文档库 最新最全的文档下载
当前位置:文档库 › 电力用户安装无功补偿装置的经济效益分析

电力用户安装无功补偿装置的经济效益分析

电力用户安装无功补偿装置的经济效益分析
电力用户安装无功补偿装置的经济效益分析

电力用户安装无功补偿装置的经济效益分析

上海稳利达科技股份

无功补偿是电网运行中最常用、最有效的降损节能技术措施之一。它是借助于无功补偿设备提供必要的无功功率,以提高电网的功率因数,降低损耗,改善电网电压质量。

在实际工作中,我们发现一些电力用户对无功补偿的积极性不高,由于他们在认识上存在误区,因此总认为无功补偿是供电公司的事,与用户没有多大关系,进行无功补偿对用户没有多大好处。其实,无功补偿不仅对供电公司有利,而且对电力用户也有很大好处。为便于电力用户理解,简单分析如下:

无功补偿的实质是要尽量减少无功功率在网络中传递,设法就地安装无功电源,从而满足电力用户及网络元件对无功功率的需求。变电站安装的电容器装置只能减少110kV、35kV 线路中无功功率的传递,降低110kV、35kV线路的损耗,而电力用户安装的的电容器装置,能减少整个网络中无功功率的传递,从而能降低整个网络的线路损耗,改善整个网络的电压质量。

具体地说,电力用户安装无功补偿装置的好处有:

1.实行力率收费,可减少电费支出。

力率电费是指电力用户感性负载无功消耗量过大,造成功率因数低于国家标准,从而按电费额的百分比追收的电费(详见功率因数调整电费表)。

高压计量的用户:

力率电费=(电度电费+基本电费)×罚款比例

奖励电费=(电度电费+基本电费)×奖励比例

低压计量的用户:

力率电费=电度电费×罚款比例

奖励电费=电度电费×奖励比例电度电费是指动力电费,不包括照明电费,照明是不收力率电费的。对于低压计量的用户电度电费中还包括线损电费和变压器的有功损失电费。高压计量的用户当变压器的容量超过315KVA时收基本电费,基本电费是按变压器的容量来收取的。2.减少了电能损失。因为ΔP=()2×R,所以ΔP 与功率因数的平方成反比,如果用户的功率因数从0.7提高到0.95,功率损失可减少46%,如果功率因数从0.7提高到0.90,则功率损失可减少40%,效果是明显的,因此,提高用户功率因数是节约电能的重大措施。3.可选用截面较小导线:因为I=,功率因数提高后,电流数值下降,导线截面可相应减少。4.可选用较小容量的变压器。因为视在功率S=,功率因数提高后,S值相应下降,可选用较小容量的变压器,减少变压器的一次性投资、增容时的贴费和支付给电业部门按变压器容量收取的基本电费;从另一方面说,如果设备输送容量一定,功率因数提高,输送的有功功率将增加。5.减少电压降,改善电压质量:因电压降ΔU=,而且一般电力系统的X>>R值,Q减少后,可较大幅度地减少电压降,从而改善用户的电压质量。电力用户功率因数提高到何值是最经济的,需要根据技术比较,全面衡量后确定。

电网的无功补偿—

摘要 电压是电能质量的重要指标之一,网损是电力企业的一项重要综合性技术经济指标。长期以来电力系统网络损耗问题比较突出,而无功补偿是降低线损的有效手段。随着电力系统负荷的增加,对无功功率的需求也日益增加。在电网中的适当位置装设无功补偿装置成为满足电网无功需求的必要手段。 本文从无功补偿的现实意义出发,分析了无功补偿的必要性和经济效益。简单介绍了目前无功补偿研究的现状,探讨无功补偿的原理并对主要的几种无功补偿方式进行了简要的分析,给出本文设计用于并联电容器组补偿方式的智能低压无功补偿装置的研究任务。装置采用ATT7022A检测电网运行参数,减少了CPU运算量,提高电网参数辨识的精度,并可以简化系统软件设计。系统以Atlmega64处理器为控制核心,采用功率因数控制和电压限制相结合的方式工作,并给出采用永磁真空开关在特定电压相角投切电容器的方法,有效解决了电容器投切过程中在线路上产生涌流的缺点,并设有多种保护措施,保护系统可靠、稳定运行。装置还设计了友好的人机接口和通讯接口,使用方便。 关键词:无功补偿、并连电容器、ATT7022A、Atlnega64

ABSTRACT V oltage is one of important quality index of electric power system. Power loss is an important synthesis technical and economic index of power companies. In the past several years, the problem of power loss is very serious. However, reactive compensation is an effective method to save power loss .Due to increasing loads of electric power system, demand of reactive power was also increasing. It became necessary means that reactive power compensation devices were installed in proper position of electric network. This thesis considers the significance of reactive Power compensation and analyses the indispensability and economic benefits of reactive Power compensation. The development status of reactive power compensation is briefly introduced. Principles of reactive power compensation are explained. Several primary reactive power compensation solutions are discussed. This thesis proposed an intelligent low voltage reactive compensation control scheme and implemented device for shunt capacitor compensation. An ATT7022A is adopted to detect the power grid operation information to reduce the calculation volume of CPU and enhance the precision of power grid parameter identification. This also simplifies design work of the software. ATMEGA64 is utilized as the main process unit and method combining power factor control and voltage limitation is used as the system working mode. Specific voltage phase is determined to switching shunt capacitor via permanent magnetic vacuum synchronous switch. Thus the surge produced during the traditional capacitor switching method is greatly diminished. It provides diverse protect measures to ensure the stability and reliability. It bears friendly human machine

增加无功补偿 提高经济效益(一)

增加无功补偿提高经济效益(一) 摘要:安装新的无功补偿装置,可提高电网功率因数,可减少电能做无用功造成的能源损耗和经济损失,节约能源,提高电网的经济运行效益。 关键词:增加补偿效益 1电力现状 1.1电源现状农四师电力公司霍尔果斯电网内拥有电站6座,总装机14820kW,其中水电站5座,装机容量8820kW,火电站1座,装机容量6000kW。霍尔果斯电网水电站主要分布于霍尔果斯河及格干沟河上,水电装机总容量8820kW,均为无调节能力的径流式电站。 1.2电网现状霍尔果斯电网输电线路电压等级为110kV、35kV。红卡子 一、二、三级电站所发出的电经35kV线路送至62团110kV中心变,输电线路中途开口接入口岸35kV变电所,霍河电站所发出的电经35kV 线路直接送至62团110kV中心变电所。中心变电网呈放射式网络,110kV出线1回,110kV线路由62团110kV变电所至三道河110kV变电所,长30.9km,7回35kV线路贯穿垦区,其中进线二回,出线五回,长180.501km。目前,霍尔果斯垦区电网有110kV变电所2座:62团110kV变电所主变容量为(6300+16000)kVA,三道河110kV变电所主变容量为(6300+16000)kVA。35kV变电所10座,容量共计38950kVA。分别有口岸、61团、63团、65团、66团、68团、可克达拉、糖厂、70团18连、酵母厂35kV变电所。农四师电网在65团变电所与伊犁州电

网联网,联网线路为35kV线路。 2电力负荷预测及功率因数分析 2.1电力负荷预测本工程预测采用年递增率法、电力弹性系数法,预测未来供电发展情况,基准年为2007年,近期水平年为2010年,远期为2015年。霍尔果斯电网2007年最大用电负荷为22.67MW,年供电量为0.84亿KW.H。预测2015年最在负荷62.078MW,年供电量将达到12.4亿KW.H 2.2功率因数分析目前霍尔果斯电网用电负荷增长较快,网损较大、功率因数较低、电压低。据统计到2008年末,霍尔果斯电网的综合网损率高达12%,35kV线路平均功率因数达到0.81,10kV线路平均功率因数达到0.67。主要原因是该电网农业节水灌溉和工业用电负荷增长较快,对电网和用电户的无功补偿装置建设更不上,造成目前该电网的功率因数偏低、电压降大、电能损耗大。 需改善霍尔果斯电网的电能利用率,降低电能损耗,因此要加大该电网的无功补偿装置建设力度和用电户的功率因数管理。霍尔果斯电网供电区内有全国最大的陆路口岸霍尔果斯口岸,供电辖区内主要用电户有:火车站、自来水厂、电视台等重要用户;有农四师重要的工业企业如:南岗建材霍城水泥厂、绿华糖厂、中基番茄酱厂、66团酵母厂、新天葡萄酒厂及各团场的棉花加工厂等。农四师最大的节水灌溉农业区在62团、63团、64团、65团场境内。 因这些用户对无功补偿装置配置不够,而电网现有的无功补偿设施已

配电网无功补偿方式

配电网无功补偿方式 合理的无功补偿点的选择以及补偿容量的确定,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损。而且由于我国配电网长期以来无功缺乏,造成的网损相当大,因此无功功率补偿是降损措施中投资少回收高的有效方案。配电网无功补偿方式常用的有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。 配电网无功补偿方案 1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿(如图1的方式1),补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用无功补偿装置(一般是并联电容器组)结合变压器有载调压共同调节。通过两者的协调来进行电压/无功控制在国内已经积累了丰富的经验,九区图便是一种变电站电压/无功控制的有效方法。然而操作上还是较为麻烦的,因为由于限值需要随不同运行方式进行相应的调整,甚至在某些区上会产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而在九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2 低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿(如图1的方式2),通常采用微机控制的低压并联电容器柜,容量在几十至几百千乏左右,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿。它主要目的是提高专用变用户的功率因数,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。这种补偿方式的投资及维护均由专用变用户承担。目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切。就这种方案而言,虽然有助于保证用户的电能质量,但对电力系统并不可取。虽然线路电压的波动主要由无功量变化引起,但线路的电压水平往往是由系统情况决定的。当线路电压基准值偏高或偏低时,无功的投切量可能与实际需求相去甚远,易出现无功过补偿或欠补偿。 对配电系统来说,除了专用变之外,还有许多公用变。而面向广大家庭用户及其他小型用户的公用变,由于其通常安装在户外的杆架上,实现低压无功集中补偿则是不现实的:难于维护、控制和管理,且容易造成生产安全隐患。这样,配电网的无功补偿受到了很大地限制。 3 杆上补偿方式 由于配电网中大量存在的公用变压器没有进行低压补偿,使得补偿度受到限制。由此造成很大的无功缺口需要由变电站或发电厂来填,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿(如图1的方式3),以提高配电网功率因数,达到降损升压的目的。但由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行: (1)补偿点宜少,建议一条配电线路上宜采用单点补偿,不宜采用多点补偿; (2)控制方式从简。建议杆上补偿不设分组投切; (3)建议补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时出现过电压和过补偿现象;另外杆上空间有限,太多数电容器同杆架设,既不安全,也不利于电容器散热; (4)建议保护方式应简化。主要采用熔断器和氧化锌避雷器作简单保护。 显然,杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的

无功补偿经济效益分析

无功补偿经济效益分析 一、怎样进行无功补偿 应采取就地平衡的原则,使电网任一时刻无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡。望奎局已实现了变电所的集中补偿,本文不再涉及,仅就10kV线路,配变与电动机的补偿加以讨论。 (1)10kV配电线路的无功补偿: 在每条10kV配电线路上安装1~2处高压无功自动补偿装置,补偿容量按线路配变总容量的10%掌握。 公用配变容量为40500kV A,需补偿无功容量约为4000kvar,约需资金55万元。经计算,安装一处时,宜将无功自动补偿装置安装在距线路首端的2/3线路长度处。 安装两处时,第一处安装在距线路首端的2/5线路长度处,另一处安装在距线路首端的4/5线路长度处,各处容量为线路总补偿容量的一半。具体安装时,还应考虑便于操作、维护和检修工作等。 (2)配电变压器的无功补偿: 农网的大部分配电变压器昼夜负荷变化较大,许多村屯用电多为居民生活用电,白天及后半夜多数变压器处于轻载或空载状态。我们知道变压器的损耗包括有功损耗和无功损耗,无功损耗包括空载励磁损耗及漏磁无功损耗。从配电网线损理论计算可知,配电变压器的无功损耗约占配电网总损耗的60%左右。为有效补偿配电变压器本身的无功

功率,避免轻载时功率因数超前,电压升高及节约资金,对容量在200kV A以下的配电变压器按配变容量的5%左右掌握实行静态无功补偿。将补偿装置装设在配变低压出口处,随配变同时投切。对200kV A及以上的配变安装自动跟踪补偿装置。 (3)电动机的无功补偿: 7.5kW及以上投运率高的电动机最好进行无功补偿,为防止出现因过补而产生的谐振过电压,烧毁电动机,应将电动机空载时的功率因数补偿到接近1。因为电动机空载时的无功负荷最小,补偿后满载的电动机功率因数仍为滞后,这样就避免过补偿现象的发生。将低压电容器同设备一起投切,直接补偿设备本身的无功损耗。 ①机械负荷惯性较小的电动机(如风机等): Qc≈0.9Qo(1) 式中Qc--补偿容量,kvar Qo--电动机空载无功功率,kvar 电动机空载电流可由厂家提供,如无,可参照(2)式确定: Io=2Ie(1-cosφ)A (2) 式中Io--电动机空载电流(A) Ie--电动机额定电流(A) cosφ--电动机额定负荷时功率因数 ②机械负荷惯性较大的电动机(如水泵等): Qc=(1.3~1.5)Qo (3) ③车间、工厂集中补偿容量可按(4)式确定:

无功补偿装置的发展及现状 侯圣语

无功补偿装置的发展及现状侯圣语 发表时间:2019-10-21T15:37:33.110Z 来源:《电力设备》2019年第10期作者:侯圣语董彬程志明 [导读] 摘要:具有冲击性、非线性及不平衡的负荷使得电网电压和电流波形出现畸变,严重影响了电网的电能质量。 (日照港股份有限公司动力分公司 276826) 摘要:具有冲击性、非线性及不平衡的负荷使得电网电压和电流波形出现畸变,严重影响了电网的电能质量。使用无功补偿装置,可以提高系统功率因数,减少线路损耗,稳定电网电压,抑制谐波,大大增强了电网安全运行的能力。早期无功补偿装置除了发电机,还有电容器补偿装置和同步调相机。随着现代电力电子技术的飞速发展,以SVC和STATCOM为主的现代无功补偿装置深受人们的青睐。采用自换相电力电子变换器的STATCOM实现了从感性到容性的连续动态无功补偿,具有结构紧凑、响应速度快、谐波电流小、损耗低等特点。它能有效抑制电流畸变、电压波动与闪变以及三相系统不平衡,提高和保证系统电能质量。 关键词:无功补偿;电力电子;电容器;静止无功补偿器;静止同步补偿器 0引言 随着科技的迅速发展,配电网中整流器、变频调速装置、电气化铁路、电弧炉等冲击性负荷逐渐增多。由于此类负荷的冲击性、非线性及不平衡性,电网电压和电流波形出现畸变,严重影响了电网的电能质量。这部分负荷功率因数低、波动大、随机性强,增加了电网有功损耗,从而也对配电网的无功补偿能力要求更高。此外,系统内发生的短路、断路、投切电容器及雷击线路等,都会严重影响电力系统的供电质量。另一方面,计算机技术和工业控制技术的应用日益广泛,使得用电设备对电能质量的要求也越来越高。一些重要的工业生产企业在电能质量低劣的情况下生产出不合格产品或者报废产品,发生停产事故,造成严重的经济损失。从日常生活到国民经济生产的各个方面都与电能质量息息相关。而使用无功补偿装置,则可以提供系统功率因数,减少线路损耗,稳定电网电压,抑制谐波,大大增强了电网安全运行的能力[1]。 1无功补偿装置的分类 无功补偿装置可以分为早期无功补偿装置和现代无功补偿装置,主要包括并联电容器、同步调相机、饱和电抗器、静止无功补偿装置和静止同步补偿器等,其分类如图1所示[1,2]。 图1.无功补偿装置的分类 1.1并联电容器 并联电容器具有工作原理简单,安装、运行和维护方便的优点。但是,并联电容器只能向系统注入感性无功功率,其输出的无功功率不能平滑、连续的调节;而且它具有负电压效应,即当电网电压下降时,电容器输出的感性电流也跟着下降,其注入系统的感性无功功率骤降,导致电网电压下降等大,形成恶性循环。当电网电压出现畸变时,电容器还可能与系统内阻感发生并联谐振现象,烧毁电容器[1]。 1.2同步调相机 与并联电容器相比,同步调相机既可以补偿感性无功功率也可以补偿容性无功功率,并能平滑、连续调节补偿无功功率的大小。工作在过励磁状态时,向系统注入感性无功功率,提高公共接入点电压;工作在欠励磁状态时,向系统注入容性无功功率,降低公共接入点电压。可见,要想调节注入系统无功功率的大小及方向,只需调节同步调相机的励磁,即可使公共接入点的电压得到连续的调节,这是并联电容器无法做到的[2]。但同步调相机运行和维护不方便,也有很大的噪声和损耗,其较慢的响应速度无法满足快速无功补偿的要求。 1.3饱和电抗器 静止型的饱和电抗器比同步调相机响应速度快。但其铁芯磁化到饱和状态的过程中产生很大的损耗和噪声,同时非线性电路的存在使得它不能分相调节补偿负荷的不平衡。因而,饱和电抗器的发展受到限制[6]。 1.4静止无功补偿器 现阶段,我国应用最多、技术上最成熟的无功补偿装置为静止无功发生器(SVC)[3]。SVC包括TCR和TSC型静止无功补偿装置以及二者的混合补偿装置,还包括晶闸管控制电抗器与机械投切电容器或着固定电容器混合使用的补偿装置,如TCR+MSC、TCR+FC等,如图2所示。静止无功发生器向系统注入的无功功率是连续可调的,能够较好的稳定系统公共接入点的电压,具有很好的静态和动态补偿性

电网建设中的无功补偿

X 10 电网建设中的无功补偿 1功率因数和无功功率补偿的基本概念 1.1功率因数:电网中的电气设备如电动机变压器等属于既有电感又有电阻的电 感性负载,电感性负载的电压和电流的相量间存在着一个相位差, 相位角的余弦 cos ?即是功率因数,它是有功功率与视在功率之比即 cos ? = P/S 。功率因数是 反映电力用户用电设备合理使用状况、电能利用程度及用电管理水平的一个重要 指标。 1.2无功功率补偿:把具有容性功率的装置与感性负荷联接在同一电路,当容性 装置释放能量时,感性负荷吸收能量,而感性负荷释放能量时,容性装置却在吸 收能量,能量在相互转换,感性负荷所吸收的无功功率可由容性装置输出的无功 功率中得到补偿。 2无功补偿的目的与效果 2.1补偿无功功率,提高功率因数 2.2提高设备的供电能力 由P = S ? cos ?可看出,当设备的视在功率 S 一定时,如果功率因数cos ? 提高,上式中的P 也随之增大,电气设备的有功出力也就提高了。 2.3降低电网中的功率损耗和电能损失 由公式I = P/( ? U ? cos ? )可知当有功功率P 为定值时,负荷电流I 与 cos ?成反比,安装无功补偿装置后,功率因数提高,使线路中的电流减小,从 而使功率损耗降低:△ P =I 2R,降低电网中的功率损耗是安装无功补偿设备的主 要目的。 2.4改善电压质量 在线路中电压损失4U 的计算公式如下: A U= 式中 A U ——线路中的电压损失kV P ——有功功率MW

]=300 X( 1. 33— 0. 48) =255 (kvar ) Q= Q -- 无功功率Mvar U -- 额定电压kV R ――线路总电阻Q X L ――线路感抗Q 由上式可见,当线路中的无功功率 Q 减少以后,电压损失4U 也就减少了 2.5减少用户电费开支,降低生产成本。 2.6减小设备容量,节省投资。 3无功补偿容量的选择 3.1按提高功率因数值确定补偿容量 Q c 式中P ——最大负荷月的平均有功功率 kW cos ? i cos ? 2 - 补偿前后功率因数值 例如:某加工厂最大负荷月的平均有功功率为 300kW 功率因数cos ?二0.6, 拟将 功率因数提高到0.9,则所选的电容器容量为: 3.2按提高电压值确定补偿容量Q (kvar ) 式中 △ U 需要提高的电压值 V (kvar ) Q=300X[

智慧型动态无功补偿装置的市场需求及优势分析

智慧型动态无功补偿装置的市场需求及优势分析 安科瑞王志彬 江苏安科瑞电器制造有限公司 摘要 本文从治理效果和市场需求方面介绍了安科瑞智慧型动态无功补偿装置产品,阐述了其基本原理、市场需求前景并分析了其相对于传统电容型无功柜以及静止无功发生器的优势。关键词:安科瑞智慧型动态无功补偿装置基本原理市场需求优势 1引言 目前,传统的由LC模块及无功补偿控制器组成的无功功率补偿装置(SVC)由于有成熟的技术和低廉的价格,在无功补偿市场中有着极大的占有率;但是随着低压配电系统越来越复杂,且由于其自身分级补偿、响应速度较慢等缺点,SVC难以满足三相不平衡、负荷变化频繁或补偿精度要求较高的场所,此时就需要静止无功发生器来进行无功补偿。而静止无功发生器的性能虽好,但目前的市场价格仍然偏高,很多客户难以接受,因此有着“线性+阶梯”补偿特性的智慧型动态无功补偿装置(ANSVG-S-G)应运而生。 2静止无功发生器产品介绍 智慧型动态无功补偿装置可将静止无功发生器模块(SVG)与传统无功补偿LC电容电抗器组结合,通过智能控制器来控制SVG与LC模块的投切(可控制多路等容或不等容的LC 电容器组),从而达到线性的无功补偿;而且控制器还能实时监控电容组工作状态并智能分配各电容组投切,最大限度的降低电容组的投切次数、平均电容的使用时间,延长电容寿命。其还具有大容量、低成本、响应快、无极补偿等诸多优点。 其补偿特性如下图2-1所示,设备中SVG模块部分补偿特性如图2-2所示。 图2-1智慧型动态无功补偿装置补偿特性

图2-2SVG模块部分输出电流补偿模式 3客户需求 3.1适用场合 从应用市场来看,无功补偿装置行业在国内外飞速发展,已经渗透到电能的产生、输送、分配和应用的各个环节,广泛应用到工业系统、电力系统、交通系统、通信系统、计算机系统、新能源系统和日常生活中,是使用电能的其他所有产业的基础技术。同时在国家对先进制造业的大力支持下促进了无功补偿装置行业的发展,在全社会提倡节能减排和安全生产宏观背景下,产品市场需求仍将保持增长,市场空间逐步扩大,给经营与发展带来良好的机遇与广阔的空间。 由于其超高的性价比和自身性能等原因,该设备适用于无功量大,负载频繁变化,电流畸变小,对无功补偿精度要求较高的场所,如:船舶重工、商业中心、剧场、码头、医院、建筑等行业。 3.2市场前景 低压无功补偿市场包括用户侧无功补偿和输配电网网内低压无功补偿市场两块,而用户侧无功补偿市场和新增发电装机容量以及原有的保有装机容量改造需求直接相关,而智慧型动态无功补偿装置由于其超高的性价比,在用户侧无功补偿市场(新增以及改造)拥有很强的竞争力。 对于用户侧无功补偿市场,其需求与新增发电装机容量和原有的发电装机容量改造密切相关。按照目前较普遍的无功补偿容量按变压器容量30%配比来看,每增加100kva变压器容量,就需要配置30kvar的无功补偿装置;加上每年有大量的无功补偿装置需要改造,目前改造比例在10%~15%,以10%计算,每100kva变压器容量,就有3kvar的无功补偿容量需求。由于中国经济的飞速增长,2010-2014我国发电装机总量平均增长速度达到了

电网无功补偿装置

工业企业供电课程报告电网无功补偿装置 学生姓名: 班级学号: 任课教师: 提交日期:2011.12.12 成绩:

电网无功补偿装置 一、研究背景、现状和意义 1.0无功问题背景 随着我国经济改革的不断深入,国民经济持续快速增长,工业企业的数量不 断增加,人们生活水平不断提高,这些都导致电量的需求大大增加。相比较而言, 我国发电机的装机容量与输配电能力的增加速度没有需求快,致使我们一些省份 出现“电荒”的情况,尤其一些经济相对发达的地区和用电负荷较大的大中城市。 更有甚者,部分城市在用电高峰期出现拉闸限电以使电网正常运行的情况,严重 制约着国民经济的发展,也给人民群众的生活带来很大不便。电压是电能主要质 量指标之一,电压高低反映无功出力与用户无功负荷是否平衡。就我国来说,电 力系统的用电负荷主要为感应电动机、变压器、感应电炉与电弧炉、电焊机与电 焊变压器、整流设备等感性负载。这些负载在消耗着大量有功功率的同时也在消 耗着大量的无功功率,造成电网功率因数偏低。大量感性负载的使用使得必须提 供足够的无功容量满足负载要求,否则会造成电网电压降低,电网供电质量下降 的不良后果。当电网低电压运行的危害可以归纳为以下6种[1]: (1) 当电压下降到额定电压65%---70%时,无功静态稳定破坏,发生电压 崩溃,造成大面积停电事故; (2) 发电机因运行电压降低而减少它的有功功率及无功功率的输出,由于定 子电流与转子电流受额定值限制,因此发电机的有功出力及无功出力近似与运行 电压成正比关系; (3) 送变电设备因运行降低而增加能耗; (4) 烧毁用户发动机; (5) 由于电源电压下降,引起电灯功率下降、光通量减小和照度的降低。 (6)发电机因电压低而影响有功及无功出力。 ?cos N N I U P = 由上式可见,当负载的功率因数1cos

电网的无功补偿与电压调整

电网的无功补偿与电压调整 、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些

装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户

浅析工厂供配电系统无功补偿的益处

浅析工厂供配电系统无功补偿的益处 文章分析了并联电容器作为无功补偿装置的基本原理以及在工厂供配电系统中的效益和补偿方法,同时介绍了通过选择电气设备和合理运行电气设备来提高自然功率因数的具体节能措施。通过合理选择和运行电气设备以及无功功率补偿提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。 标签:无功补偿;节能;有功功率;无功功率;功率因数 前言 我公司是属于典型的机械加工企业,用电设备以电焊机和拖动机床的感应电动机为主,都是感性负载,所以我公司的自然功率因数很低,达不到有关电力设计规程规定:高压供电的工厂,最大负荷时的功率因数不得低于0.9,达不到要求,必须进行人工补偿。此外,变压器本身也是大感性负载需要消耗较多的无功功率,所以系统无功消耗很大,必须进行人工补偿。下面笔者以并联电容器补偿方式为例进行论述。 1 无功补偿的基本原理 在交流电路中,如果是纯电阻电路,电能都转化成了热能,而在通过纯容性或纯感性负载的时候,并不做功,也就是不消耗电能,即为无功功率。当然实际负载一般都是混合性负载,这样电能在通过负载时,就有一部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿。 无论是工业负荷还是民用负荷,大多数均为感性。所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。而由并联补偿电容器就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率。 S1为功率因数改善前的视在功率;S2为功率因数改善后的视在功率 2 无功补偿的效益 2.1 提高功率因数 2.1.1 基本原理 在交流纯电阻电路中,负载中的电流IR与电压U同相位,纯电感负载中的电流IL滞后于电压90°,而纯电容的电流IC则超前于电压90°,如图所示。可

无功补偿装置分析.doc

2007年无功补偿装置运行管理总结 第一部分自然状况 全公司供电系统变电所无功补偿装置总容量为1749531kvar,其中66kV 并联补偿电抗器11组/31台/695400 kvar;并联补偿电容器173组/8975 台/1235923 kvar 。全部在装并联补偿电容器中66kV电容器21组/1224 台/408816 kvar,10kV电容器152组/7751 台/827107 kvar。 2007年全公司供电系统新增66kV电抗器6组/16台/395400kvar,新增并联电容器12组/552 台/98170kvar。到目前为止,全公司供电系统容性无功补偿设备总容量与220kV及以下主变容量之比为0.104,刚刚达到《电力系统电压和无功电力技术导则(试行)》规定的0.1~0.3的最低标准要求。 第二部分2007年并联电容器运行情况 1.电容器的投运率 2007年供电公司在役并联电容器组数、投入运行组数、投运率等。 表1 电容器投运率统计表 电容器组没有投入运行的原因,每组详细写原因。 岔山变#2电容器组损坏严重退出运行; 高城山、保税2组、辽河2组、沈阳路2组、金石滩2组、二道河2组、长春路2组、松岚2组、双科2组、大孤山、寨河2组、东海、石槽、庙岭、桃山、马兰、五一路、学苑变电所无功需求少,暂不需要补偿,因此电容器未投

入运行。 胜利变#1、2电容器组电容器质量有问题,经常出现差流保护动作开关跳闸,个别电容器更换后运行几天又出现上述情况,现已退出运行,检修和高压实验人员鉴定这两组电容器必须更换。 由家改造新增2组电容器、目前厂家正在调试阶段,待调试完将投入。 2.2007年电容器损坏及故障情况 2007年共损坏电容器或电容器附属部件损坏49台,损坏率0.55%。其中334kvar及以下单台电容器损坏率为0.54%,集合式电容器损坏率为5.88%。 电容器损坏的原因主要有以下几个方面: 1)个别电容器质量存在一定问题,在设计时内部裕度偏小或在工艺、 材料上存在一定问题,有的厂家的设备出现多次损坏,如华昌变电容器; 个别电容器投运不到三个月就出现损坏,如胜利变电容器。要求厂家进 一步提高产品质量。 2)电容器运行年限较长、附属设备如外熔断器等锈蚀严重,2008年将 继续要求各单位对运行时间长、锈蚀严重的电容器外熔断器进行更换。 3)母线电压较高时,没有及时将电容器退出,或存在谐波,使电容器 长期超过其额定电压1.05倍运行。 各供电公司电容器具体损坏、故障情况如表2所示,各厂家电容器损坏情况如表3所示。 表2 大连供电公司运行电容器损坏统计表

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

电网的无功补偿与电压调整

电网的无功补偿与电压调整 1、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线

路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网 相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,

无功补偿原理

有功功率、无功功率及视在功率 [ 解决方案1 ] PostTime: 2008-9-3 16:08:01 国际电工委员会定义: 有功电流与线路电压的乘积称为有功功率(P:常用单位为瓦(W)或千瓦(KW)); 无功电流与线路电压的乘积称为无功功率(Q:常用单位为乏(Var)或千乏(Kvar)); 线路电压与线路电流的乘积称为视在功率(S:常用单位为伏安(VA)或千伏安(KVA)); 有功功率(P)、无功功率(Q)及视在功率(S)的关系如下图的功率三角形: 功率因数是有功功率与视在功率的比率,俗称力率: cosj =P/S 或写成:P=S·cosj 并联补偿原理 [ 解决方案1 ] PostTime: 2008-9-9 00:42:01 并联补偿电路是在工厂、生活用电、农业用电、电力网与变电站内最常见和具有实用意义的电路,如图4-2。 我们知道感性电路中电流滞后电压相位90°,而容性电路中电流超前电压相位90°,因此容性无功功率与感性无功功率二者正好相差180°。换句话说,如果电容性电抗等于电感性电抗,即X L=X C,此时Q C=Q L,二者正好抵消,电路中没有无功功率。这便是并联无功补偿的基本思路。 当未接电容C时,流过电感L的电流为I L,流过电阻R的电流为I R。电源所供给的电流与I1相等。I1=I R+jI L,此时相位角为j1,功率因数为cosj1。并联接入电容C后,由于电容电流I C与电

感电流I L方向相反(电容电流I C超前电压U90°,而电感电流滞后电压U90°),使电源供给的电流由I1减小为I2,I2=I R+j(I L_I C),相角由j1减小到j2,功率因数则由cosj1提高到cosj2。 在并联补偿电路中,如果所采用补偿电容的容量正好抵消电感线圈的容量,使电路中电压与电流同相位,此时电路呈电阻性,没有电抗,电感的无功功率正好为电容器的无功功率全部抵消,电源只向负载供应有功功率,此时功率因数cosj =1,这便是完全补偿状态。 无功补偿经济当量 [ 解决方案1 ] PostTime: 2008-9-9 00:42:54 所谓无功补偿经济当量,就是无功补偿后,当电网输送的无功功率减少1千乏时,使电网有功功率损耗降低的千瓦数。 众所周知,线路的有功功率损耗值如式(4-1) 因此减少的有功功率损耗为:

无功补偿装置行业发展现状分析

无功补偿装置行业发展现状分析 作者:[王铁] 来源:国泰君安 一、行业简介 煤矿工业是我国目前最主要的能源行业。由于井下机械化设备不断增加,已成为工业系统耗能大户,电力消耗在煤矿生产成本中占有很大比例。从节电情况看,虽然加强了用电管理,推广了部分节电产品,但远远没有达到国家对重点煤矿企业节能降耗的要求,尤其是井下采、掘、开、运、通系统,功率因素长期运行在0.4-0.7之间,随着煤炭产量增加,巷道延伸,负荷增加,井下电能损耗相当严重,这种状况在全国煤炭系统带有普遍性,而且大部分矿井没有采取任何节电措施。目前煤矿井下大量使用变频设备、整流设备,以及广泛应用电力电子设备,这些电器设备产生谐波电流、谐波电压,正在严重污染井下电网,导致谐波问题日益严重的主要原因是:对无功、谐波、三相不平衡等问题不能实施有效,灵活的控制,进而不能改善电压质量,降低谐波含量,使电网运行环境日趋恶劣。矿用井下无补偿主要是针对解决以上问题而被提出的。 目前国内煤矿行业无功补偿设备现状 针对煤炭行业的电力负荷特点,国内外对动态无功补偿技术都进行研究,主要类型分为如下几种: 1、分组投切电容器方式。真空接触器(或断路器)投切方式,投切时开关触头间会产生电弧,因电容回路的通断过程中会产生较高的操作过电压和冲击电流。所以往往在回路中串联电抗器来抑制投切涌流,并能治理相应谐波。原理简单,成本低是其特点。 2、静止型动态无功补偿装置(SVC)。该装置为晶闸管控制电抗器+滤波装置(TCR+FC)方式或者晶闸管投切电容器(TSC)。其功能具有平滑调节无功补偿容量、系统响应速度快,并能综合治理谐波,普遍应用在煤矿系统、冶金行业、电力系统和电气化铁路等。 3、磁阀式补偿方式。装置由补偿电容器和并联可调电抗器组成,通过高阻抗电抗器磁通的调节,使其与并联电容器中多余的容性无功容量平衡。这是自饱和电抗器补偿方式的一种变型产品,因其损耗大,运行成本高,调节速度慢,补偿范围有一定的限制,属于淘汰技术。 这些补偿方式都存在一些不足之处,结合煤矿配电形式,研发适合于煤矿应用的无功补偿设备是当务之急,也是响应国家政策。 目前煤矿配电网普遍采用的无功补偿方式有三种:分别为集中补偿、分散补偿和就地补偿。 1、集中补偿 集中补偿是将电容器装设在用户专用变电所或配电室的低压母线上,对无功进行统一补偿。这种补偿方式比较适合在负荷集中、离变电所较近,无功补偿容量较大的场合。 徐州新集煤矿就采用了集中补偿方式,此矿分析了分组投切电容器组,调压调无功容量补偿,动态无功补偿(SVC)。三种方案的经济性,确定了采用分组投切电容器组代替原有固定投切电容器,保证了该矿的供电质量和功率因数。 集中补偿的优点是:可以就地补偿变压器的无功功率损耗。由于减少了变压器的无功电流,相应地减少了变压器的容量,也就是说,可以增加变压器所带的有功负荷;可以补偿变电所母线、变压器和受电线路的功率损耗,节约能源;当负荷变化时,能对母线电压起一定的调节作用,从而改善电压质量;便于管理、维护、操作及集中控制。

相关文档