊙C 内部

⑵当r 取值范围_______时,点A 在⊙C 外部,且点B 在⊙C 的内部 ⑶是否存在这样的实数,使得点B 在⊙C 上,且点A 在⊙C 内部 【答案】在Rt △ABC 中,90,45,C AC AB ∠=?==,

根据勾股定理得,3BC =

⑴当=4r 时,AC=4=r , 点A 在⊙C 上,BC=3

⑵当34r <<时,AC=4>r , 点A 在⊙C 外部,BC=3

2. 三角形外接圆的圆心与半径

例题2:⑴【易】已知直角三角形的两条直角边长分别为3cm 和4cm ,则这个直角三角形的外接圆的半径为____________cm . 【答案】

【解析】∵直角三角形的两直角边分别为3cm 和4cm ,

5=cm ,

∴它的外接圆半径为5÷2=.

⑵【易】在△ABC 中,AB=AC=10,BC=12,求其外接圆的半径_______ 【答案】作AD ⊥BC ,垂足为D ,则O 一定在AD 上,

∴8AD =; 设OA=r ,222

OB OD BD =+,

即222

(8)6r r =-+,

解得254

r =

. 测一测1:【易】若△ABC 中,∠C=90°,AC=10cm ,BC=24cm ,则它的外接圆的直径____________cm 【答案】26

【解析】∵△ABC 中,∠C=90°,AC=10cm ,BC=24cm ,

∴26AB =cm

二:直线与圆的位置关系

1. 直线与圆的位置关系判断:

例题3:【易】如图,在矩形ABCD 中, AB=6 , BC=4 , ⊙O 是以AB 为直径的圆,则直线DC 与⊙O 的位置关系是( )

A. 相交 B . 相切 C. 相离 D. 无法确定

【答案】C

【解析】解:∵矩形ABCD 中,BC=4, ∴圆心到CD 的距离为4. ∵AB 为直径,AB=6, ∴半径是3. ∵4>3

∴直线DC 与⊙O 相离,

与小圆相交,则弦长AB 的取值范围是( )

A .8≤A

B ≤10 B .AB ≥8

C .8<AB ≤10

D .8<AB <10 【答案】C

【解析】当AB 与小圆相切时,OC ⊥AB ,

则224

8AB AC ===?;

当AB 过圆心时最长即为大圆的直径10. 则弦长AB 的取值范围是8<AB ≤10

2. 切线的性质:

例题4:⑴【易】如图, AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D .若18C ??,则∠CDA=______________

【答案】126°

【解析】连接OD

则∠ODC=90°,∠COD=72°;

∵OA=OD,

1

2

ODA A COD ???,

∴∠CDA=∠CDO+∠ODA=90°+36°=126°.

⑵【易】如图,点A,B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交O于点D.

①AC与CD相等吗为什么

②若AC=2,AO,求OD的长度_______.

【答案】①证明:∵AC是⊙O切线,

∴OA⊥AC,

∴∠OAC=90°

∴∠OAB+∠CAB=90°

∵OC⊥OB,

∴∠COB=90°

∴∠ODB+∠B=90°

∵OA=OB

∴∠OAB=∠B

∴∠CAB=∠ODB

∵∠ODB=∠ADC

∴∠CAB=∠ADC

∴AC=CD

②解:在Rt△OAC中,3

OC=,

∴OD=OC-CD=OC-AC= 3-2=1

测一测1:【易】如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若

∠P=20°,则∠A=____________

【答案】35°

【解析】∵PC与⊙O相切于点C,

∴OC⊥CP,

∵∠P=20°,

∴∠COB=70°,

∵OA=OC,

∴∠A=35°.

测一测2:【易】如图所示,AP 为圆O 的切线,AO 交圆O 于点B,若40A

??,则

_______APB

?

例题5:⑴【中】如图,AB 是⊙O 的直径,经过圆上点D 的直线CD 恰使∠ADC=∠B. ① 求证:直线CD 是⊙O 的切线;

② 过点A 作直线AB 的垂线BD 交BD 的延长线于点E ,且AB BD=2,求线段AE=______

【答案】①证明:如图,连接OD .

∵AB 是⊙O 的直径, ∴∠ADB=90°, ∴∠1+∠2=90°; 又∵OB=OD , ∴∠2=∠B , 而∠ADC=∠B ,

∴∠1+∠ADC=∠ADO=90°,即CD ⊥OD . 又∵OD 是⊙O 的半径, ∴直线CD 是⊙O 的切线;

②解: ∵在直角△ADB 中,AB BD=2,

∴根据勾股定理知,1AD =

∵AE ⊥AB ,

∴∠EAB=90°. 又∠ADB=90°, ∴△AED ∽△BAD , ∴

AD BD

AE BA =,即1AE =

解得,2

AE =

,即线段AE 的长度是2.

⑵【中】如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交BC 、AC 于D 、E 两点,过点D 作DF ⊥AC ,垂足为F.

①求证:DF 是⊙O 的切线;

②若?

?AE DE =,DF=2,求⊙O 的半径______.

【答案】①证明:连接OD ,如图, ∵AB=AC , ∴∠C=∠B , ∵OD=OB , ∴∠B=∠1, ∴∠C=∠1, ∴OD ∥AC . ∴∠2=∠FDO , ∵DF ⊥AC , ∴∠2=90°, ∴∠FDO=90°, ∵OD 为半径,

∴FD 是⊙O 的切线; ② 解:∵AB 是⊙O 的直径,

∴∠ADB=90°,即AD ⊥BC , ∵AC=AB , ∴∠3=∠4.

∴??ED DB = 而?

?AE DE =, ∴???DE

DB AE ==, ∴∠B=2∠4, ∴∠B=60°,

∴∠C=60°,△OBD 为等边三角形, 在Rt △CFD 中,DF=2,∠CDF=30°,

∴3CF =

3

DF =,

∴23

CD CF ==,

∴DB

=,即⊙O

∴OB DB

⑶【易】如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.

测一测1:【中】如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.(1)求证:DE是圆O的切线;

(2)若∠C=30°,CD=10cm,求圆O的半径=______.

【答案】(1)证明:连接OD,

∴3OD AD ==

测一测2:【易】 如图,已知O 是正方形ABCD 对角线上一点,以O 为圆心、OA 长为半径的O ⊙与BC 相切于M ,与AB 、AD 分别相交于E 、F .

⑴ 求证:CD 与O ⊙相切

⑵ 若正方形ABCD 的边长为1,求O ⊙的半径=_______ 【答案】

解:(1) 过O 作ON ⊥CD 于N,连接OM,则OM ⊥BC.

∵AC 是正方形ABCD 的对角线, ∴AC 是BCD 的平分线.

∴OM=ON,即圆心O 到CD 的距离等于⊙O 的半径,

∴CD 与⊙O 相切;

(2) 由(1)易知△MOC 为等腰直角三角形, OM 为半径, ∴OM=MC=1

∴2

2

2

112OC OM MC =+=+=

∴1AC AO OC =+=∵△ABC 是等腰直角三角形

∴2

2AB =

=

4. 切线长定理及三角形的内切圆

例题6:⑴【易】如图,PA 、PB 、DE 分别切⊙O 于A 、B 、C ,DE 分别交PA 、PB 于D 、E ,已知P 到⊙O 的切线长为8cm ,则△PDE 的周长为( )

【答案】A

【解析】解:∵PA 、PB 、DE 分别切⊙O 于A 、B 、C , ∴PA=PB ,DA=DC ,EC=EB ;

∴C △PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16; ∴△PDE 的周长为16.

⑵【易】 如图Rt △ABC 中,∠C =90°,AC=6,BC=8,则△ABC 的内切圆半径r=____________

【答案】2

【解析】解:如图

在Rt △ABC ,∠C=90°,AC=6,BC=8;

根据勾股定理10AB =;

四边形OECF 中,OE=OF ,∠OEC=∠OFC=∠C=90°; ∴四边形OECF 是正方形;

由切线长定理,得:AD=AF ,BD=BE ,CE=CF ; ∴1

2

CE CF AC BC AB ==+-();

即:1

681022

r =+-=()

测一测1:【易】Rt △ABC 中,∠C =90°,AB=5,内切圆半径为1,则三角形的周长为_________ 【答案】12 【解析】

解:连接OA 、OB 、OC 、OD 、OE 、OF ,

∵⊙O 是△ABC 的内切圆,切点分别是D 、E 、F , ∴OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,AD=AE ,BE=BF , ∴∠ODC=∠OFC=∠ACB=90°, ∵OD=OF ,

∴四边形ODCF 是正方形, ∴CD=OD=OF=CF=1, ∵AD=AE ,BF=BE , ∵AE+BE=AB=5, ∴AD+BF=5,

∴△ABC 的周长是:AC+BC+AB=AD+CD+CF+BF+AB=5+1+1+5=12.

三、圆与圆的位置关系

例题7:⑴【易】图中圆与圆之间不同的位置关系有( )

种 种 种 种 【答案】A 【解析】由图形可以看出图中的圆有两个交点和有一个交点的两种位置关系,相交和内切.故选A .

⑵ 【易】已知⊙1O 与⊙2O 的半径分别是a 、b ,且a 、b 满足20a -=,圆心距

125O O =则两圆的位置关系是________.

【答案】外切

【解析】解:∵20a -= ∴a-2=0,3-b=0 解得:a=2,b=3 ∵圆心距125O O = ∴2+3=5 ∴两圆外切

故答案为:外切.

⑶ 【易】已知:半径分别为3cm 和5cm 的两圆相切,则两圆圆心距d 为( ) 或8cm

【解析】∵两圆半径分别为3cm 、5cm ,两圆圆心距为d ,

∴d 的取值范围为5cm-3cm <d <5cm+3cm ,即2cm <d <8cm . 故选D .

测一测1:如果半径分别是2cm 和3cm 的两圆外切,那么这两个圆的圆心距是( ) 或5cm D.小于1cm 或大于5cm 【答案】B

【解析】解:∵半径分别为2cm 和3cm 的两圆外切, ∴两个圆的圆心距d=3+2=5cm .

家庭作业:

1. “圆的切线垂直于经过切点的半径”的逆命题是( )

A 、经过半径外端点的直线是圆的切线;

B 、垂直于经过切点的半径的直线是圆的切线;

C 、垂直于半径的直线是圆的切线;

D 、经过半径的外端并且垂直于这条半径的直线是圆的切线。

2. 两个圆的圆心都是O ,半径分别为1r 、2r ,且1r <OA <2r ,那么点A 在( )

A 、⊙1r 内

B 、⊙2r 外

C 、⊙1r 外,⊙2r 内

D 、⊙1r 内,⊙2r 外

3. 一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是( )

A cm 或 cm

B cm

C cm

D 5 cm 或13cm

4. 已知PA 、PB 是O e 的切线,A 、B 是切点,78APB ∠=?,点C 是O e 上异于A 、

B 的任一点,则ACB ∠= ?

5. 如图,已知O e 的直径为AB ,BD OB =,30CAB ∠=?,请根据已知条件和所给

图形写出4个正确的结论(除OA OB BD ==外):① ;② ;③ ;④ 。

6. 如图,在ABC ?中,90ABC ∠=?,O 是AB 上一点,以O 为圆心,OB 为半径的圆

与AB 交于点E ,与AC 切于点D ,AD =2,AE =1,求=____BCD S ?

7. 如图,以Rt ABC ?的直角边AB 为直径的半圆O ,与斜边AC 交于D ,E 是BC 边

上的中点,连结DE .

(1)DE 与半圆O 相切吗若相切,请给出证明;若不相切,请说明理由;

(2)若AD 、AB 的长是方程210240x x +=-的两个根,求直角边BC 的长。

《直线与圆、圆与圆的位置关系》专题(学生版)

《直线与圆、圆与圆的位置关系》专题 2019年( )月( )日 班级 姓名 1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d ) 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|) (1)圆的切线方程常用结论 ①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. ②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长 弦心距d 、弦长l 的一半1 2l 及圆的半径r 构成一直角三角形,且有r 2=d 2+????12l 2. 1.直线y =x +1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离

2.两圆x2+y2-2y=0与x2+y2-4=0的位置关系是() A.相交B.内切 C.外切D.内含 3.已知直线l:y=k(x+3)和圆C:x2+(y-1)2=1,若直线l与圆C相切,则k=() A.0 B. 3 C. 3 3或0 D.3或0 4.已知圆的方程为x2+y2=1,则在y轴上截距为2的切线方程为________.5.(2018·全国卷Ⅰ)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________. 考点一直线与圆的位置关系 考法(一)直线与圆的位置关系的判断 [典例]直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是() A.相交B.相切 C.相离D.不确定 [解题技法]判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒]上述方法中最常用的是几何法.

高中数学-圆与圆的位置关系教案

圆与圆的位置关系教案 【教学目标】 1.能根据给定圆的方程,判断圆与圆的位置关系. 2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想. 3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯. 【教学重难点】 教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系. 【教学过程】 ㈠复习导入、展示目标 问题:如何利用代数与几何方法判别直线与圆的位置关系? 前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系. ㈡检查预习、交流展示 1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢? ㈢合作探究、精讲精练 探究一:用圆的方程怎样判断圆与圆之间的位置关系? 例1.已知圆 C 1:01322 2 =++++y x y x ,圆C 2 : 02342 2 =++++y x y x ,是 判断圆C 1 与圆C 2 的位置关系. 解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一) 圆C 1 的方程配方,得4 923)1(2 2 = +?? ? ??++y x . 圆心的坐标是??? ??- -23,1,半径长2 3 1 =r . 圆C 2 的方程配方,得4 1723)2(2 2 = +? ? ? ??++y x .

圆心的坐标是?? ? ??--23,2,半径长 2 172= r . 连心线的距离为1, 217321+= +r r ,2 3 1721-=-r r . 因为 2 17 312317+<<-, 所以两圆相交. (法二) 方程 01322 2 =++++y x y x 与02342 2 =++++ y x y x 相减,得 2 1 = x 把2 1= x 代入01322 2=++++y x y x ,得 011242 =++y y 因为根的判别式016144>-=?,所以方程011242 =++y y 有两个实数根,因此两 圆相交. 点评:巩固用方程判断圆与圆位置关系的两种方法. 变式2 2 2 2 (1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系 解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距 5.d == 因为 12d r r =+,所以两圆外切. ㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高 判断两圆的位置关系的方法: (1)由两圆的方程组成的方程组有几组实数解确定; (2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系. 【板书设计】 一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点;

九年级圆基础知识点,(圆讲义)

一对一授课教案 学员姓名:____何锦莹____ 年级:_____9_____ 所授科目:___数学__________ 上课时间:____ 年月日_ ___时分至__ __时_ __分共 ___小时 一、圆的定义: 1. 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随 之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径. 2 圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O ⊙”,读作“圆O”. 3 同圆、同心圆、等圆: 圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆. 注意:同圆或等圆的半径相等. 1. 弦:连结圆上任意两点的线段叫做弦. 2. 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 3. 弦心距:从圆心到弦的距离叫做弦心距. 4. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB,读作弧AB. 5. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.

8. 弓形:由弦及其所对的弧组成的图形叫做弓形. 1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1?的圆心 角,我们也称这样的弧为1?的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90?的圆周角所对的弦是直径. 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦相等,所对的弦的弦心距相等. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. 一、圆的对称性 1. 圆的轴对称性:圆是轴对称图形,对称轴是经过圆心的任意一条直线. 2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心. 3. 圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合. 二、垂径定理 1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; ⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧; ⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 3. 推论2:圆的两条平行弦所夹的弧相等. 练习题;

中考数学专题复习 圆与圆的位置关系

专题 圆与圆的位置关系 【阅读与思考】 两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质. 解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有: 1.相交两圆作公共弦或连心线; 2.相切两圆作过切点的公切线或连心线; 3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形. 熟悉以下基本图形和以上基本结论 . 【例题与求解】 【例1】 如图,大圆⊙O 的直径a AB cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2 . (全国初中数学竞赛试题) 解题思路:易证四边形3241O O O O 为菱形,求其面积只需求出两条对角线的长. B 【例2】 如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B ,

⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为( ) A .c a b +=2 B .c a b +=2 C . b a c 1 11+= D . b a c 111+= (天津市竞赛试题) 解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线. 【例3】 如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证: (1)∠APD =∠BPD ; (2)CB AC PC PB PA ?+=?2. (天津市中考试题) 解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC ·BC =PC ·CD 入手. P B C D A 【例4】 如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC . (全俄中学生九年级竞赛试题) 解题思路:连接AB ,O 1B ,O 1C ,显然△O 1BC 为等腰三角形,若证O 1D ⊥BC ,只需证明O 1D 平分∠B O 1C .充分运用与圆相关的角. 【例5】 如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上

初中一对一精品辅导讲义:圆与圆的位置关系.docx

教学目标 重点、难点考点及考试要求1、了解圆与圆的五种位置关系; 2、经历探索两圆的位置关系与两圆半径、圆心距的数量关系间的内在联系的过程,并运用相关结论解决问题; 1、位置关系与对应数量关系的运用 2、两圆的位置关系对应数量关系的探索 1、圆与圆的五种位置关系 2、两圆的位置关系与两圆半径、圆心距的数量关系 教学内容 第一课时圆与圆的位置关系知识点梳理 课前检测 1、⊙ O的半径是 6,圆心到直线l的距离为 3,则直线l与⊙ O的位置关系是() A.相交B.相切C.相离D.无法确定 2、如图 1,AB与⊙ O切于点 B, AO=6 ㎝, AB= 4 ㎝,则⊙ O的半径为() A、4 5 ㎝ B、25 ㎝ C、2 13㎝ D、13 ㎝ 3、如图 2,已知⊙ 0 的直径 AB与弦 AC的夹角为 35°,过 C点的切线 PC与 AB的 延长线交于点 P,则么∠ P 等于() A.150B.200C.250D.300 图 1图2图3 4、如图 3,AB与⊙ O切于点 C, OA=OB,若⊙ O的直径为 8cm,AB=10cm,那么 OA的长是() A.41B.40 C. 14 D. 60 5、已知:如图,△ ABC中, AC=BC,以 BC为直径的⊙ O交 AB于点 D,过点 D 作 DE⊥ AC于点 E,交 BC的延长线于点 F. 求证:( 1) AD=BD;(2)DF是⊙ O的切线.

知识梳理 (一)两圆位置关系的定义 注:( 1)找到分类的标准: ①公共点的个数; ②一个圆上的点是在另一个圆的内部还是外部 (2)两圆相切是指两圆外切与内切 (3)两圆同心是内含的一种特殊情况 (二)两圆位置关系与两圆半径、圆心距的数量关系之间的联系:两圆的半径分别为R、r ,圆心距为 d,那么 两圆外离 d > R+r 两圆外切 d =R+r 两圆相交R- r< d < R+ r ( R≥ r ) 两圆内切 d =R-r (R > r ) 两圆内含 d < R-r (R > r ) (三) . 借助数轴进一步理解两圆位置关系与量关系之间的联系

中考试题专题之圆与圆的位置关系试题及答案

20XX 年中考试题专题之 23-圆与圆的位置关系试题及答案 一.选择 1. (20XX 年泸州)已知⊙ O 1与⊙ O 2的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆 的位 置关系为 A .外离 B .外切 C .相交 D .内切 2. (20XX 年滨州 )已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结 论正确的是( ) A . 0 d 1 B . d5 C . 0 d 1或 d 5 D . 0≤ d 1或 d 5 3.( 20XX 年台州市 ) 大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置 系为( ) A .外离 B .外切 C. 相交 D .内含 4.( 2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6( 20XX 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C . 4 D . 3 7.( 20XX 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C . 4 D . 3 8. .(20XX 年益阳市)已知⊙ O 1和⊙ O 2的半径分别为 1和 4,如果两圆的位置关系为相交, 那 么圆心距 O 1O 2 的取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 A . B . C . D . 10.. (2009肇庆) 10.若⊙O 1与⊙O 2相切,且 O 1O 2 5 , ⊙ O 1的半径 r 1 2,则⊙O 2的 半径 r 2 是( ) B . 5 9. ( 20XX 年宜宾)若两圆的半径分别是 A. 内切 B. 相交 C.外切 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关 D. 外离 C . 7 系是

与圆有关的位置关系(讲义)

与圆有关的位置关系(讲义)?知识点睛 1.点与圆的位置关系 d表示__________的距离,r表示___________. ①点在圆外?_____________; ②点在圆上?_____________; ③点在圆内?_____________. 三点定圆定理:_________________________________. 注:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 2.直线与圆的位置关系 d表示__________________的距离,r表示__________. ①直线与圆相交?____________; ②直线与圆相切?____________; ③直线与圆相离?____________. 切线的判定定理:__________________________________ __________________________________________________; 切线的性质定理:__________________________________.*切线长定理:______________________________________ __________________________________________________.注:与三角形各边都相切的圆叫做三角形的内切圆,内切圆 的圆心是三角形三条角平分线的交点,叫做三角形的内心.*3. 圆与圆的位置关系 d表示__________的距离,R表示________,r表示 _________. ①圆与圆外离?_________________; ②圆与圆外切?_________________; ③圆与圆内切?_________________; ④圆与圆内含?_________________; ⑤圆与圆相交?_________________. 4.圆内接正多边形 _______________________________叫做圆内接正多边形,这个圆叫做该正多边形的_________. 正多边形的中心:___________________________________; 正多边形的半径:___________________________________; A

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题) 知识梳理 浙江省诸暨市学勉中学(311811)郭天平 圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。 一、有关圆的基础知识要点归纳 1. 圆的定义:平面内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径. 2. 圆的标准方程 ① 圆的标准方程:由圆的定义及求轨迹的方法,得()()()022 2 >=-+-r r b y a x , 其中圆心坐标为()b a ,,半径为r ;当0,0==b a 时,即圆心在原点时圆的标准方程为 2 2 2 r y x =+; ② 圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。 3. 圆的一般方程 ①圆的一般方程:展开圆的标准方程,整理得, 02 2 =++++F Ey Dx y x ( ) 042 2>-+F E D ; ② 圆的一般方程的特点:(1)22,y x 项系数相等且不为0;(2)没有xy 这样的二次项 ③ 二元二次方程02 2=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件是 0≠=C A 且0=B ; 二元二次方程02 2=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是0 ≠=C A 且0=B 且0422>-+AF E D 4. 圆的参数方程 圆的参数方程是由中间变量θ将变量y x ,联系起来的一个方程. ① 圆心在原点,半径为r 的圆的参数方程是:θθ θ(sin cos ?? ?==r y r x 为参数); ② 圆心在()b a ,,半径为r 的圆的参数方程是:θθθ (sin cos ? ??+=+=r b y r a x 为参数); 5. 确定圆方程的条件 圆的标准方程、圆的一般方程及参数方程都有三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。如已知条件中涉及圆心与半径有关等条件,一般设圆的标准方程,即列出r b a ,,的方程组,求出r b a ,,的值,也可根据圆的特点直接求出圆心()b a ,,半径r 。当圆心位置不能确定时,往往选择圆的一般方程形式,由已知条件列出F E D ,,的三个方程,显然前者解的是三元二次方程组,后者解的是三元一次方程组,在运算上显然设一般式比标准式要简单。 6. 点与圆的位置关系 设圆()()2 2 2 :r b y a x C =-+-,点()00,y x M 到圆心的距离为d ,则有:

人教版九年级数学与圆有关的位置关系讲义(含解析)(2020年最新)

第11讲与圆有关的位置关系 知识定位 讲解用时:3分钟 A、适用范围:人教版初三,基础偏上 B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先学习与圆有 关的三类位置关系:点与圆的位置关系、直线与圆的位置关系以及圆与圆的位置关系,重点掌握各种与圆位置关系的判断方法,其次学习切线的有关性质与判定以及切线长定理及应用,能够结合已知题意证明相关切线,最后掌握圆的外接三角形与三角形内切圆概念。本节课的重点是三类位置关系的判断方法以及切线的性质与判定定理,属于中考重点内容,也是难点之一,希望同学们能够好好学习,扎实基础。 知识梳理 讲解用时:25分钟 与圆有关的位置关系 (1)点与圆的位置关系 点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有: ⊙点P在圆外⊙d>r ⊙点P在圆上⊙d=r ⊙点P在圆内⊙d<r 注意: 点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆 心距离与半径的关系可以确定该点与圆的位置关系。

(2)直线与圆的位置关系 直线和圆的3种位置关系: ⊙相离:一条直线和圆没有公共点; ⊙相切:一条直线和圆只有一个公共点,这条直线叫圆的切线,唯一的公共点叫切点; ⊙相交:一条直线和圆有两个公共点,这条直线叫圆的割线; 判断直线和圆的位置关系: ⊙直线l和⊙O相交⊙d<r ⊙直线l和⊙O相切⊙d=r ⊙直线l和⊙O相离⊙d>r (3)圆与圆的位置关系 ⊙外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部; ⊙外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部; ⊙相交:两个圆有两个公共点; ⊙内切:两个圆有唯一公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部; ⊙内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部。 判断圆和圆的位置关系: ⊙两圆外离⊙d>R+r; ⊙两圆外切⊙d=R+r; ⊙两圆相交⊙R﹣r<d<R+r(R≥r); ⊙两圆内切⊙d=R﹣r(R>r); ⊙两圆内含⊙d<R﹣r(R>r).

高考理科数学专题:直线与圆、圆与圆的位置关系(含答案和解析)

1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d r ?相离. (2)代数法:――→判别式Δ=b 2-4ac ????? >0?相交;=0?相切;<0?相离. 2.圆与圆的位置关系 设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0). 【知识拓展】 1.圆的切线方程常用结论 (1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. (2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论 (1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条. (2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × ) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )

九年级数学-点、直线、圆与圆的位置关系—知识讲解-提高

点、直线、圆与圆的位置关系—知识讲解(提高) 审稿: 【学习目标】 1.理解并掌握点与圆、直线与圆、圆与圆的各种位置关系; 2.理解切线的判定定理、性质定理和切线长定理,了解三角形的内切圆和三角形的内心的概念,并熟练 掌握以上内容解决一些实际问题; 3.了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交,圆心距等概念.理解两圆的位 置关系与d、r1、r2数量关系的等价条件并灵活应用它们解题. 【要点梳理】 要点一、点和圆的位置关系 1.点和圆的三种位置关系: 由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有 2.三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等. 要点诠释: (1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系; (2)不在同一直线上的三个点确定一个圆. 要点二、直线和圆的位置关系 1.直线和圆的三种位置关系: (1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线. (2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点. (3) 相离:直线和圆没有公共点时,叫做直线和圆相离. 2.直线与圆的位置关系的判定和性质. 直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢? 由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.

初中数学专题复习圆与圆的位置关系(一)

第39讲 圆与圆的位置关系(一) [复习目标] 使学生了解圆与圆之间的5种位置关系,掌握两圆位置关系的判定方法,了解两圆公切线的有关概念,掌握两圆相交、相切的有关性质,并会应用于解题. [知识要点] 1.两圆的5种位置关系及判定方法. 2.相交、相切两圆的性质; 1) 相切两圆的连心线必过切点,相切两圆有公切线; 2) 相交两圆的连心线必垂直平分公共弦. 注:常见的辅助线是①画相切两圆的公切线②画公共弦和连心线。 [典型例题解析] 例1 选择、填空题: 1) 已知两圆的半径满足方程02222=+-x x ,圆心距为2,则两圆的位置关系为( ) A .相交 B .外切 C .内切 D .外离 2)如果两圆相(内)切,一个圆的半径为3,两圆的圆心距为4,则另一个圆的半径为 1 或7 . 3)相交两圆半径分别为一无二次方程0170272=+-x x 的两根,它们的公共弦长16,则它们的圆心距为 21或9 . 4)如两圆共有三条公切线,那么这两个圆的位置关系为( ) A .外离 B .相交 C .外切 D .内切 5)已知两圆半径分别为12和4,外公切线长是15,则两圆的位置关系为 ,外公切线与连心线夹角的正弦值为 . 例2 如图,⊙O 1和⊙O 2相交于A 、B 两点,且O 1在⊙O 2上,过点A 的直线CD 分别与 ⊙O 1和⊙O 2交于点C ,D ,过点B 的直线EF 分别与⊙O 1和⊙O 2交于点E ,F ,⊙O 2的弦O 1D 交AB 于P. 1) 求证:CE ∥DF ; 2) 求证:D O P O OG 112?=. 思路 1)画公共弦AB ,证∠E+∠F=180°; 2)证ΔAO 1P ∽ΔAO 1 D 得D O P O OG 112?=. 小结 添公共弦AB 对解题起到了桥梁和关键得作用,是两圆相交中常见得辅助线. 思考 1)如何证G 是ΔABD 得内心?2)若PG=1,GD=2,求⊙O 1得半径? 例3 如图,⊙O 1和⊙O 2内切于A ,⊙O 2得弦BC 切⊙O 1于D ,AD 得延长线交⊙O 2于M ,连结 AB ,AC 分别交⊙O 1于E ,F ,连结EF . A B C E F D O 1 O 2 P G

圆与圆的位置关系

精心整理第三讲直线与圆的位置关系、圆与圆的位置关系 第一部分知识梳理 一.直线与圆的位置关系 1.直线与圆的三种位置关系

如图,设⊙O的半径为r,圆心O到直线l的距离为d,得出直线和圆的三种位置关系: (1)直线l和⊙O相离?d r > 此时:直线和圆没有公共点. (2)直线l和⊙O相切?d r = . (1)如果一条直线与圆只有一个公共点,那么这条直线是圆的切线. (2)到圆心的距离等于半径的直线是圆的切线. (3)经过半径的外端且垂直与这条半径的直线是圆的切线. 证明直线是圆的切线的两种情况: (1)当不能说明直线与圆是否有公共点时,应当用“圆心到直线的距离等于半径

长”来判定直线与圆相切. (2)当已知直线与圆有公共点时,应当用判定定理,即“经过半径外端且垂直于半径的直线是圆的切线”,简单地说,就是“联半径,证垂直”. 二.圆与圆的位置关系 1.圆与圆的五种位置关系 在同一个平面内,两个不等的圆的位置关系共有五种:外离、外切、相交、内切、 ( ( ( ( ( 2. 注:当两圆相切时分为两种情况:外切和内切. 3.相交两圆的性质 相交两圆的性质:相交两圆的连心线垂直平分两圆的公共弦. 注:当两圆相交时分为两种情况:圆心在公共弦的同侧和圆心在公共弦的两侧. 第二部分例题精讲

例1如图,已知Rt ABC ?中,∠C=90°,AC=3,BC=4 (1)圆心为点C、半径长R为2的圆与直线AB有怎样的位置关系? (2)圆心为点C、半径长R为4的圆与直线AB有怎样的位置关系? (3)如果以点C为圆心的圆与直线AB有公共点,求⊙C的半径R的取值范围. . 已知Rt ABC ?中,∠ABC=90°,AB=3,BC=4,以B为圆心作⊙B. (1)若⊙B与斜边AC只有唯一一个公共点,求⊙B的半径长R的取值范围. (2)若⊙B与斜边AC没有公共点,求⊙B的半径长R的取值范围. 例2已知:直线AB经过⊙O上的点C,并且

沪科初中数学九下《《圆和圆的位置关系》教案沪科版

26.7 圆与圆的位置关系 教案 一、教学目标 1、知识与技能 (1)理解圆与圆的位置的种类; (2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长; (3)会用连心线长判断两圆的位置关系. 2、过程与方法 设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: (1)当21r r l +>时,圆1C 与圆2C 相离; (2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交; (4)当||21r r l -=时,圆1C 与圆2C 内切; (5)当||21r r l -<时,圆1C 与圆2C 内含; 3、情态与价值观 让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想. 二、教学重点、难点: 重点与难点:用坐标法判断圆与圆的位置关系. 三、教学设想 问 题 设计意图 师生活动 1.初中学过的平面几何中,圆与圆的位置关系有几类? 结合学生已有知识以验,启发学生思考,激发学生学习兴趣. 教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流. 2.判断两圆的位置关系,你有什么好的方法吗? 引导学生明确两圆的位置关系,并发现判断和 解决两圆的位置 教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解 题的方法. 问 题 设计意图 师生活动

关系的方法. 学生观察图形并思考,发表自己的解题方法. 3.例3 你能根据题目,在同一个直角坐标系中画出两个方程所表示的圆吗?你从中发现了什么? 培养学生 “数形结合”的意 识. 教师应该关注并发现有多少 学生利用“图形”求,对这些学生 应该给予表扬.同时强调,解析几 何是一门数与形结合的学科. 4.根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学语言呢? 进一步培养 学生解决问题、分 析问题的能力. 利用判别式 来探求两圆的位 置关系. 师:启发学生利用图形的特 征,用代数的方法来解决几何问题. 生:观察图形,并通过思考, 指出两圆的交点,可以转化为两个 圆的方程联立方程组后是否有实数 根,进而利用判别式求解. 5.从上面你所画出的图形,你能发现解决两个圆的位置的其它方法吗? 进一步激发 学生探求新知的 精神,培养学生 师:指导学生利用两个圆的圆 心坐标、半径长、连心线长的关系 来判别两个圆的位置. 生:互相探讨、交流,寻找解 决问题的方法,并能通过图形的直 观性,利用平面直角坐标系的两点 间距离公式寻求解题的途径. 6.如何判断两个圆的位置关系呢? 从具体到一 般地总结判断两 个圆的位置关系 的一般方法. 师:对于两个圆的方程,我们 应当如何判断它们的位置关系呢? 引导学生讨论、交流,说出各 自的想法,并进行分析、评价,补 充完善判断两个圆的位置关系的方 法. 7.阅读例3的两种解法,解决书上的练习题. 巩固方法, 并培养学生解决 问题的能力. 师:指导学生完成练习题. 生:阅读教科书的例3,并完 成书上的练习题. 问题设计意图师生活动

讲义_直线与圆的位置关系

一、直线和圆的位置关系的定义、性质及判定 1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表: 从另一个角度,直线和圆的位置关系还可以如下表示:

二、切线的性质及判定 1. 切线的性质: 定理:圆的切线垂直于过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定: 定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线; 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理: ⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. ⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理 设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线. _A _ l _ l _A _ l

上 ②切线的性质定理及其推论 切线的性质定理:圆的切线垂直于过切点的半径. 三、三角形内切圆 1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系 (1) (2) 图(1)中,设a b c ,,分别为ABC ?中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=?,则()1 2 r a b c =+- 四、典例分析:切线的性质及判定 _ O _F _E _ D _ C _ B _ A _ C _ B _ A _ C _ B _ A _c _ b _a _c _ b _a _T _A

专题复习:直线与圆、圆与圆的位置关系

第六讲 直线与圆、圆与圆的位置关系 一、学习目标 1.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系. 2.能用直线和圆的方程解决一些简单的问题. 3.初步了解用代数方法处理几何问题的思想. 二、疑 难 辨 析 1.关于直线与圆的位置关系 (1)直线x +y =1与圆x 2+y 2 =12 相切.( ) (2)直线x -y +2=0与圆x 2 +y 2 =1相离.( ) 2.关于圆与圆的位置关系 (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( ) 3.关于圆的切线与公共弦. (1)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2 .( ) (2)过圆O :x 2+y 2=r 2 外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则直线AB 的方程是x 0x +y 0y =r 2 .( ) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( ) 三、典例分析 例1(1)[20122安徽卷] 若直线x -y +1=0与圆(x -a )2+y 2 =2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3] C .[-3,1] D .(-∞,-3]∪[1,+∞) (2)[20122湖北卷] 过点P (1,1)的直线,将圆形区域{}x ,y |x 2+y 2 ≤4分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0 D .x +3y -4=0 例2 (1)[20122福建卷] 直线x +3y -2=0与圆x 2 +y 2 =4相交于A ,B 两点,则弦AB

直线与圆圆与圆的位置关系―知识讲解(提高)

直线与圆、圆与圆的位置关系—知识讲解(提高) 【学习目标】 1.理解并掌握直线与圆、圆与圆的各种位置关系; 2.理解切线的判定定理、性质定理和切线长定理,了解三角形的内切圆和三角形的内心的概念,并熟练 掌握以上内容解决一些实际问题; 3.了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交,圆心距等概念.理解两圆的位 置关系与d、r1、r2之间的等价条件并灵活应用它们解题. 【要点梳理】 要点一、点和圆的位置关系 1.点和圆的三种位置关系: 由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有 2.三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等. 要点诠释: (1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系; (2)不在同一直线上的三个点确定一个圆. 要点二、直线和圆的位置关系 1.直线和圆的三种位置关系: (1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线. (2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点. (3) 相离:直线和圆没有公共点时,叫做直线和圆相离. 2.直线与圆的位置关系的判定和性质. 直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢? 由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.

初中数学《圆》全章讲义有例题培训讲学

《圆》 内容简介:1、圆的相关概念;2、垂径定理;3、圆心角、圆周角定理;4、与圆有关的位置关系; 5、切线及切线长定理; 6、弧长及扇形面积。 【知识要点1】 圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 例1 已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB上的点,且AC=BD.求证:AD=BC. 例2 如图,在⊙O中,AB,CD为⊙O的两条直径,AE=BF,求证四边形CEDF 是平行四边形.

点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 【知识要点3】 直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; r R d 图3r R d r R d 图4 r R d 图5 r R d

专题15 点的轨迹、直线与圆、圆与圆的位置关系(解析版)

专题15 点的轨迹、直线与圆、圆与圆的位置关系 一、知识点精讲 (一)点的轨迹 在几何中,点的轨迹就是点按照某个条件运动形成的图形,它是符合某个条件的所有点组成的.例如,把长度为r的线段的一个端点固定,另一个端点绕这个定点旋转一周就得到一个圆,这个圆上的每一个点到定点的距离都等于r;同时,到定点的距离等于r的所有点都在这个圆上.这个圆就叫做到定点的距离等于定长r 的点的轨迹. 我们把符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思: (1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都满足条件; (2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上. 下面,我们讨论一些常见的平面内的点的轨迹. 从上面对圆的讨论,可以得出: ①到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆. 我们学过,线段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两个端点的距离相等的点,都在这条线段的垂直平分线上.所以有下面的轨迹: ②和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线. 由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹: ③到已知角的两边距离相等的点的轨迹,是这个角的平分线. (二)直线与圆、圆与圆的位置关系判定 (1)设有直线l和圆心为O且半径为r的圆,怎样判断直线l和圆O的位置关系? 如图:不难发现直线与圆的位置关系为:当圆心到直线的距离d r时,直线和圆相离,如圆O与直线1l;当圆心到直线的距离d r时,直线和圆相切,如圆O与直线2l;当圆心到直线的距离d r时,直线和圆

相关文档
相关文档 最新文档