文档库 最新最全的文档下载
当前位置:文档库 › 整体式转向梯形机构几何参数的确定 (1)

整体式转向梯形机构几何参数的确定 (1)

整体式转向梯形机构几何参数的确定 (1)
整体式转向梯形机构几何参数的确定 (1)

1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α α sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ①当t>0时,点P 在点P 0的上方; x y ,) x

解析几何中求参数取值范围的5种常用方法 解析几何中求参数取值范围的5种常用方法及经典例题详细解析: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0) 求证:-a2-b2a ≤ x0 ≤ a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. (x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2), =-b2a2 ?x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得 x0=x1+x22 ?a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 ∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a ∴ -a2-b2a ≤ x0 ≤ a2-b2a

例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围. 分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题. 解: 依题意有 ∴tanθ=2S ∵12 < S <2 ∴1< tanθ<4 又∵0≤θ≤π ∴π4 <θ< p> 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是() A a<0 B a≤2 C 0≤a≤2 D 0<2< p> 分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解. 解: 设Q( y024 ,y0)由|PQ| ≥a 得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0 ∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立 又∵ y02≥0 而 2+ y028 最小值为2 ∴a≤2 选( B ) 二、利用判别式构造不等式

轮式车辆转向梯形结构的图解解析 常州工业技术学院钨华芝常州市政工程管理处魏晓静 摘要介绍几种简单实用的车辆转向梯形结构的图解解析设计法。通过事先设定内、外转向轮实际特性曲线与理论特性的交点位置来控制转角偏差的方法,选择转向梯形机构参数,可以大大减少图次数,提高工作效率,减小转角误差。 关键词:转向梯形机构解析图解 1 引言 轮式车辆一般都是依靠转向车轮偏转一个角度来实现转弯或曲线行驶。转向是的基本要求是保证所有车轮滚动而不发生滑动,这一要求通常由平面四杆机构来达到。传统的设计都采用图解转向梯形的方法。这种方法需要按经验数据选择机构的几何参数,然后作图校核该梯形机构在运动过程中转向轮的转角偏差是否大于允许偏差,若大于允许偏差,则重新选择或调整几何参数,再校核图,直至转角偏转小于允许偏差为止。这实际上是一种试凑的方法,带有较大的盲目性,工作量大。随着计算机的发展,解析法得到了较好的应用,但是传统的图解法仍有它直观、方便的优点,因此仍然被工程设计人员广泛采用。本文介绍一种简单高效且实用的图解解析设计法,可以大大减少作图校核的次数,提高工作效率。 2 转向理论特性 机动车辆或装卸搬运车辆的转向大多采用双轴线式转向方式,见图1。为了满足纯滚动条件,转向时所有车轮必须以不同的半径围绕同一转向中心滚动,各个车轮的轴线交于瞬时转向中心O点。虽然两个转向轮偏转的角度不同,但是两个转角之间应满足下列几何关系: ctg?-ctga=M/L (1)式中?-外轮转角a-内轮转角M-转向轴两主销中心距L-车辆前后轴轴距 为了满足运动学上的这一几何关系,一般都是通过设计转向梯形机构来实现的。式(1)称为转向理论特性。

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

参数方程与齐次化方法在解析几何问题中的应用探究 复旦实验中学 袁青 2013年高考上海理科试卷第22题为解析几何问题,研究讨论直线与曲线位置关系问题,很多学生看着感觉能做,一做却又做错.其实该题并不用于高三阶段一般的解析几何训练题,简单地将问题转化为联立直线与曲线方程,对方程的根进行讨论,与一般直线与圆锥曲线的关系练习题中联立方程之后直接利用根与系数关系研究弦长、面积、定点等问题有是有很大区别的.尤其在(3)中,如果没有办法利用图像先得知1k >,则会很难寻找到与1k ≤的这样一对矛盾关系,而这体现了学生对“解析几何问题毕竟是个几何问题”这一实质的理解.本文对此题解法做进一步探究,研究一下在把握住“解析几何问题毕竟是个几何问题”这一大原则的基础上,参数方程和齐次化方法可能给解题带来的方便. 考题再现:(2013年理科第22题,文科第23题) 如图,已知双曲线1C :2 212 x y -=,曲线2C :1y x =+.P 是平面内一点,若存在过点P 的直线与1C 、 2C 都有公共点,则称P 为“12C C -型点”. (1)在正确证明1C 的左焦点是“12C C -型点”时,要使 用一条过该焦点的直线,试写出一条这样的直线的方程 (不要求验证); (2)设直线y kx =与2C 有公共点,求证:1k >,进而证 明原点不是“12C C -型点”; (3)求证:圆2212 x y +=内的点都不是“12C C -型点”. 标准答案所给解法:(1)1C 的左焦点为(),写出的直线方程可以是以下形式: x = (y k x = ,其中k ≥ (2)因为直线y kx =与2C 有公共点,所以方程组1y kx y x =??=+?有实数解,因此1kx x =+,得11x k x +=>. 若原点是“12C C -型点”,则存在过原点的直线与1C 、2C 都有公共点. 考虑过原点与2C 有公共点的直线0x =或y kx =(1k >). 显然直线0x =与1C 无公共点. 如果直线为y kx =(1k >),则由方程组2212 y kx x y =???-=??得222012x k =<-,矛盾. 所以,直线y kx =(1k >)与1C 也无公共点. 因此,原点不是“12C C -型点”.

椭圆: 椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。 椭圆是圆锥曲线的一种,即圆锥与平面的截线。 椭圆的周长等于特定的正弦曲线在一个周期内的长度。 椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。

直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点 相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。

采用齿轮齿条式转向器的转向梯形机构优化设计报告 指导老师:罗虹 学生:黄志宇 学号:20156260 专业班级:车辆工程04班 重庆大学方程式赛车创新实践班 二〇一七年二月

赛车转向系统是关系到赛车性能的主要系统,它是用来改变或恢复汽车行驶方向的系统的总称,通常,车手通过转向系统使转向轮偏转一定角度实现行驶方向改变。赛车转向系统一股由方向盘、快拆、转向轴、转向柱、万向节、转向器、转向拉杆、梯形臂等部分组成。其中,方向盘用于输入转向角度,快拆用于快速分离方向盘与转向柱,转向柱、转向轴、万向节共同将方向盘输入角度传递到转向器,转向器通过内部传动副机构将旋转运动转化为转向拉杆的直线运动,转向拉杆与梯形臂作用于转向节,实现车轮转向。图1展示了转向系梯形结构,图2展示了赛车转向系统构成。 图1转向梯形机构 图2赛车转向系统构成

由于大赛组委会规则里面明确规定不允许使用线控或者电动转向,考虑到在赛车转向系统布置空间有限,且有严格的成本限制,以及轻量化的赛车设计目标,将赛车转向器范围限定机械式转向器。目前,国内外的大多数方程式赛车采用齿轮齿条式转向器和断开式转向梯形结构。 ●齿轮齿条式转向器 齿轮齿条式转向器的传动副为齿轮齿条,其中,齿轮多与转向柱做成一体,齿条多与转向横拉杆直接连接,连接点即为断开点位置。根据输出位置不同,分为两端输出式和中间输出式。 其主要优点是:结构简单,体积小,易于设计制作;转向器可选材料多样,壳体可选用招合金,质量轻;传动效率较高;容易实现调隙,当齿轮齿条或者齿条与壳体之间产生间隙时,可以通过安装在齿条背部的挤压力可调的弹簧来消除间隙;转向角度大,制造成本低。 其主要缺点是:传动副釆用齿轮齿条,正效率非常髙的同时,逆效率非常高,可以到达当汽车在颠簸路面上行驶时,路感反馈强烈,来自路面的反冲力很容易传递到方向盘;转向力矩大,驾驶员操纵费力,对方向盘的反冲容易造成驾驶员精神紧张,过度疲劳。 ●断开式转向梯形结构 根据转向器和梯形的布置位置的不同,断开式转向梯形又分为四类,分别为:转向器前置梯形前置,转向器后置梯形后置,转向器前置梯形后置,转向节后置梯形前置。区分前后的分界线是赛车前轴。 当转向器和梯形分置于前轴两侧时,各杆件压力角较大,不利于提高转向效率,转向费力的同时增加了各杆件的长度;转向梯形前置还是后置主要取决于空间布置关系,本车队赛车前轮制动卡钳布置在卡盘后侧,如果将转向梯形布置在后面,会与卡钳、轮辋等部件干涉。 综上所述,本文以齿轮齿条式转向器作为转向器和断开式转向梯形结构,布置形式为转向器前置转向梯形前置对赛车的转向系统进行研究和优化。

解析几何中求参数取值范围的方法_答题技巧 近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-aa,-bb,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆x2a2 + y2b2 = 1 (a0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0) 求证:-a2-b2a a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. 解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得x0=x1+x22 a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 -aa, -aa, x1x2 以及-ax1+x22 a -a2-b2a a2-b2a 例2 如图,已知∵OFQ的面积为S,且OFFQ=1,若12 2 ,求向量OF与FQ的夹角的取值范围. 分析:须通过题中条件建立夹角与变量S的关系,利用S的范围解题.

课 题 直线的参数方程的几何意义 教学目标 要 求 与直线的参数方程有关的典型例题 教学重难点 分 析 与直线的参数方程有关的典型例题 教 学 过 程 知识要点概述 过定点),(000y x M 、倾斜角为α的直线l 的参数方程为?? ?+=+=α α sin cos 00t y y t x x (t 为参数), 其中t 表示直线l 上以定点0M 为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量, 的几何意义是直线上点到M 的距离.此时,若t>0,则 的方向向上;若t<0,则 的方向向下;若t=0,则点与点M 重合. 由此,易得参数t 具有如下 的性质:若直线l 上两点A 、B 所对应的参数分别为 B A t t ,,则 性质一:A 、B 两点之间的距离为||||B A t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|B A t t 性质二:A 、B 两点的中点所对应的参数为 2 B A t t +,若0M 是线段A B 的中点,则 0=+B A t t ,反之亦然。

精编例题讲练 一、求直线上点的坐标 例1.一个小虫从P (1,2)出发,已知它在 x 轴方向的分速度是?3,在y 轴方向的分速度是4,问小虫3s 后的位置Q 。 分析:考虑t 的实际意义,可用直线的参数方程? ?? ? ?x = x 0 +at ,y = y 0 +bt (t 是参数)。 解:由题意知则直线PQ 的方程是? ????x = 1 ? 3 t , y = 2 + 4 t ,其中时间t 是参数,将t =3s 代入得Q (?8,12)。 例2.求点A (?1,?2)关于直线l :2x ?3y +1 =0的对称点A ' 的坐标。 解:由条件,设直线AA ' 的参数方程为 ? ?? ??x = ?1 ? 2 13 t , y = ?2 + 313 t (t 是参数), ∵A 到直线l 的距离d = 5 13 , ∴ t = AA ' = 10 13 , 代入直线的参数方程得A ' (? 3313,413 )。 点评:求点关于直线的对称点的基本方法是先作垂线,求出交点,再用中点公式,而此处则是充分利用了参数 t 的几何意义。 二 求定点到过定点的直线与其它曲线的交点的距离 例1.设直线经过点 (1,5),倾斜角为 , 1)求直线和直线的交点到点的距离; 2)求直线和圆 的两个交点到点 的距离的和与积. 解:直线的参数方程为( t 为参数)

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

从高考解几题谈求参数取值范围的九个背景 解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。 背景之一:题目所给的条件 利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。这是求范围问题最显然的一个背景。 例1:椭圆),0(1 22 22为半焦距c b c a b y a x >>>=+的焦点为F 1、F 2,点P(x , y )为其 上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。 解:设P(x 1, y ),∠F 1PF 2是钝角?cos∠F 1PF 2 =||||2||||||2 12 212221PF PF F F PF PF ?-+ 222212221)(||||||0y c x F F PF PF ++?<+?<2)(c x -+2 2224y x c y +?<+22 22222222 2 )(x a b a c x a a b x c -?<-+?<)(2 222222b c c a x b c -

第六节转向梯形 转向梯形有整体式和断开式两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系。无论采用哪一种方案,必须正确选择转向梯形参数,做到汽车转弯时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。同时,为达到总体布置要求的最小转弯直径值,转向轮应有足够大的转角。 一、转向梯形结构方案分析 1、整体式转向梯形 整体式转向梯形是由转向横拉杆l,转向梯形臂2和汽车前轴3组成,如图7-30所示。 其中梯形臂呈收缩状向后延伸。这种方案的优点是结构简单,调整前束容易,制造成本低;主要缺点是一侧转向轮上、下跳动时,会影响

图7—30 整体式转向梯形 1—转向横拉杆 2—转向梯形臂 3—前轴 另一侧转向轮。 当汽车前悬架采用非独立悬架时,应当采用整体式转向梯形。整体式转向梯形的横拉杆可位于前轴后或前轴前(称为前置梯形)。对于发动机位置低或前轮驱动汽车,常采用前置梯形。前置梯形的梯形臂必须向前外侧方向延伸,因而会与车轮或制动底板发生干涉,所以在布置上有困难。为了保护横拉杆免遭路面不平物的损伤,横拉杆的位置应尽可能布置得高些,至少不低于前轴高度。 2、断开式转向梯形 转向梯形的横拉杆做成断开的,称之为断开式转向梯形。断开式转向梯形方案之一如图7-31所示。断开式转向 梯形的主要优点是它与前轮采用独立悬架相配合,能够保证

一侧车轮上、下跳动时,不会影响另一侧车轮;与整体式转向梯形比较,由于杆系、球头增多,所以结构复杂,制造成本高,并且调整前束比较困难。 图7—31 断开式转向梯形 横拉杆上断开点的位置与独立悬架形式有关。采用双横臂独立悬架,常用图解法(基于三心定理)确定断开点的位置。其求法如下(图7-32b): 1)延长B K B 与A K A ,交于立柱AB 的瞬心P 点,由P 点作直线PS 。S 点为转向节臂球销中心在悬架杆件(双横臂)所在平面上的投影。当悬架摇臂的轴线斜 置时,应以垂直于摇臂轴的平面作为当量平面进行投影和运动分析。 2)延长直线AB 与B A K K ,交于AB Q 点,连AB PQ 直线。 3)连接S 和B 点,延长直线SB 。 4)作直线BS PQ ,使直线AB PQ 与BS PQ 间夹角等于直线A PK 与

解析几何中定值与定点问题 【探究问题解决的技巧、方法】 (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究. 【实例探究】 题型1:定值问题: 例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的 焦点,离心率等于 (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 解:(I)设椭圆C的方程为,则由题意知b= 1. ∴椭圆C的方程为 (II)方法一:设A、B、M点的坐标分别为 易知F点的坐标为(2,0). 将A点坐标代入到椭圆方程中,得

去分母整理得 方法二:设A、B、M点的坐标分别为 又易知F点的坐标为(2,0). 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是 将直线l的方程代入到椭圆C的方程中,消去y并整理得 又 例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0). 1)求椭圆方程 2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值 (1)a2-b2=c2 =1 设椭圆方程为x2/(b2+1)+y2/b2=1 将(1,3/2)代入整理得4b^4-9b2-9=0 解得b2=3 (另一值舍) 所以椭圆方程为x2/4+y2/3=1 (2) 设AE斜率为k 则AE方程为y-(3/2)=k(x-1)①

齿轮齿条式转向梯形的优化设计 学院:车辆与能源学院 专业:2012级车辆工程 学号:S12085234009 姓名:刘建霞 日期:2014年4月15日

齿轮齿条式转向器(如图1)具有结构简单紧凑,制造工艺简便等优点,不仅适用于整体式前轴也适用于前轮采用独立悬架的断开式前轴,目前被广泛地用于轿车、轻型客货车、微型汽车等车辆上。与该转向器相匹配的转向梯形机构与传统的整体式转向梯形机构相比有其特殊之处,下面举一实例加以说明。 图1 齿轮齿条式转向梯形机构运动实体模型 题目:已知某微型汽车(如图2所示)各参数如下:1274.24K mm =, 0()=2.5β主销后倾角,L(轴距)=2340mm ,=mm r (车轮滚动半径)266, =oy B y 梯形臂球头销中心的()42坐标.12mm ,由最小转弯半径得最大外轮转角为 28o ,许用齿条行程[]62.3S mm =,选用参数624M mm =,试设计转向传动机构。 要求: (1)用优化方法设计此转向梯形传动机构。 (2)优化后校验,压力角40o α≤。 (3)计算出l 1长度,齿条左右移动最大距离。

图2 齿轮齿条转向梯形机构 一 建模 由转向基本要求可知,在不计轮胎侧偏时,实现转向轮纯滚动、无侧滑转向的条件是内、外轮转角符合Arckerman 理想转角关系:cot cot /O i k L θθ-=,如图3所示。 图3 理想的内外轮转角关系 (1)设计变量: 选取变量 1(,,) X l h γ=

图4 外轮一侧杆系运动情况 由图4内外轮转角的关系得: 221o 21o l cos(r )l [sin()h]2 K M S l r θθ-=-+-+- S M K h 22arctan +-=? (2) 2 212 2 2221)2 (2)2(arccos h S M K l l h S M K l ++--++-+=γ (3) i r θφγ=-- (4) 联立上式可得o ()i g θθ=的函数关系式。 对于给定的汽车和选定的转向器,转向梯形机构有横拉杆长l 1和梯形臂长m 两个设计变量。在计算过程中,以梯形底角r 代替横拉杆长l 1作为设计变量,再代入式(1)得到l 1。底角r 可按经验公式先选一个初始值 43r arctan()67.88L K ==,进行优化搜索。 12

椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。 直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点

相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。 用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点。 此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:使用细铜丝最好,因为线的弹性较大画出来不一定准确。

转向梯形机构确定、计算及优化 转向梯形有整体式和断开式两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系。无论采用哪一种方案,必须正确选择转向梯形参数,做到汽车转弯时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。同时,为达到总体布置要求的最小转弯直径值,转向轮应有足够大的转角。 5.5.1转向梯形结构方案分析 1.整体式转向梯形 图5-14 整体式转向梯形 1—转向横拉杆2—转向梯形臂3—前轴 整体式转向梯形是由转向横拉杆1,转向梯形臂2和汽车前轴3组成,如图5-14所示。其中梯形臂呈收缩状向后延伸。这种方案的优点是结构简单,调整前束容易,制造成本低;主要缺点是一侧转向轮上、下跳动时,会影响另一侧转向轮。 当汽车前悬架采用非独立悬架时,应当采用整体式转向梯形。整体式转向梯形的横拉杆可位于前轴后或前轴前(称为前置梯形)。对于发动机位置低或前轮驱动汽车,常采用前置 梯形。前置梯形的梯形臂必须向前外侧方向延伸,因而会与车轮或制动底板发生干涉,所以在布置上有困难。为了保护横拉杆免遭路面不平物的损伤,横拉杆的位置应尽可能布置得高些,至少不低于前轴高度。 2.断开式转向梯形 转向梯形的横拉杆做成断开的,称之为断开式转向梯形。断开式转向梯形方案之一如图5-15所示。断开式转向梯形的主要优点是它与前轮采用独立悬架相配合,能够保证一侧车轮上、下跳动时,不会影响另一侧车轮;与整体式转向梯形比较,由于杆系、球头增多,所以结构复杂,制造成本高,并且调整前束比较困难。

图5-15断开式转向梯形 横拉杆上断开点的位置与独立悬架形式有关。采用双横臂独立悬架,常用图解法(基于三心定理)确定断开点的位置。其求法如下(图5-16b): 1)延长B K B 与A K A ,交于立柱AB 的瞬心P 点,由P 点作直线PS 。S 点为转向节臂球销中心在悬架杆件(双横臂)所在平面上的投影。当悬架摇臂的轴线斜置时,应以垂直于摇臂轴的平面作为当量平面进行投影和运动分析。 2)延长直线AB 与B A K K ,交于AB Q 点,连AB PQ 直线。 3)连接S 和B 点,延长直线SB 。 4)作直线BS PQ ,使直线AB PQ 与BS PQ 间夹角等于直线A PK 与PS 间的夹角。当S 点低于A 点时,BS PQ 线应低于AB PQ 线。 5)延长PS 与B BS K Q ,相交于D 点,此D 点便是横拉杆铰接点(断开点)的理想的位 置。

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

二轮复习:选修4-4 直线的标准参数方程t 的几何意义应用 一.考纲要求: 参数方程 1. 了解参数方程,了解参数的意义; 2. 能选择适当的参数写出直线、圆和圆锥曲线的参数方程。 二. 一轮知识课前回顾(请同学们独立默写完成) 1. 过点,倾斜角为的直线标准参数方程为____________________ 其中t 的意义如下: 设,则是直线方向上的单位向量, 若M 为直线上任一点,则, ,即直线上动点M 到定点的距离,等于直线标准参数方程中参数t 的__________ 即 ?? ?+=+=)(为参数t Bt n y At m x 为直线标准参数方程的条件为:①=+22B A __________ ②______>0 2.直线的非标准参数处理方案 ①转为________方程解决问题. ②转为标准参数方程: 如: 将直线:(为参数)的方程化为标准参数方程____________________ 3.已知过点M 0(x 0,y 0)的直线的参数方程为:(为参数),点M 、N 为直线l 上相异两点,点M 、N 所对应的参数分别为、, 请根据下列图象判断、的符号以及用、表示下列线段长度: (2) (3) 请用、表示线段长度: 4.若点Q 是线段MN 的中点,则点Q 对应的参数t=_________ ()000,y x M αl ()ααsin ,cos =e l ______=l e t M M =0_________=()000,y x M l ???? ?= 方向向下 ,若方向向上 若M M M M 000______,||l 222x t y t =+??=-? t l ???+=+=α α sin cos 00t y y t x x t 1t 2t 1t 2t 1t 2t ()11t 2t

高中数学解析几何中求参数取值范围的方法 近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x 轴相交于点P(x0 , 0) 求证:-a2-b2a ≤x0 ≤a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B 满足的范围求解. 解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 ?x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得x0=x1+x22 ?a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 ∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a ∴-a2-b2a ≤x0 ≤a2-b2a 例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若12 < S <2 ,求向量OF与FQ的夹角θ的取值范围. 分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题. 解: 依题意有 ∴tanθ=2S ∵12 < S <2 ∴1< tanθ<4 又∵0≤θ≤π ∴π4 <θ< p> 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是( ) A a<0 B a≤2 C 0≤a≤2 D 0<2< p> 分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解. 解: 设Q( y024 ,y0) 由|PQ| ≥a 得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0 ∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立 又∵y02≥0 而2+ y028 最小值为2 ∴a≤2 选( B )

专题:直线参数方程中的几何意义几点分析与解析 一. 知识点概述: ★ 若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为 为参数,t t y y t x x ?? ?+=+=α α sin cos 00 ★ 若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则 |MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+; |MP|·|MQ|的几何意义就是:||||||21t t MQ MP ?=?; |PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ?-+= -=-=,即. ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为: ??? ??? ?+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或??? ??? ?++=+++=+=++=+++=+=) (22)()(2)(22) ()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零 (其中 中点M 的相应参数为t ,而22 1t t t +=,所以中点坐标也为:? ??+=+=t p y y t p x x 2010 ) ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点, 则中点M 的相应参数:2 2 1t t t += =0 (因为???+=+=t p y y t p x x 200 100,而21p p ,均不为0,所以t=0) 体会一:教学中一定要讲清楚直线参数方程的推导过程,并且一定要强调其中参数T 的由来。 实际上由新课程标准人教A 版数学选修课本中坐标系与参数方程的内容我们知道,平面内过定点),(000y x p 、倾斜角为α的直线l 的参数方程的标准形式为?? ?+=+=α α sin cos 00t y y t x x (t 为参数),其中t 表示直线l 上以定点0p 为起点,任 意一点P (x ,y )为终点的有向线段P P 0的数量,当P 点在0p 上方时t 为正,当P 点在0p 下方时t 为负。 体会二:教学中必须要强调参数T 的几何意义及两个结论的引导应用示范。 实际上在教学中我们知道,由直线参数方程的推导过程及向量模的几何意义等知识,很容易得参数t 具有如下的

相关文档
相关文档 最新文档