文档库 最新最全的文档下载
当前位置:文档库 › CH4 数据库建模(E-R模型) 作业答案

CH4 数据库建模(E-R模型) 作业答案

CH4 数据库建模(E-R模型) 作业答案
CH4 数据库建模(E-R模型) 作业答案

Chap04-01. 试述数据库设计过程的各个阶段上的设计描述。

答:各阶段的设计要点如下:

(1) 需求分析:准确了解与分析用户需求(包括数据与处理)。

(2) 概念结构设计:通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型。

(3) 逻辑结构设计:将概念结构转换为某个DBMS所支持的数据模型,并对其进行优化。

(4) 数据库物理设计:为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)。

(5) 数据库实施:设计人员运用DBMS提供的数据语言、工具及宿主语言,根据逻辑设计和物理设计的结果建立数据库,编制与调试应用程序,组织数据入库,并进行试运行。

(6) 数据库运行和维护:在数据库系统运行过程中对其进行评价、调整与修改。Chap04-02. 简述将E-R图转换为关系模式的一般规则。

解:将E-R图转换为关系模式一般遵循如下原则:

(1)一个实体型转换为一个关系模式。实体的属性就是关系的属性,实体的码就是关系的码。

(2)一个m:n联系转换为一个关系模式。与该联系相连的各实体的码以及联系本身的属性均转换为关系的属性,而关系的码为各实体码的组合。

( 3)一个1:n联系可以转换为一个独立的关系模式,也可以与n端对应的关系模式合并。如果转换为一个独立的关系模式,则与该联系相连的各实体的码以及联系本身的属性均转换为关系的属性,而关系的码为n端实体的码。

(4)一个1:1联系可以转换为一个独立的关系模式,也可以与任意一端对应的关系模式合并。如果转换为一个独立的关系模式,则与该关系相连的各实体的码以及联系本身的属性均转换为关系的属性,每个实体的码均是该关系的候选码。如果与某一端对应的关系模式合并,则需要在该关系模式的属性中加入另一个关系模式的码和联系本身的属性。

(5) 三个或三个以上实体间的一个多元联系转换为一个关系模式。与该多元联系相连的各实体的码以及联系本身的属性均转换为关系的属性,而关系的码为各实体码的组合。

(6)同一个实体集的实体间的联系,即自联系也可按上述1:1、1:n和m:n三种情况分别处理。

(7)具有相同码的关系模式可以合并。

Chap04-03. 设有如下实体:

学生:学号、姓名、性别、年龄

课程:课程号、课程名、开课院系、学分

教师:教师号、姓名、性别、职称

院系:名称、电话、领导

上述实体中存在如下联系:

一个学生可选修多门课程,一门课程可为多个学生选修,每个学生选修的课程都

有一个成绩;

一个教师可讲授多门课程,一门课程可由多个教师讲授,教师授课联系有授课学期属性;

一个院系可有多个教师,一个教师只能属于一个院系。

问题:

1.根据上述规则设计E-R模型。

2.将E-R模型转换成关系模式,并用下划线和波浪线标识出每个关系模式的主键和外键。

解:

1.根据上述规则设计E-R模型。

评分细则:画出全部实体(1分);画出全部属性(1分);画出“选修”多对多联系(1分),标出联系属性(0.5分);画出“讲授”多对多联系(1分),标出联系属性(0.5分);画出三个1:n联系(1分)

2.将E-R模型转换成关系模式,并用下划线和波浪线标识出每个关系模式的主键和外键。

院系(名称,领导,电话)(1分)

教师(教师号,姓名,性别,职称,院系)(1分)

课程(课程号,课程名,开课院系,学分)(1分)

学生(学号,姓名,性别,年龄,院系)(1分)

选修(学号,课程号,成绩)(学号、课程号既是主键,也是外键)(1分)讲授(教师号,课程号,学期)(教师号,课程号既是主键,也是外键)(1分)

评分细则:写出模式名及正确标示出全部属性得0.5分,在此基础上正确指出主键和外键得该小题的满分-1分。

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数学建模的介绍

一、数学建模的意义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(SI 模型)p136~138 传染病模型2(SI 模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(t =0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取k =0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上标注。 参考程序:

提示:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图 用fplot函数,调用格式如下: fplot(fun,lims) fun必须为一个M文件的函数名或对变量x的可执行字符串。 若lims取[xmin xmax],则x轴被限制在此区间上。 若lims取[xmin xmax ymin ymax],则y轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2) fun必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

数学建模课程简介

《数学建模》课程简介 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 内容简介: 本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。 本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班活动。选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年为21人)。 推荐教材或参考书: “数学建模”,杨启帆、谈之奕、何勇编著,浙江大学出版社出版,2006年7月 《数学建模》教学大纲 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 一、教学目的与基本要求: 通过典型数学模型分析和课外建模实践,使学生基本掌握运用数学知识建立数学模型来研究科研问题或实际课题的基本技能与基本技巧,本课程教学除传授知识外还要求学生在实际建模中注意培养和提高自身的能力,以便提高自己的综合素质与实际本领。 二、主要内容及学时分配: 1.数学建模概论,3学时 2.初等模型,8学时:舰艇的汇合,双层玻璃的功效,崖高的估算,经验模型,参数 识别,量纲分析法建模,方桌问题、最短路径与最速方案等 3.微分方程建模,14学时:马尔萨斯模型和罗杰斯蒂克模型,为什么要用三级火箭发 射人造卫星,药物在体内的分布,传染病模型,捕食系统的P-P模型,双种群生态 系统研究等

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念

模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。有了这些假设,就可以在相对简单的条件下,弄清各因素之间的关系,建立相应的模型。 合理的假设是建立理想模型的必要条件和基本保证。如果假设是合理的,则模型切合实际,能解决实际问题;如果假设不合理中或过于简化,则模型与实际情况不符或部分相符,就解决不了问题,就要修改假设,修改模型。 3.构造模型

数学建模简介及数学建模常用方法

数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待 人们去研究、去解决。但 是,社会对数学的需求并 不只是需要数学家和专门 从事数学研究的人才,而 更大量的是需要在各部门 中从事实际工作 的人善于运用数 学知识及数学的 思维方法来解决 他们每天面临的 大量的实际问题, 取得经济效益和社会效 益。他们不是为了应用数 学知识而寻找实际问题 (就像在学校里做数学应 用题),而是为了解决实 际问题而需要用到数学。 而且不止是要用到数学, 很可能还要用到别的学 科、领域的知识,要用到 工作经验和常识。特别是 在现代社会,要真正解决 一个实际问题几乎都离不 开计算机。可以这样说, 在实际工作中 遇到的问题, 完全纯粹的只 用现成的数学 知识就能解决 的问题几乎是 没有的。你所能遇到的都 是数学和其他东西混杂在 一起的问题,不是“干净 的”数学,而是“脏”的 数学。其中的数学奥妙不 是明摆在那里等着你去解 决,而是暗藏在深处等着

你去发现。也就是说,你 要对复杂的实际问题进行 分析,发现其中的可以用 数学语言来描述的关系或 规律,把这个实际问题化 成一个数学问题,这就称 为数学模型。 数学模型具有下列特 征:数学模型的一个重要 特征是高度的抽象性。通 过数学模型能够将形象思 维转化为抽象思维,从而 可以突破实际系统的约 束,运用已有的数学研究 成果对研究对象进行深入 的研究。数学模型的另一 个特征是经济性。用数学 模型研究不需要过多的专 用设备和工具,可以节省 大量的设备运行和维护费 用,用数学模型可以大大 加快研究工作的进度,缩 短研究周期,特别是在电 子计算机得到广泛应用的 今天,这个优越性就更为 突出。但是,数学模型具 有局限性,在简化和抽象 过程中必然造成某些失 真。所谓“模型就是模型” (而不是原型),即是该性 质。 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之,建立数学模型的这个过程就称为数学建模。 模型是客观实体有关属性的模拟。陈列 在橱窗中的飞机模型外形应当像真正的飞 机,至于它是否真的能飞则无关紧要;然而 参加航模比赛的飞机模型则全然不同,如果 飞行性能不佳,外形再 像飞机,也不能算是一 个好的模型。模型不一 定是对实体的一种仿照,也可以是对实体的 某些基本属性的抽象,例如,一张地质图并 不需要用实物来模拟,它可以用抽象的符 号、文字和数字来反映出该地区的地质结 构。数学模型也是一种模拟,是用数 学符号、数学式子、程序、图形等对 实际课题本质属性的抽象而又简洁

数学建模微分方程的应用举例

第八节数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t的质量. 用x表示该放射性物质在时刻t的质量, 则 表示x在时刻t的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 (8.1)

这是一个以x为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t增加时, 质量x减少. 解方程(8.1)得通解 若已知当 时, 代入通解 中可得 则可得到方程(8.1)特解 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( )的半衰期约为50亿年;通常的镭( )的半衰期是1600年.半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克 衰变成半克所需要的时间与一吨 衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、逻辑斯谛(Logistic)方程:

逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型. 如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比. 设树生长的最大高度为H(m), 在t(年)时的高度为h(t), 则有 (8.2) 其中 是比例常数. 这个方程为Logistic方程. 它是可分离变量的一阶常数微分方程. 下面来求解方程(8.2). 分离变量得 两边积分 得

数学建模简介及数学建模常用方法

数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等) 来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待人们去研究、去解决。但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。 他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。而且不止是要用到数学,很可能还要用到别的学科、领域的知识,要用到工作经验和常识。特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。你所能遇到的都是数学和其他东西混杂 在一起的问题,不是“干净的”数学,而是“脏”的数学。其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题 化成一个数学问题,这就称为数学模型。 数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性。通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入 的研究。数学模型的另一个特征是经济性。用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数 学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出。但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真。所谓“模型就是模型”(而不是原型),即是该性质。

扩散问题的偏微分方程模型_数学建模

实验一SDH网元基本配置 一、实验目的: 通过本实验,了解SDH光传输的原理和系统组成,了解ZXMP S325设备的硬件构成和单板功能,学习ZXONM 300 网管软件的使用方法,掌握SDH 网元配置的基本操作。 二、实验器材: 1、SDH 设备:3 套ZXMP 325; 2、实验用维护终端。 三、实验原理 1、SDH 原理 同步数字体制(SDH)是为高速同步通信网络制定的一个国际标准,其基础在于直接同步复用。按照SDH 组建的网络是一个高度统一的、标准化的、智能化的网络,采用全球统一的接口以实现多环境的兼容,管理操作协调一致,组网与业务调度灵活方便,并且具有网络自愈功能,能够传输所有常见的支路信号,应用于多种领域(如光纤传输,微波和卫星传输等)。 SDH 具有以下特点: (1)接口:接口的规范化是设备互联的关键。SDH对网络节点接口(NNI)作了统一的规范,内容包括数字信号数率等级、帧结构、复接方法、线路接口、监控管理等。 电接口:STM-1是SDH的第一个等级,又叫基本同步传送模块,比特率为155.520Mb/s;STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N 倍(N=4n=1,4,16,- - -)。 光接口:采用国际统一标准规范。SDH仅对电信号扰码,光口信号码型是加扰的NRZ 码,信号数率与SDH 电口标准信号数率相一致。 (2)复用方式 a)低速SDH----高速SDH,字节间插; b) 低速PDH-----SDH,同步复用和灵活的映射。 (3)运行维护:用于运行维护(OAM)的开销多,OAM功能强——这也是线路编码不用加冗余的原因. (4)兼容性:SDH 具有很强的兼容性,可传送PDH 业务,异步转移模式信号(ATM)及其他体制的信号。 (5)SDH 复用映射示意图

《数学建模》课程介绍.

《数学建模》课程介绍 数学建模是随全国大学生数学建模竞赛的开展而逐步在高校开设的一门课程,是面向21世纪课程教学体系中的一门重要的课程。 数学建模是联系数学与实际问题的桥梁,它是将实际问题变为用数学语言描述的数学问题的过程,其中得到的数学结构就是数学模型。人们通过对该数学模型的求解可以获得相应实际问题的解决方案或对相应实际问题有更深入的了解。数学建模在科学技术发展中的重要作用越来越受到社会的普遍重视,并已经成为现代科学技术工作者必备的重要能力之一。 数学建模问题不只是一个纯数学的问题。以2001年全国大学生数学建模竞赛考题为例,此年出了两个赛题让参赛队在其中任选一个来做。这两个赛题是:血管的三维重建问题和公交车调度问题。前一个题目是生物医学方面的问题, 它除了形态医学知识之外,还涉及到几何学中的包络线知识、数据处理知识、计算机图象处理知识和计算机编程等;第二个题目涉及概率统计知识、数据采集、数据处理知识、计算机仿真及计算机编程知识等。再看看以前各届国内外数学建模试题,更是五花八门。有动物保护、施肥方案、抓走私船的策略、应急设施的选址等等。实际上,熟悉科学研究的人会发现数学建模就是一个简化了的科研课题,他是科学研究工作者及在读研究生要完成毕业论文要做的工作。由于数学建模具有可以培养解决实际问题能力的特点,因此,了解和学习数学建模知识对渴望提高自身科研素质的人们无疑是很有帮助的。 数学建模教学的目的是培养学生认识问题和解决问题的能力,它涉及到对问题积极思考的习惯、理论联系实际并善于发现问题的能力、能在口头和文字上清楚表达自己思想、熟练使用计算机的技能和培养集体合作的团队精神等,所有这些对提高学生的综合素质都是很有帮助的,并且非常符合当今学校转型发展需要,对于培养应用型人才具有重要意义。

数学建模每年比赛介绍

苏北数学建模联赛 全国大学生数学建模竞赛、数学中国数学建模网络挑战赛、美国大学生数学建模竞赛、数学建模国际赛等,地区赛有华中赛、华东赛、东北赛、苏杯赛等。最近的比赛是2013年第六届数学中国数学建模网络挑战赛 https://www.wendangku.net/doc/e06194377.html,/bz.html

https://www.wendangku.net/doc/e06194377.html,/ 比赛时间:5月1日—5月4日 苏北数学建模联赛是由江苏省工业与应用数学学会、中国矿业大学、徐州市工业与应用数学学会联合主办,中国矿业大学理学院协办及数学建模协会筹办的面向苏北及全国其他地区的跨校、跨地区性数学建模竞赛,目的在于更好地促进数学建模事业的发展,扩大中国矿业大学在数学建模方面的影响力;同时,给全国广大数学建模爱好者提供锻炼的平台和更多的参赛机会,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识。 联赛由中国矿业大学数学建模协会组织,苏北数学建模联赛组织委员会负责每年发动报名、拟定赛题、组织优秀答卷的复审和评奖、印制获奖证书、举办颁奖仪式等。竞赛分学校组织进行,每个学校的参赛地点自行安排,没有院校统一组织的参赛队可

以向苏北数学建模联赛组委会报名参赛。每个参赛队由三名具有正式学籍的在校大学生(本科或专科)组成,参赛队从A、B、C 题中任选一题完成论文,本科组和专科组分开评阅。竞赛按照全国大学生数学建模竞赛的程序进行,报名时间为每年4月1日—4月29日(直接由学校统一报名),竞赛时间为5月1日—5月4日,网址:https://www.wendangku.net/doc/e06194377.html,, 苏北数学建模联赛组委会聘请专家组成评阅委员会,评选一等奖占报名人数的5%、二等奖15%、三等奖25%,如果有突出的论文将评为竞赛特等奖,凡成功提交论文的参赛队均获成功参赛奖。对于获奖队伍将给予一定的奖品奖励并颁发获奖证书。 全国大学生数学建模大赛 比赛时间:9月的第三个星期五上午8时至下一个星期一上午8时 “全国大学生数学建模大赛”全称为“高教社杯全国大学生数学建模竞赛” 全国大学生数学建模大赛竞赛每年举办一次,每年的竞赛时间为9月的第三个星期五上午8时至下一个星期一上午8时。 报名时间:从大赛的通知文稿发出后,就可以报名了,报名截止时间一般在开始比赛的前7-10天。 大学生以队为单位参赛,每队3人(须属于同一所学校),专业不

数学建模及数学建模比赛简介

数学建模及数学建模比赛简介 一、数学建模知识简介 数学建模简而言之就是应用数学模型来解决各种实际问题的 过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数间的关系的数学问题(或称一个数学模型),再借用计算机求解该数学问题,并解释、检验、评价所得的解,从而确定能否将其用于解决实际问题的多次循环、不断深化的过程。而这种成功的方法和技术反映在培养专门人才的大学教学活动中,就是数学建模教学和竞赛。 二、数学建模比赛 1、数学建模比赛的历史 数学建模竞赛由美国于1985年开始举办,而我国自1992年举办首届全国大学生数学建模竞赛以来,一年一度的全国大学生数学建模竞赛和国际大学生数学建模竞赛,已经成为全国大学生科技竞赛的重要项目之一,是面向全国大学生的群众性科技活动。 2、数学建模竞赛的作用 多年来,一年一度的全国大学生数学建模竞赛和国际大学生数学建模竞赛,给传统的高等数学教育改革带来了新的思路和评价标准,《数学建模》课也从仅仅为参赛队员培训,扩展为一门比较普及的选修课,同时,《数学试验》作为一门新的课程也应运而生。数学建模与数学试验教学的重点是高等与现代数学的深层应用和面向问题的

设计,而不是经典理论的深入研讨和系统论证。数学建模问题绝大部分来自一些具体的科研课题或实际工程问题,而不同于普通的数学习题或竞赛题。数学建模问题的特点是:面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。 另一方面,建模问题不同于理论研究,它重在对实际问题的处理,而不是深层次纯粹数学理论或者世界难题。所以,求解建模问题大都借助各种辅助工具或手段,尤其是计算机软件的应用,大大地提高了解题效率和质量。总之,《数学建模》是一门技术应用的课程,而不是基础教育课程,它强调的是如何更好更快地解决问题,如何充分利用各种科技手段作为技术支持,因而计算机的应用已经成为其不可或缺的一项基本组成。与此相关的计算机技术主要有两部分:一是如何将实际问题或模型转化或表述为可用计算机软件或编程实现的算法;二是采用哪些应用软件或编程技术可以解决这些问题。显然,后者是前者的基础,确定了工具方案,才有相应的解决方案。 由于数学建模的以上特点,决定了数学建模与计算机具有密切相关的联系,计算机在数学建模思想意识培养中发挥了重要的作用。计算机在数学建模中提供了有力工具和技术支持,它是更好更快进行建模的基础。计算机水平的高低可以说决定一个团队整体的建模水平。

全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介 全国大学生数学建模竞赛是教育部高教司和中国工业与应用数学学会共同主办、面向全国高校(包括高职高专院校)所有专业大学生的一项通讯竞赛,从1992年开始,每年一届,2013年的第22届竞赛有来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、印度和马来西亚的1326所院校、23339个队(其中本科组19892队、专科组3447队)、70000多名大学生报名参加(每队3名同学),是目前全国高校规模最大的基础性学科竞赛,也是也是世界上规模最大的数学建模竞赛;它是全国大学生规模最大的课外科技活动,能从一个侧面反映一个学校学生的综合能力。竞赛2007年开始被列入教育部质量工程首批资助的学科竞赛之一。 一、什么是数学建模 简而言之,数学建模就是用数学的方法解决实际问题。当我们遇到一个实际问题时,首先对其进行分析,把其中的各种关系用数学的语言描述出来。这种用数学的语言表达出来的问题形式就是数学模型。一旦得到了数学模型,我们就将解决实际问题转化成了解决数学问题。然后,就是选择合适的数学方法解决各个问题,最后将数学问题的结果作为实际问题的答案。当然,这一结果与实际情况可能会有一些差距,所以我们就要根据实际情况对模型进行修改完善,重新求解,直至得到满意的结果。 实际上,数学建模对于同学们来讲并不是全新的事物,在中小学阶段做的数学应用题就是数学建模的简单形式。现在,同学们学习了许多高等数学知识,所面临就是要用高等数学的知识和方法,并借助计算机来解决更接近实际的规模较大的问题。所以参加数学建模活动是一个很有意义的科研实践机会,同时会让你认识到高等数学在实际生活中的巨大作用,提高学习数学的积极性。 二、数模竞赛的形式 该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。竞赛以通讯形式进行,三名大学生组成一队,在三天时间内可以自由地收集资料、调查研究,使用计算机、软件和互联网,但不得与队外任何人(包括指导教师在内)以任何方式讨论赛题。竞赛要求每个队完成一篇用数学建模方法解决实际问题的科技论文。竞赛评奖以假设的合理性、建模的创造性、结果的

(完整版)扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,2 2 2 ,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

数学建模常见评价模型简介

数学建模常见评价模型 简介 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。 步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据

通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干 元素,各层元素间的关系用相连的直线表示。 图1 选择旅游地的层次结构 步骤2构造比较矩阵 标度值 含义 1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要 2、4、6、8 表示上述相邻判断的中间值 以上各数值的倒数 若指标i 与指标 j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的 相对重要性用上述数值的倒数标度 表1 1~9标度的含义 设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A

(完整版)常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

相关文档
相关文档 最新文档