文档库 最新最全的文档下载
当前位置:文档库 › 风力发电防雷关键技术及研究进展

风力发电防雷关键技术及研究进展

风力发电防雷关键技术及研究进展
风力发电防雷关键技术及研究进展

风力发电防雷关键技术及研究进展

(大理州气象局云南大理671000)

摘要:雷击造成的风力发电机组损害已经成为了一个公认的危害风力发电安全运行的问题,目前随着风力发电机组数量的增多,使得雷击破坏发生率比预期的有所扩大,导致维修费用已经达到了不可接受的水平,严重的影响了风力发电行业的健康发展。以下就对雷暴天气对风力发电机组的危害进行了分析,并在此基础上对接地系统防雷、机组叶片防雷、轴承防雷、机舱防雷及机组中设置电涌保护器等关键技术等风力发电防雷关键技术及研究进展进行了阐述。

关键词:风力发电;雷击;防雷技术

我国是风电资源大国,风力发电在我国占据着重要的位置。因此,确保风力发电安全、有效的进行是一项十分重要的工作。然而据相关数据显示,影响风力发电安全、有效进行的主要事故中,雷击事故占据着较高的比例,据不完全统计雷击造成的风力发电机组事故占到了总事故的30%以上[1]。且由雷击造成的事故,在后期恢复生产过程中所需的维修费用巨大,给风力发电带来了极大的危害。因此,积极的研究风力发电防雷关键技术,最大程度上降低由于雷击事故带来的损害,是当前的一项重要任务。以下就对风力发电防

雷关键技术及其研究进展进行了分析和阐述,以期为提高风力发电防雷水平提供参考。

1雷暴天气对风力发电机组的危害

雷暴天气对风力发电机组的危害,来自于直接损害和间接损害两个方面,直接损害主要是由于雷电流对风力发电机组的产生的热效应和机械效应。损害的主要对象是叶片、机械结构和轴承等;?g接损害主要是雷电电磁感应和电涌过电压效应。在雷暴天气的侵袭之下,由雷电流引起的暂态电位升高,一方面会对风力发电机组中的电子设备、电气设备造成损害,另一方面还会对处在风力发电场中的工作人员,以及其中放牧的牲畜造成伤害。跨步电压也就是由雷电流引起的暂态电位升高,是损害风力发电机组的主要原因[2]。跨步电压越大对风力发电机组产生的危害越大,而跨步电压的大小则是受到多方面因素的影响的,主要包括的因素有接地体的结构尺寸、土壤的电阻率、雷电流幅值等。就拿土壤电阻率来说,对于电阻率较小的土壤,由于其地电位分布特性曲线变化比较平缓,因此地面上两点之间的电位差相对较小,当受到雷电流袭击时,产生的跨步电压也就比较小。反之,则产生的跨步电压就较大[3]。

2 风力发电防雷关键技术及研究进展

2.1接地系统防雷

接地系统是否做了充分的防雷设计是确保风力发电机

组电子安全与工作人员人身安全的保障。从防雷来看,不管是避雷针、避雷器还是电涌保护器,这些防雷装置均需要接地处理,只有通过良好的接地处理,才能够将其受到的雷电流传到入地。因此,加强风力发电机组各个避雷装置的接地,才能够使其发挥良好的保护作用,提高风力发电机组的防雷效果。

2.2机组叶片防雷

目前随着风力发电机组单机容量的不断增大,导致机组叶片的长度也随之增加。而当机组叶片的长度超过20m之后,传统的单接闪器联合内置导体的防雷方式就无法满足防雷

需求,一旦遇到雷击可能会出现数目较大的非闪器部位雷击点,从而导致机组叶片遭受到雷击的概率大大提升,防雷可靠性急剧下降。鉴于此,为了避免这种情况,在实际中,对于长度超过20m的机组叶片,需在其上设置多个接闪器,并且将各个接闪器与内置引下导体作电气连接。通过这样的技术处理,能够显著的提升机组叶片的防雷可靠性,提升机组运行安全度。该技术目前已经在兆瓦级的风力发电机组叶片上投入使用,并且取得了较为理想的防雷效果[4]。

2.3轴承防雷

轴承防雷的主要技术就是在轴承前端设计一条与其并

行的低阻通道,以此来对沿轴承传来的雷电流进行旁路分流,最大程度上减少流过轴承的雷电流。目前,在实际的应用中

为了实现这一设计,使用最多的是导体滑环、电刷和放电器等设置电流旁路。但是在实际的应用的过程中,存在一个问题,那就是碳刷在摩擦接触传到雷电流时会在其上产生电弧,从而加剧其磨损程度,导致接触电阻增大,减弱旁路分流作用,对轴承的防雷保护性也随之降低。鉴于这一问题,可将传统的碳刷改为磨损性能更加的铜质电刷。

2.4机舱防雷

在通常情况下,风力发电机机组叶片上做设置的接闪器和引下导体就能够很好的将来自发电机机舱前方和上方的

雷电进行拦截并下行先导,这是在60m以下的情况。但是当超过60m以上,雷电就能够从任何方向对发电机机舱进行袭击,导致发电机机舱防雷能力减弱。为了解决这一问题,就需要在发电机机舱的尾部安装避雷针,一方面能够很好地对发电机机舱尾部的气象站实施保护,另一方面能够避免发电机机舱尾部遭受直接的雷击,提高防雷效果。而对于发电机机组叶片上没有采取防雷措施和防雷装置的机组,单纯在发电机机舱尾部设置避雷针的方式就无法满足防雷要求,而是需要在发电机机舱前端及尾部,同时均设置避雷针,才能够确保发电机机舱的防雷可靠性。并且在必要时,还需在发电机机舱的表面放置金属带和金属网,进一步加强发电机机舱的雷电防御效果。

2.5机组中设置电涌保护器

在风力发电机组中设置电涌保护器是雷电防护的基本

措施,作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护设备或系统不受冲击而损坏,电涌保护器根据其具体的功能分为电源电涌保护器和信号电涌保护器两大类,其中的电源电涌保护器是通过设置在电力线路上发挥防雷作用的;而其中的信号电涌保护器则是通过设置在信号线路上发挥防雷作用的。通过电涌保护器的应用能够有效地防止雷电电涌沿着显露侵害端的电气设备和电子设备。

3 小结

综上所述,只有从风力发电的机组叶片接闪分流措施、机电系统抗雷电过电压及接地系统等环节入手,深入研究其关键风雷技术并进行应用,才能够显著提升风力发电机组的防雷可靠性,促使风力发电安全运行。

参考文献

[1]阿依古丽?买买提,张伟.试论风力发电机组控制方法改进策略研究[J].电脑知识与技术,2014(06).

[2]梅卫群,江燕如,建筑防雷工程与设计[M].气象出版社,2012.

[3]IEC TR 61400-24:2002,风力发电机组第24 部分雷电防护[S].

[4]鄢小安,贾民平. 参数优化的组合形态-hat变换及其

在风力发电机组故障诊断中的应用[J]. 机械工程学报,2016(13).

风电场防雷措施

风电场防雷措施 定为防止发生雷击污闪事故,确保风力发电场安全、可靠运行,结合近年来防止变电设备雷击事故措施的要求和我升压站的情况,特制定本预防措施。 1.总则 围绕确保不发生升压站母线雷击事故;不发生重要联络线雷击事故;不发生大面积雷击停电事故;不发生雷击导致的重要设备损坏事故的原则制定本防雷击反事故措施。 2.防雷击措施: 2.1完善防雷击管理体系,明确和落实防雷击专责人及职责。 2.2落实责任制,做到升压站的每一台设备均落实到人,不留有 空白点和防污漏洞。 2.3定期开展对污秽度检测点的数据进行分析,加强污源设备运 行巡视工作。 2.4对鸟害多发设备,采取必要的防鸟害措施,提高站内设备的 防鸟害掉闸能力。 2.5加强污秽度测量作业人员与带电体之间的安全距离的要求。 非带电作业35K V线路1米、220K V线路3.0米。 2.6定期检查升压站内杆塔、风场的接地电阻并符合规程要求。 2.7学习好的经验找出差距和不足,进一步提高防雷击管理水平。 2.8定期检查避雷器及动作次数,雷击后增加一次检查。 2.9巡视风场线路时重点检查避雷器完好无损。

2.10在起雾、降水、降雪等潮湿天气条件下的变电站设备进行特 殊巡视,包括观察憎水性、查看有无严重放电等异常情况。 如果出现憎水性过低 2.11严重放电等异常情况,应进一步确定原因,要及时汇报。 值班员应对变电站接地装置地表以上的接地引下线各部位进行检查,检查是否有断裂锈蚀开焊现象,发现缺陷及时处理。 2.12在变电站内进行改扩建的基础施工时,隐藏工程必须经过验 收合格后,方可回填土,并且应检查测量接地装置焊接质量和接地实验应符合规。 生产部 2009年11月1日

风力发电机组防雷接地施工专项方案

风力发电机组防雷接地施工专项方案

目录 1.编制目的 (2) 2.风电厂地貌及接地电阻要求 (2) 3.编制依据 (3) 4.防雷接地系统 (3) 4.1总接地网 (3) 4.2风力发电机组接地布置 (3) 4.3集电线路铁塔接地型式 (4) 5.接地材料 (6) 5.1材料选择 (6) 5.2材质要求 (6) 6.质量保证措施 (6) 7.安全保证措施 (6)

防雷接地施工专项方案 1.编制目的 目前,风力发电被称为明日世界的能源。由于它属于可再生能源,为人与自然和谐发展提供了基础,而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。所以,风力发电已在我国达到了举足轻重的地位。 然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。主体高度约80米、叶片长度约45米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。雷击是自然界中对风力发电机组安全运行危害最大的一种灾害,雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。 风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。为保证风力发电机组的正常、安全使用,特编制此方案。 2.风电厂地貌及接地电阻要求 甄家湾风电场位于河北张家口蔚县地区,风力发电机组功率2000KW。此地,土壤电阻率比较高,超过450Ω.m,加之有岩石的存在,造成不同深度的土壤电阻率分布不均匀。 风机基础占地面积为9.8*9.8π,距其17.5m处有一台箱式变压器,

风电发展的关键技术研究

风电发展的关键技术研究 风电行业的兴起是全球能源与资源紧张的必然趋势,同时也是全球对清洁能源的迫切需求,风电作为清洁能源之一受到了各国政府的重视和发展。文章从四个方面讲述了风电发展的关键和核心技术:叶片技术、齿轮技术、轴承技术与控制技术。 标签:风电;关键技术;机电;控制 我国的常规资源比较缺乏,而风能资源比较丰富,从对环境污染更小的角度来看,风电是无污染能源,清洁能源。到2020年国内用电需求将达到4亿千瓦的用电量,庞大的用电需求对于国内发展风电来说将是个巨大的契机。政府的规划到2020年风电将会超过水电,成为第二大电力资源。目前世界市场上风电机主要的调节技术有:定桨距调节风电机技术、变桨距调节风电机技术、主动定桨距调节技术、变速恒频四种。目前,我国仅掌握定桨距失速调节型风电机技术,这类风电机的容量可以扩大到750kW,另外三种技术均没有涉及。我国与西方发达国家的风能利用方面还有比较大的差距,尤其核心控制模块还需要从国外进口,从风能的利用率方面还比较低,并网技术方面还有不小的差距。我国风电机技术开发仍处于较低水平。 1 风力发电机叶片应该满足的基本要求 风力发电机的叶片是叶轮的核心部件。叶片的设计涉及到多学科的知识,机械学,空气动力学,材料学疲劳特性学等等。风力发电机组效率的高低取决于叶片的形状。叶片主要几何参数有:风轮的直径,风轮的扫掠面积,风轮的偏角以及叶尖速比等等。叶片形状合理的设计与叶片片数的合理选择将会对发电机组的效率和降低噪音起到关键的作用。 叶片是风力发电机中最基础和最关键的部件,其良好的设计、可靠的质量和优越的性能是保证机组正常稳定运行的决定因素。恶劣的环境和长期不停的运转,致使对叶片的要求需要很严格:密度轻且具有最佳的疲劳强度和力学性能,能经受暴风等极端恶劣条件和随机负载的考验;叶片的弹性、旋转时的惯性及其振动频率特性曲线都正常,传递给整个发电系统的负载稳定性好,不得在失控的情况下离心力的作用下拉断并飞出,亦不得在风压的作用下折断,也不得在飞车转速以下范围内产生引起整个风力发电机组的强烈共振;叶片的材料必须保证表面光滑以减小风阻,粗糙的表面亦会被风“撕裂”;不得产生强烈的电磁波干扰和光反射;不允许产生过大噪声;耐腐蚀、耐紫外线照射和耐雷击性能好;成本较低,维护费用低。 2 风力发电机用轴承主要类型及工况条件 存在于风机轴承开发研制中的主要技术难点是实现轴承长寿命所需要的密封结构和润滑脂、特殊的滚道加工方法和热处理技术、特殊保持架的设计和加工

风力发电机组防雷设计方案

风力发电机组防雷设计方案 深圳天顺科技有限公司曾中海 一:概述 风能是当前技术最成熟、最具备规模开发条件的可再生洁净能源。风能发电为人与自然和谐发展提供了基础。由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。 由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。例如,红海湾风电场建成投产至今发生了多次雷击事件,据统计,叶片被击中率达4%,其他通讯电器元件被击中率更高达20% 。 为了降低自然灾害带来的损失,必须充分了解它,并做出有针对性的防范措施。 二:风机对比介绍 风电变速恒频风力发电系统,主要分为双馈式和直驱式。双馈式风力发电系统由于其变流器容量(滑差功率)只占系统额定功率的30%左右,能较多地降低系统成本,因此双馈式系统受到了广泛的关注。与双馈式相比,直驱式采用低速永磁同步发电机结构,无需齿轮箱,机械损耗小,运行效率高,维护成本低,但是,由于系统功率是全功率传输,系统中变流器造价昂贵,控制复杂(本文重点介绍直驱式风电系统雷电防护)。 直驱风力发电系统风轮与永磁同步发电机直接连接,无需升速齿轮箱。首先将风能转化为频率和幅值变化的交流电,经过整流之后变为直流,然后经过三相逆变器变换为三相频率恒定的交流电连接到电网。通过中间电力电子变化环节,对系统有功功率和无功功率进行控制,实现最大功率跟踪,最大效率利用风能。 直驱式风力发电系统中的电力电子变换电路(整流器和逆变器)可以有不同的拓扑结构(常见2种见图1、2)。 图1 图2 三:设计依据标准

风力发电机的雷电绕击分析与防护

风力发电机的雷电绕击分析与防护 发表时间:2018-12-07T10:00:32.543Z 来源:《防护工程》2018年第25期作者:郑卓骅林娜 [导读] 风能资源丰富,发展风力发电优势得天独厚。为了能保障风机发电系统在一个可靠的环境下安全运行,对风机采取相应的雷击保护措施是不可避免的。对此,本文针对风力发电机雷击及其防护进行了研究,以雷击风机桨叶暂态特性仿真分析为案例,提出了防雷整改措施,希望为雷击事故应对和处理提供参考。 郑卓骅林娜 广东省揭阳市气象局 摘要:风力发电因其清洁无污染、可永续利用等特点,对于调整我国能源结构、加强资源节约利用、促进生态环境保护、推进经济可持续发展意义重大。我国幅员辽阔,风能资源丰富,发展风力发电优势得天独厚。为了能保障风机发电系统在一个可靠的环境下安全运行,对风机采取相应的雷击保护措施是不可避免的。对此,本文针对风力发电机雷击及其防护进行了研究,以雷击风机桨叶暂态特性仿真分析为案例,提出了防雷整改措施,希望为雷击事故应对和处理提供参考。 关键词:风力发电机;雷电绕击;防护 风力发电是将风能进行较为直接地开发利用,风电场一般建立在山顶、荒漠、滩涂等自然地理环境复杂且容易受到雷电灾害影响的地方,雷击事故时有发生,风力发电的蓬勃发展正在受到日益严重的雷电灾害的威胁。国内外相关案例都表明雷击是严重威胁风力发电场安全的主要问题之一。雷电击中风机后,雷电流将会对风机叶片等结构造成严重破坏,导致高昂的经济损失,如维修费用、人工成本和停运损失等。为避免雷击事故中雷电流对风机的损害,风电场的雷击防护至关重要。 一、雷电放电概述 雷电具有非常强大的爆发力,也具有很大的随机性,雷电的放电主要是雷云和雷云之间或者雷云内部进行的,其中雷云放电是在某些适当的地理和气象条件下,由于比较强烈的潮湿热气流不断上升进入稀薄大气层后冷凝的结果。雷云对地放电是从下行先导放电阶段开始的。如今的风电机组容量已经从几百千瓦扩大到兆瓦级的,高度也已经达到了一百多米,属于高体结构,其雷云在下行先导通道中负电荷的感应作用下,风电机组会出现感应正电荷。当下行先导头部接近机组时,风机的叶片尖端部分会发生畸变作用,伴随着电场强度快速扩大,附近的大部分空气产生游离,就会发生上行先导。其中上升放电先导是分布正电荷,向上的速度是(0.05~1.2)×106m/s。接着上升先导和下升先导在空气中会合之处就产生了回击放电,于是风机就遭受了雷击,会合之处就是雷击点。 二、绕击模型 目前较为常用的绕击分析模型包括经典电气几何模型和Eriksson提出的改进电气几何模型。电气几何模型在分析输电线路屏蔽失效的方面获取了较好的效果。电气几何模型是基于击距概念,击距是将线路引雷能力与雷电流幅值联系在一起。在电气几何模型的基础上,相关的学者又通过完善提出了引雷空间法开展线路防雷保护的分析。引雷空间法中的非常重要的一个概念是吸引半径,具体说的是引雷的结构物包含一定的雷电吸引范围,一旦雷电下行先导进入吸引半径区域内,结构物会产生迎面先导从而拦截下行先导,否则雷电先导击中地面。吸引半径较击距更能看出建筑产生的上行先导所产生的雷击影响。 三、雷击风机桨叶暂态特性仿真分析 由于风机高耸的结构和桨叶顶端突出的特点,风机桨叶是比较容易遭到雷击的部位之一,而又因桨叶通常处于旋转状态,受雷击后,其雷电流泄放通道更难形成,所以桨叶也很容易击坏。可以把整张叶片看成一条传输线,并且等值成一个RLC电路,选取的叶片仿真模型在工程中实际长度为60m。在ATPdraw仿真电路中,把叶片依次从上往下等分成A、B、C三段,雷电流从桨叶的顶部注入,在每相隔的RLC 电路中添加节点电压测量仪,设置每段20m的单相分布传输线。 为更接近实际风机情况,对风机进行模拟计算时,选取风机的部分参数为:整机总体直径是130m,塔体高80米,叶片长度为60m,叶根弦长4m。设雷电流波形为我国电力行业规定采用的2.6/50μs,且在仿真软件中参数设置幅值为100kA,波头时间为4E-6,半波时间为5E-5。在ATPdraw仿真软件中,设定仿真参数后,进行仿真。 另外,雷电流沿壳体内部路径传导时常会出现电弧,弧道附近的壳体材料,同时高温可能高达几千度,这样高的温度会严重烧损弧道附近的壳体材料,同时高温也会在壳体内部产生高压力的冲击波,对桨叶壳体产生机械损伤,这种损伤连同电弧通道高温的烧灼作用,常使受雷击后的桨叶出现裂痕。 四、风电场防雷整改措施 (一)风机基座基础与箱变设备防雷接地系统设计 风机基座基础与箱变设备防雷接地要依据风机的所在的地理环境、土壤电阻率、雷电灾害发生的频率等条件,并根据IEC61400-24-2010等的相关规范和要求来设计。 风力发电机组的接地系统不仅是风机与箱变的防雷接地,同时也是系统接地(防静电接地)、保护接地和工作接地。首先,要利用风力发电机基座基础接地装置当作自然接地体,其次,依据现场的实际情况和土壤电阻率在风机基础接地体外进行敷设,接地铜引线穿过基座时与基座里的钢筋有效的连接,并与箱变设备的接地连接在一起,将风机基础内的接地和基础外接地网联系构成完整的接地体。最后,埋设垂直接地体以及外延接地体当作扩散雷电流的人工接地网,通过利用厚度不小于4mm的热镀锌扁铁,且埋地的深度不小于80cm,以符合接地电阻阻值小于4Ω的要求。 结合风电场的实际现场环境,通过利用半球接地原理,在风机基础外延一定数量的水平接地体,并在外延水平接地体上均匀地布设相应数量的接地高效降阻产品DK-AG/Fb防腐电解地极,利用电解质向地表深层和四周的泄放,可使导电率极差的地质结构,形成一个很好的导电通道,大大降低接地电阻。 五、结束语 综上所述,在风电机组设备损坏当中,叶片的损坏对发电量的影响最大,所需要的维修费用最多,维修工艺也最复杂。严重的雷击叶片事故甚至可能导致整台风电机组报废。而风机的雷击特性又和叶片密切相关,因此叶片的防雷是风电机组防护的重点和难点。针对雷电

风力发电机防雷系统

新疆大学电气工程学院课程作业 题目: 风力发电机防雷系统讲课老师: 王海云 学生姓名: 学号: 所属院系:电气工程学院 专业:电气工程及其自动化班级:电气09-4班 日期: 2013年5月

风力发电机防雷系统 0、引言 风能是当前技术较好的、最具备规模开发条件的可再生洁净能源。风能发电为人与自然和谐发展提供了基础。由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害,并且雷击对风电机组造成的危害主要有直击雷、感应雷、雷电波侵入、地电位反击等形式。雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。 1、雷电的产生 雷电是伴有闪电和雷鸣的一种雄伟壮观而又有点令人生畏的放电现象。雷电一般产生于对流发展旺盛的积雨云中,因此常伴有强烈的阵风和暴雨,有时还伴有冰雹和龙卷风。积雨云顶部一般较高,可达20公里,云的上部常有冰晶。冰晶的凇附,水滴的破碎以及空气对流等过程,使云中产生电荷。云中电荷的分布较复杂,但总体而言,云的上部以正电荷为主,下部以负电荷为主。因此,云的上、下部之间形成一个电位差。当电位差达到一定程度后,就会产生放电,这就是我们常见的闪电现象。闪电的平均电流是3万安培,最大电流可达30万安培。闪电的电压很高,约为1亿至10亿伏特。一个中等强度雷暴的功率可达一千万瓦,相当于一座小型核电站的输出功率。放电过程中,由于闪电通道中温度骤增,使空气体积急剧膨胀,从而产生冲击波,导致强烈的雷鸣。带有电荷的雷云与地面的突起物接近时,它们之间就发生激烈的放电。在雷电放电地点会出现强烈的闪光和爆炸的轰鸣声。这就是人们见到和听到的闪电雷鸣。

风电机组叶片防雷检查

关于叶片防雷及接地的避免措施和检查方法整理如下,希望有所帮助。 一、目前叶片雷击基本为:雷电释放巨大能量,使叶片结构温度急剧升高,分解叶片内部气体高温膨胀, 压力上升造成爆裂破坏(更有叶片内存在水分而产生高温气体,爆裂)。叶片防雷系统的主要目标是避免雷电直击叶片本体而导致叶片损害。经过统计:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。多数情况下被雷击的区域在叶尖背面(或称吸力面)。根据以上叙述,叶片防雷设计一般在叶尖装有接闪器捕捉雷电,再通过敷设在叶片内腔连接到叶片根部的导引线使雷电导入大地,约束雷电,保护叶片。 二、按IEC61400-24标准的推荐值,叶片防雷击铜质电缆导线截面积最小为50平方毫米。如果为高发区, 可适当增加铜质电缆导线截面积。 三、我集团近期刚出的一个检查标准: 1、叶片吊装前,逐片检查叶片疏水孔通畅。 2、叶片吊装前,逐片检查叶片表面是否存在损伤。 3、叶片吊装前,应逐片检查叶片防雷引下线连接是否完好、防雷引下线截面是否损伤,检测叶片接闪器到叶片根部法兰之间的直流电阻,并做好检测记录。若叶片接闪器到叶片根部法兰之间的直流电阻值

高于20 mΩ,应仔细检查防雷引下线各连接点联接是否存在问题。 叶片接闪器到叶片根部法兰之间直流电阻测量采用直流微欧计、双臂电桥或直流电阻测试仪(仪器分辨率不低于 1 mΩ),采用四端子法测量,检查叶片叶尖及叶片上全部接闪点与叶片根部法兰之间直流电阻,每点应测三次取平均值。 4、机组吊装前后,应检查变桨轴承、主轴承、偏航轴承上的泄雷装置(碳刷、滑环、放电间隙 等)的完好性,并确认塔筒跨接线连接可靠。 表1 防雷检查及测试验收清单

风力发电的发展现状与关键技术综述

12 用资源,建立统一的中小企业外部诚信信息发布平台;配合银行部门加大对中小企业进行信用评级,评价结果作为中小企业贷款时商业银行认可的信用标准和必备条件,以期降低融资成本,缩短放贷时间。 3.6 打造良好金融环境 营造“守信光荣、失信可耻”的道德氛围,大力宣传一批诚实守信的中小企业典型,同时强化公正执法环境,执法部门应加大对逃、赖、废金融债务行为的惩罚力度,为金融环境提供强大的法治保障。参考文献 [1] 白金花.中小企业融资渠道拓展探析[J].中国高新技术企业,2010,(34). [2] 宋德荣.我国中小企业融资问题研究[D].中国海洋大学, 2010. [3] 姚益龙.中小企业融资问题研究[M].北京:经济管理出 版社,2012. 作者简介:殷慧琴(1974-),女,江西吉水人,供职于江西省吉水县统计局。 (责任编辑:王书柏) 随着世界经济的不断发展和科学技术水平的不断提高,人类的生活水平也随之提高。经济发展、科学进步、人们生活水平的提高,都需要能源的大力支持,这也导致全球能源消耗的快速增长。根据相关数据显示,到2020年全球的能源消耗将再增长50%~100%。由此可以看出,能源的消耗造成的气体对地球的温室效应的影响也在不断扩大,为人类带来严重后果。 针对这一现象,人们也陷入了深思:如何才能建立一个可持续发展的社会环境?因此,节约能源也成为了各国关注的话题。人们逐步将眼光转向了清洁发电的方法。 在清洁发电的方法中,风力发电无论从技术层面,还是实际操作方面,都是最成熟的发电方法之一。相对于消耗煤炭和石油的老旧方式,风力发电既不消耗任何能源,又能减排二氧化碳等污染物,净化空气。同时,风力发电在新能源领域中,不仅可以调整电力工业结构,也是极具商业开发规模的发电方式。因此,许多国家已将风电发展作为国家可持续发展的重头戏。 1 风电发展历史与现状 第一台风力发电机的雏形形成于丹麦,虽然是电力方面的重大发展,但因技术的不完善、经济支 风力发电的发展现状与关键技术研究综述 王海峰 (广东电网公司湛江供电局,广东 湛江 524005) 摘要: 文章主要论述了国内外风电最新的发展现状和风力发电的关键技术最新研究进展,并对风电技术中的功率控制技术和风电功率预测做了重点论述。另外,在其中简要介绍了全球风电的发展概况、中国风能资源分布情况等相关内容。文章有助于对风电发展全面了解和深入掌握。关键词: 风力发电;风电技术;功率控制;风电功率预测中图分类号: TM614 文献标识码:A 文章编号:1009-2374(2012)33-0012-03 2012年第33/36期(总第240/243期)NO.33/36.2012 (CumulativetyNO.240/243)

风力发电场防雷接地专项施工方案-附件

平顺县洁源阳高49MW风力发电项目工程 专项施工方案 编制: 审核: 批准: 编制单位:北京爱劳电气设备安装有限公司

目录 1内容及适用范围 (1) 2编制依据 (1) 3施工准备 (1) 3.1材料要求 (1) 3.2主要机具 (1) 3.3作业条件 (1) 3.3.1接地体作业条件 (1) 4操作工艺 (2) 4.1工艺流程 (2) 4.2地网施工工艺 (2) 4.2.1环行接地装置的安装 (2) 4.2.2自然基础接地体的安装 (4) 5注意事项 (4) 6质量标准 (4) 6.1主控项目 (4) 6.1.1检验内容 (4) 6.1.2检验方法 (5) 6.2一般项目 (5) 6.2.1接地线敷设 (5) 6.2.2接地体 (5) 6.2.3搭接和焊接 (5) 7质量保障措施 (5) 7.1接地体 (5) 7.2接地干线 (6) 7.3其他 (6) 8质量记录 (6)

1内容及适用范围 本标准规定了北京爱劳电气设备安装有限公司(以下简称爱劳电气)地网施工的工艺流程、质量控制方法。 本工艺标准适用于防雷工程的地网的安装施工。 2编制依据 (1)国家标准:《建筑物防雷设计规范》“GB50057—2010” (2)国家标准:《电气装置安装工程-接地装置施工及验收规范》GB50169-2006 (3)行业标准:《交流电气装置的接地》DL/T621—1997 (4)建设部:《建筑物防雷设施安装》99D562 3施工准备 3.1材料要求 (1)ER防腐降阻接地极. (2)镀锌钢材有扁钢、角钢、圆钢、钢管等,使用时应注意热镀锌材料,应符合设计规定。产品应有材质检验证明及产品出厂合格证。 (3)镀锌辅料有铅丝(即镀锌铁丝)、螺栓、垫圈、弹簧垫圈、U型螺栓、元宝螺栓、支架等。 (4)电焊条、氧气、乙炔、沥青漆、混凝土支架,预埋铁件,小线,水泥,砂子,塑料管,红油漆、白油漆、防腐漆、银粉,黑色油漆等。 3.2主要机具 (1)电焊机、电焊工具、压力钳、冲击钻; (2)手锤、钢锯、锯条、铁锹、大锤、常用电工工具等。 3.3作业条件 3.3.1接地体作业条件 (1)按设计位置清理好场地。 (2)底板筋与柱筋连接处已绑扎完。 (3)基础钢筋与柱筋连接处已绑扎完。

风力发电系统防雷设计研究

风力发电系统防雷设计研究 发表时间:2020-01-10T16:12:07.993Z 来源:《防护工程》2019年18期作者:赵忠汉 [导读] 等于在风机位周围设置了一个等电位面,既可以防止瞬间过电压造成的风机电子电器设备的损坏,还可以防止跨步电压造成的人员伤害。 中国水利水电第五工程局有限公司四川成都 610200 摘要:现如今,我国的经济在快速的发展,社会在不断的进步,我国的综合国力在不断的加强,同时风力发电已经成为一种发展趋势。文章阐述了风力发电在全球及国内的装机情况,解析了风力发电系统雷电防护的设计方法,指出了现行的一些雷电防护设计存在的问题,给出了改进方案,并提出了风场整体防雷和主动避让雷电的新思路。对于提高风力发电系统雷电防护的整体效果及经济性有一定的借鉴作用。 关键词:风力发电系统;雷电防护;防雷设计 引言 风力发电是一种清洁的可再生能源,近年来快速发展。随着风力机输出功率的逐渐增大,塔筒的高度以及叶片的直径也逐渐增大,但与此同时,也增加了风力机遭受雷击的风险,因此风力机组防雷技术的研究不容忽视。在雷击损坏中,叶片最易遭受雷击,据此,对风力机叶片雷击损坏机理及其防雷措施作了比较全面的阐述,最后分析对比了风力机组的2种防雷系统设计,使整个风机机组雷击损坏降至最低,为风力机防雷设计提供依据。 1风电并网的必要性 传统的发电是利用燃煤或燃气燃烧使热能转化为动能,然后转化为电能,会形成大量的氮氧化合物和碳氧化合物,对环境造成不利影响,而且处理发电带来的二次污染费用十分高昂。而风力发电和太阳能、水能发电一样,都属于绿色自然能发电范畴,清洁无污染,对我国的绿色可持续发展具有促进作用。另外,我国风能资源丰富,具有风能发电的基础优势,而且近些年来风能发电量迅猛增加,为我国工业发展做出了积极贡献。在我国的发展规划中,2020年要实现20GW的风电发展目标。风力发电的一种形式是离网型,即自行成网,不接入电网系统,和水利发电相结合能解决偏远地区的供电需求。但是,离网型风电形式没有充分发挥出风电的巨大优势,故此风电并网成为一种趋势。因为除了环保优势,风力发电占地少,建设工期短,而且最主要的是可以进一步实现智能化电网管理。再者,并网之后,风力发电厂可以获得电网补偿和支撑,从而进一步提高风能利用水平,以提高洁净能的利用价值。 2风电机组的防雷设计 2.1风机的接闪和引下 风电机组中,风机叶片的最高点即为风机最高点,当有雷暴发生时,其最易受到雷击,如我国海南东方风电场因雷击造成的风机叶片损坏率达高达5.56片/(百片·年)。现今风机叶片的表面材料大多是玻璃纤维,其为绝缘体,若雷电击中叶片时,无法将强大的雷电流迅速传走,则雷电产生的强大的热作用和机械作用将直接作用于叶片上而将其损坏,而叶片的维修费用在所有的风机雷电故障中又是最高的。因而需要在叶片上安装易于接闪、抗机械和热损伤能力强,并易于拆卸的接闪器。风机叶片的接闪器一般是在叶片表面安装若干组铜质圆盘(直径为150-200mm)或不锈钢圆盘(直径范围为50-80cm),每组接闪圆盘是在叶片的正反两面各安装一只。为了保障叶片结构的稳定,接闪圆盘不能太多,一般来说,长度小于25m的叶片,只在尖端安装一组,叶片长度每增加10m增加一组接闪圆盘。引下线是在叶片内设一条金属导线,把接闪盘和风叶底部的轮毂连接起来。当雷电袭来时,接闪圆盘接闪之后雷电流通过引线及轮毂将其传到塔筒。塔筒的金属结构可充当导体,将雷电流引入风机的接地装置散入大地。但要注意的是,由于生产塔筒过程中在搭接时存在缝隙大和搭接面偏离等问题,以塔筒做导体导雷在泄放雷电流时会产生拉弧现象,因而沿塔筒搭接面导雷时,需使用较大面积的电缆进行跨接,另外还需加大压接端子之间的接触面积,加装保护罩对可能产生的拉弧处进行必要保护。风力发电机舱尾端处在与叶片相对应的位置。当雷电出现在机舱的尾端时,就会超出叶片防护区域,可能使机舱内的电气设施和设备被雷击破坏,故而需要在其尾部设置一接闪短杆,再经由引下线和接地装置把雷电流引入地下进行散流,从而起到防雷电的效果。 2.2建立孤立避雷塔捕捉雷电保护法 该方法是通过在风力机旁建立一座避雷塔拦截雷电实现的风力机保护。在雷雨天气下,当风向变化不大时,避雷塔应建立在迎风侧,且该方法效果显著。在风向变化较大的风场,必须在风力机周围建立2个或多个避雷塔才可以保证保护效果,但是该方法需要消耗大量的材料,投入较大,经济效益较差。另外,该方法比较适合具有几十台风机的风电场,此时一座避雷塔可以保护多台风机,经济效益可以得到提高。 2.3异步发电机组并网技术 异步发电机组和同步发电机组相比,其因为风力涡轮机通过传输效率调整负载,故不需要精确的转速实现和系统电压匹配,只要和同步发电机组的转速基本一致即可。故此,其没有十分庞杂的控制设备,而且并网以后与同步发电机组相比,对电网系统冲击小,而且能够保持较为稳定的电压,会有效抑制震荡和步进。但是当人工操作时,可能会出现电压改变,从而使整个系统电压值发生改变。另外,其不能提供无功功率,会导致终端用电客户用电体验,造成电器设备损坏,因此,需要进行无功功率补偿。 2.4浪涌保护器的使用 浪涌保护器也叫防雷器,是一种为各种仪器仪表、通讯线路、电子设备等提供安全防护的电子装置。它的作用原理是在极短的时间内导通分流,以避免浪涌对回路中仪表线路和设备的损害。风机若被雷电击中,会在机组内部产生很强的电磁场,其通过线缆传输时会产生浪涌性的过电压和过电流。现代风电机组内部,均安装有大量的电子和微电子集成设备,因而电子电器设备和系统很易被超高的浪涌电压损坏,造成巨大的经济损失。为了避免此种情况的出现,就必须使用浪涌保护器。浪涌保护器可以抑制因雷电引起的信号线路间、电源与接地的金属管线之间的高电位差,能够把进入信号传输线和电力线的瞬时过电压控制在其能承受的电压范围内,同时把过大的雷电流泄流到大地,以防止设备和系统遭受破坏。风电机组的防雷应根据GB50343标准规定安装合适的浪涌保护器,一般安装三级浪涌保护器。第一级浪涌保护器安装在塔筒内部的总进出线处,其作用主要是将风电机组遭遇雷击后所产生的几万甚至几十万伏的浪涌电压降低到2500V-

风力发电机自动消防系统的选择

风力发电机自动消防系统的选择 自从2006年《可再生能源法》生效以来,中国的风电装机取得了迅速的增长,无论是年度装机容量还是累计装机容量,都已经成为世界第一。截止到2013年底已经有台累计9174万千瓦6万多台风电机组在中国的大地运行着。但是,随着装机容量的不断增加,风电机组的火灾事故也越来越多,轻则烧毁设备,重则造成人员伤亡,给企业在经济上、声誉上均造成了巨大的损失。 本文主要探讨风电机组的配备消防系统必要性及如何选择。 一、风力发电机组为什么需要自动消防系统 1. 机组价值高 风力发电机组是高价值的设备,以2MW风机为例,每台风电机组(含塔筒)价值1000万元。风机的叶片为复合材料制成,机舱外壳材料为玻璃钢,里面容纳有各类电气设备、液压站、齿轮箱、发电机等,一旦发生火灾,基本上风机设备会全部灭失,所残留的设备也没有维修和使用的价值了。单机容量越大,设备价值越高,更需要防火保护。 2. 风机自身的火灾隐患多 1) 野外雷击 风机机组工作在野外风速比较大的地方,如山脊、开阔的平原等处,而这些地方恰恰是容易遭受雷击的区域。丹麦是地势平坦的国家,海拔最高处不超过150米,据丹麦建筑物及风机防雷委员会统计,自从丹麦发展风电以来,这个国家每年遭受的雷击次数骤升到30万次以上。雷击能量的大小很难预测,而风机的防雷设计系统都是按照一定的标准设计,是有容量限度的。当实际的雷击超过设计标准时,就会发生火灾。 2) 风机设计制造缺陷 风机的设计要符合当地运行环境的特点,但是某些风机设计上制造上有缺陷。如在海边或者海上运行的风机,需要考虑盐雾对电气设备腐蚀的影响,有的风机未安装潮湿空气过滤系统(又称“气候包”),导致机舱里高压变压器等设备的接线端子锈蚀,产生污闪电晕放电现象,最后造成相间短路发生火灾。有的风机齿轮箱漏油严重,地板上会有一些积油。有的风机防雷性能较差,未能正确按照防雷分区的要求设计相应的防雷措施,有的制造质量较差接地线未能正确安装,或者风电场自身的接地网长期锈蚀导致接地性能下降等。这些因素均会在运行中由于自身(电气防护等级下降)或外界的原因(雷击)导致火灾发生。 3) 服务不到位

风力发电机组防雷接地施工专项方案

目录

防雷接地施工专项方案 1.编制目的 目前,风力发电被称为明日世界的能源。由于它属于可再生能源,为人与自然和谐发展提供了基础,而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。所以,风力发电已在我国达到了举足轻重的地位。 然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。主体高度约80米、叶片长度约45米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。雷击是自然界中对风力发电机组安全运行危害最大的一种灾害,雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。 风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。为保证风力发电机组的正常、安全使用,特编制此方案。 2.风电厂地貌及接地电阻要求 甄家湾风电场位于河北张家口蔚县地区,风力发电机组功率2000KW。此地,土壤电阻率比较高,超过450Ω.m,加之有岩石的存在,造成不同深度的土壤电阻率分布不均匀。 风机基础占地面积为*π,距其处有一台箱式变压器,再远处亦是35KV集电线路终端铁塔。为保证风电场不遭受雷击而正常发电运行,要求风力发电机组的接地电阻值≤Ω,35KV集电线路铁塔的接地电阻值详见接地装置数据表。

3.编制依据 (1)施工招标文件及相关施工图; (2)国家、行业及自治区现行的有关工程建设标准、规范、规程及相关的法律、法规,具体如下: 《电气装置安装工程接地装置施工及验收规范》GBJ50242—2002 《风力发电场项目建设工程验收规范》DLT5191-2004 4.防雷接地系统 总接地网 图1、风机与升压变接地网布置图 风力发电机组接地布置

古建筑物防雷设计方案

XXX寺古建筑物防雷设计方案 河南扬博防雷科技有限公司 、古建筑物现场概述 XXX属北温带大陆性气候,日照充足,昼夜温差大。全年日照数2808 小时, 年最高气温达40 摄氏度,最低气温为-20 摄氏度,年均温9.5 摄氏度,

年均降水量460 毫米,年平均蒸发量1025 毫米,蒸发量大于降水量,雨量集中在每年的7、8、9 月份。冬春季节多风,最大风速7.2 米/ 秒,风向多北西。结冰期从11月开始,翌年3月解冻,冰期约5 个月。冻土深度0.5--0.8 米。无霜期平均202 天。文物馆为歇山式仿古建筑,长米,宽米,高米。主体是XX结构,屋顶上层坡,下部坡,全部用琉璃瓦勾彻,金碧辉煌,雄伟壮观。主殿两侧,东西长米,宽米。文物馆主殿高大并且没有雷电防护措施。整体防雷在不破坏整体美观并安全、经济的原则下进行设计。本案结合贵方实际情况对寺内文物作详尽设计。 二、古建筑物防雷设计依据及设计方案 GB50057-1994 《建筑物防雷设计规范》(2010年版) GB50343-2012《建筑物电子信息系统防雷技术规范》 GA267-2000 《计算机信息系统雷电电磁脉冲安全防护规范》 IEC 61024 《建筑物防雷》 GB50165-92 (摘要)《古建筑木结构维护与加固技术规范》 GB/T 50314-2000 《智能建筑设计标准》 YD/T926-1~3(2000)《大楼综合布线总规范》 GB/T50311-2000《建筑与建筑群综合布线系统工程设计规范》 GB2887—89 《计算机场地安全要求》 依据中国气象局第11 号令《防雷装置设计审核和竣工验收规定》、符合 《气 象法》、《防雷减灾管理办法》、《省气象条例》、《省防雷减灾实施办法》和《市人民政府关于加强防雷减灾工作的通知》等相关防雷规范进行设计。 三、河南扬博防雷公司简介

风力发电场防雷接地工程方案

风力发电场 防雷接地工程方案 一、概述 目前,风力发电被称为明日世界的能源。由于它属于可再生能源,为人与自然和谐发展提供了基础。而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。所以,风力发电已在我国达到了举足轻重的地位。 然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。主体高度约80米、叶片长度约40米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。它是自然界中对风力发电机组安全运行危害最大的一种灾害。雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。 风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。 本方案针对风力发电机组的防雷接地。 二、风力发电厂地貌及接地电阻要求 风力发电场位于河北张家口地区,风力发电功率为1500kw。土壤电阻率比较高,超过450Ω.m。由于有岩石的存在,造成不同深度的土壤电阻率分布不均匀。风机接地电阻要求做到4欧姆。风机基础占地面积大约14×14平方米,距其10m处有一台箱式变压器,其接地电阻值的要求为4欧姆。 三、接地材料的选择及地网设计 接地是指将风机的外壳与大地连接一起,以便在正常运行、事故接地和遭受雷击的情况下,将其接地点的电位固定在允许范围内,从而保证人身和设备安全。风机的接地系统是风机防雷保护系统中一个关键环节。在地网开挖面积有限、土壤电阻率较高的环境条件下,要能达到上面的技术要求,用传统常规

海上风力发电基础形式及关键技术探析

龙源期刊网 https://www.wendangku.net/doc/e53573373.html, 海上风力发电基础形式及关键技术探析 作者:莫非 来源:《科技信息·上旬刊》2017年第07期 摘要:风力发电作为一种全新的能源产生方式,因为其资源丰富不会受到土地条件的限制,在多个国家逐渐兴起。我国拥有很长的海岸线,就更应该利用好这一部分资源,扩大对海上风力发电的研究。因此,本文通过海上风力发电基础型式的了解,探讨其关键技术,希望可以解决我国在能源方面面临的问题。 关键词:海上风力发电;基础型式;漂浮;技术 因为风能本身的可再生性、清洁性,再加上大规模应用技术的成熟,使得风力发电成为除开核能之外,技术最为成熟,且最具发展前景的一种发电方式。 一、海上风力发电基础形式 (一)桩基础结构 目前,单桩基础结构是风力发电基础中应用最多的结构。其固定方式是选择液压撞击法,利用撞锤直接将钢管夯入海床,或者是在海床安装钻孔而形成。这一种基础的直径为3-6m,且壁厚为直径的1%。钢管需要插入海床的实际深度则是根据海床土壤本身的强度来定,按照测土所给予的压力传递其荷载。一般来说,单桩基础勇于浅水或者是水深为20-25m的中水水域,并且需要海床土质良好。多桩基础属于将多个桩基直接打入土内的一种形式,可以选择斜向与竖直打入两种方式。多桩基础可以有效的抵抗海水动力与海上波浪,能够满足中等水深和深水水域的要求。按照海水流动、水深不同等外部因素所造成的荷载与风机系统动力特点,就可以直接将多桩基础上部结构确定下来。多桩基础不需要准备海床,可以直接在任何水深与海床地质中使用,并且其建设简单,质量较小,但是成本高昂,在安装中需要使用专门的设备,且工作年限过后,拆卸移动都较为困难[1]。 (二)导管架基础 风基础结构会直接受到风轮机运转荷载与海洋环境荷载的影响,利用钢制材料导管架重量较轻,并且对于海床地质拥有极强的适应力,并且稳定性良好,所以适合在较深海域使用,目前在欧洲等海上的大型风电场中使用较多。导管架主要是基于框架形成结构的基础。主体的导管架基础结构包含:主筒体、主斜撑以及平台甲板等结构过渡段;可以分成先打桩导管架,后打桩导管架两种结构形式的基础主体,更进一步需要研究导管架由圆柱钢管所组成的三腿或者是四腿的基础,这一种基础在深水域采油中应用非常成熟,并逐渐运用到海上风力发电中来。 (三)重力式基础

风力发电机组防雷接地施工专项方案

目录 1.编制目的................................................................................................................................................. 2.风电厂地貌及接地电阻要求 ............................................................................................................ 3.编制依据............................................................................................................................................. 4.防雷接地系统 ....................................................................................................................................... 4.1总接地网 ..................................................................................................................................... 4.2风力发电机组接地布置.......................................................................................................... 4.3集电线路铁塔接地型式.......................................................................................................... 5.接地材料................................................................................................................................................. 5.1材料选择 ..................................................................................................................................... 5.2材质要求 ..................................................................................................................................... 6.质量保证措施.................................................................................................................................... 7.安全保证措施.................................................................................................................................... 防雷接地施工专项方案

风电机组的防雷和防雷标准[详]

风电机组的防雷和防雷标准 1 引言 在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主要是450kW 级以下的风电机组,雷害问题并不突出。随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。在风电机组的20年寿命期内,难免会遭遇到雷电的直击。中国可再生能源学会风能专业委员会于2009 年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防雷已经引起专家的高度重视。 国际电工委员会(IEC)第88 工作委员会(IEC TC 88)在编制风电机组系列标准IEC 61400 时,编制了一个技术报告(TR),作为IEC 61400 系列标准的第24 部分于2002 年6 月出版,其初衷是想为这个相对年经的工业提供防雷知识。该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002 年以前更加复杂和突出。因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。将IEC 6 1400 由技术报告(TR)升级为技术标准(TS)便提上了议事日程。 2 风电机组的雷害 IEC 61400-24 2002 中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工作原理以及所处场地等因素使其容易遭受雷害。人们已经了解建筑物高度对雷击过程的影响。高度超过60m 的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。风电机组塔架是高于60m 的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。另外,从雷电机理可知,与

相关文档
相关文档 最新文档