文档库 最新最全的文档下载
当前位置:文档库 › 24.4.1 弧长和扇形面积

24.4.1 弧长和扇形面积

24.4.1  弧长和扇形面积
24.4.1  弧长和扇形面积

教学过程设计

、D

1

中考数学专题训练:《圆的弧长和扇形面积》练习

中考数学专题训练:弧长与扇形的面积专项练习 知识精讲 一.弧长公式 1.圆的周长:2πR C = 2.弧长公式:π180n l R = (其中,l 表示弧长,n 表示这段弧所对圆心角度数值;R 表示该弧所在圆的半径). 二.扇形面积公式 1.圆的面积公式:2πS R = 2.扇形面积公式:21π3602n S R lR = =扇形(n 表示扇形圆心角度数值;R 表示半径). 三.不规则图形面积的巧算 一般利用拼凑法,割补法,把不规则图形切割拼接成面积容易计算的图形再进行计算,例如:弓形面积:=S S S -弓形三角形扇形. 弧长公式 1.一个扇形的半径为8cm ,弧长为163 cm π,则扇形的圆心角为__________. 2. 如图,在Rt △ABC 中,∠C=90°,∠A=20°,BC=3,以点C 为圆心,BC 的长为半径的⊙C 交AB 于点D ,交AC 于点E ,则(劣弧)的长为( ) A.π B.π C.π D.π 3.如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC=2,AE=3,CE=1.则BD 的长是( )

A.3π B. 23π C. 3π D. 23π . 扇形面积公式 例题1、如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD 为15cm,若纸扇两面贴纸,则贴纸的面积为() A.175πcm2 B.350πcm2 C.πcm2 D.150πcm2 例题2、如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为. 随练1、如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为() A.π B.1 2 π C.2π D. 1 4 π 随练2、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).

弧长计算公式及扇形面积计算公式

教学目标 知识与技能经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题 过程与方法经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力;了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力. 情感态度与价值观经历探索弧长及扇形面积计算公式.让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力. 重点经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题. 难点探索弧长及扇形面积计算公式;用公式解决实际问题. 教学流程设计 活动流程图活动内容和目的 (一)复习、引出问题回顾旧知,提出相关新问题 (二)分析、探究、得出公式学生通过观察、探究得出弧长及扇形面积公式 (三)公式应用弧长及扇形面积公式的应用 (四)应用、练习利用公式解决数学问题 (五)小结归纳所学知识 (六)作业布置适当的作业,加深对知识的理解 教学过程设计 问题与情景师生行为设计意图 【活动一】复习,引出问题 1.半径为R的圆的周长是多少?圆周长可以看作是多少度的圆心角所对的弧? 2.1°圆心角所对弧长是多少?2°呢?……n°呢? 老师提出问题,学生思考并回答回顾旧知识,提出新问题 【活动二】观察,得出弧长公式: 在半径为R的图中,n°的圆心角所对的弧长为: 并直接应用公式进行有关的练习让学生观察,师生共同推导出弧长公式,并能正确应用公式进行计算理解弧长与圆心角、半径之间的关系,探索弧长的计算公式,并运用公式进行计算 【活动三】提问:1、什么是扇形?2、半径为R的圆的面积是多少? 类比【活动一】【活动二】,由扇形面积与圆的面积的关系,得出扇形面积公式为:

弧长与扇形面积计算

弧长与扇形面积计算 一、选择题 1. (2011广东广州市)如图2,AB 切⊙O 于点B ,OA =2,AB =3,弦BC ∥OA ,则劣弧的弧长为( ). A .π B .π C .π D .π 图2 【答案】A 2. (2011山东滨州)如图.在△ABC 中,∠B=90°, ∠A=30°,AC=4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A ′B ′C ′的位置,且A 、C 、B ′三点在同一条直线上,则点A 所经过的最短路线的长为( ) A. B. 8cm C. 163 cm π D. 8 3cm π 【答案】D 3. (2011山东德州)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为1a ,2a ,3a ,4a ,则下列关系中正确的是 (A )4a >2a >1a (B )4a >3a >2a (C )1a >2a >3a (D )2a >3a >4a 【答案】B 4.(2011山东烟台)如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7……叫做“正 六边形的渐开线”,其中?1FK ,?12K K ,?23K K ,?34K K ,?45K K ,?56K K ,……的圆心 B′ A′ C B A (第2题图)

依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,……. 当AB=1时,l2 011等于() A. 2011 2 π B. 2011 3 π C. 2011 4 π D. 2011 6 π 【答案】B 5. (2011浙江杭州)正多边形的一个内角为135°,则该正多边形的边数为() A.9 B.8 C.7 D.4 【答案】B 6. (2011宁波市)如图,Rt?ABC中,∠ACB=90°,AC=BC=2,若把Rt?ABC绕边 AB所在直线旋转一周则所得的几何体得表面积为 A. 4π B. 4π C. 8π D. 8π 【答案】D 7.(2011浙江衢州)如图,一张半径为1的圆形纸片在边长为(3) a a≥的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是() A.2aπ - B. 2 (4)a π - C. π D. 4π - 【答案】D (第4题图) A B C D E F K1 K2 K3 K4 K5K6 7 (第10题)

弧长和扇形面积—知识讲解

弧长和扇形面积—知识讲解 【学习目标】 1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题; 2. 能准确计算组合图形的面积. 【要点梳理】 要点一、弧长公式 半径为R的圆中 360°的圆心角所对的弧长(圆的周长)公式: n°的圆心角所对的圆的弧长公式:(弧是圆的一部分) 要点诠释: (1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即; (2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径; (3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量. 要点二、扇形面积公式 1.扇形的定义 由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R的圆中 360°的圆心角所对的扇形面积(圆面积)公式: n°的圆心角所对的扇形面积公式: 要点诠释: (1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的, 即; (2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆; (4)扇形两个面积公式之间的联系:. 【典型例题】 类型一、弧长和扇形的有关计算 1.如图(1),AB切⊙O于点B,OA=AB=3,弦BC∥OA,则劣弧BC的弧长为().

A B C .π D .3 2 π 图(1) 【答案】A. 【解析】连结OB 、OC ,如图(2) 则0OBA ∠?=9, ,0A ∠?=3,0AOB ∠?=6, 由弦BC ∥OA 得60OBC AOB ∠∠=?=, 所以△OBC 为等边三角形,0BOC ∠?=6. 则劣弧BC 的弧长为 60=1803 π,故选A. 图(2) 【总结升华】主要考查弧长公式:. 举一反三: 【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,?试计算如图所示的管道的展直长度,即 的长(结果精确到0.1mm) 【答案】R=40mm ,n=110 ∴的长==≈76.8(mm) 因此,管道的展直长度约为76.8mm . 2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)

弧长计算公式及扇形面积

课题: 课型:新授课 教学目标: 1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力; 2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题,训练学生的数学应用能力; 3.使学生了解计算公式的同时,体验公式的变式,使学生在合作与竞争中形成良好的数学品质. 教学重点: 经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形的面积计算公式;会利用公式解决问题. 教学难点: 探索弧长及扇形的面积计算公式;用公式解决问题. 教学准备: 多媒体课件、几何画板软件. 教法学法: 多媒体教学、演示教学和自主探究法 教学过程: 一、创设情境,引入新课. 师:今天大家是怎么来上学的? 生:自行车/电动车/步行/坐十路车. 师:看来咱们班多数同学一天的学习生活都是从车轮开始的. 生发出会心的笑声. 师:大家看这辆自行车,它的车轮的半径是30cm,车轮转动一周,车子将会前进多少?

生:60πcm . 师:这实际上就是利用圆的周长公式计算的,那圆的面积公式是什么?圆的圆心角是多少度? 生:若圆的半径是r ,则面积是2S r π=,圆的圆心角是360°. 师:看得出来同学们对一整个圆已经是相当的了解了,我们今天要来把圆剖析一下,来研究一下“弧长及扇形的面积”(板书课题). 设计意图:激发学生的求知欲望,肯定学生的合理答案. 二、师生互动,探究新知 活动1 探索弧长公式 师:我们知道车轮转动一周是360°,那如果车轮转动180°,车子将会前进多少厘米? 生:30πcm .因为车轮转动180°,是转动了半圈,所以车子前进的距离是圆周长的一半. 师:那如果车轮转动了90°,车子将会前进多少厘米? 生:15πcm .因为车轮转动90°,是转动了四分之一圈,所以车子前进的距离是圆周长的一半. 师:那如果车轮转动1°呢?转动n °呢? 小组研讨交流、计算. 师参与、辅助、组织学生阐述解决问题的方法. 生:因为圆的周长所对的圆心角是360°,所以车轮转动1°,车子将前进圆周长的 1 360 ;车轮转动n °,车子前进的距离是车轮转动1°时的n 倍,也就是圆周长的360n .所以,当车轮转动1°时,车子前进 11 2306360180 r πππ?=?=cm; 当车轮转动n °时,车子前进2303601806 n n n r πππ?=?=cm. 师:同学们能不能通过以上探究总结一下在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式是什么? 学生思考. 生: 180 n l r π= . 师:是的,这里同学们要特别注意,公式中的n 表示的是1°的圆心角的倍数,所以不写单位;如图所示?AB 的弧长记作: ?180 l n AB r π=.请同学们记住这个公式. 学生识记公式. 设计意图:关于弧长的计算,我从一个生活中的实际问题出发,设计了5个小问题,从具体到抽象,让小组的同学讨论分

《圆》第四节弧长和扇形面积导学案1

《圆》第四节弧长和扇形面积导学案1 主编人:占利华主审人:文档设计者:设计时间:文档类型: 文库精品文档,欢迎下载使用。Word精品文档,可以编辑修改,放心下载 班级:学号:姓名: 学习目标: 【知识与技能】 1、理解并掌握弧长及扇形面积的计算公式 2、会利用弧长、扇形面积计算公式计算简单组合图形的周长 【过程与方法】 1、认识扇形,会计算弧长和扇形的面积 2、通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知识的能力 【情感、态度与价值观】 1、通过对弧长及扇形的面积公式的推导,理解整体和局部 2、通过图形的转化,体会转化在数学解题中的妙用 【重点】 弧长和扇形面积公式,准确计算弧长和扇形的面积 【难点】 运用弧长和扇形的面积公式计算比较复杂图形的面积 学习过程: 一、自主学习 (一)复习巩固 1、小学里学习过圆周长的计算公式、圆面积计算公式,那公式分别是什么? 2、我们知道,弧长是它所对应的圆周长的一部分,扇形面积是它所对应的圆面积的一 部分,那么弧长、扇形面积应怎样计算呢? (二)自主探究 1、如图,某传送带的一个转动轮的半径为10cm 1)转动轮转一周,传送带上的物品A被传送多少厘米? 2)转动轮转1°,传送带上的物品A被传送多少厘米?

3)转动轮转n°,传送带上的物品A被传送多少厘米?

O B O B A A B O A B O A B O 2、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道 的展直长度,即的长(结果精确到0.1mm). 3、上面求的是110°的圆心角所对的弧长,若圆心角为n ?,如何计算它所对的弧长呢? 请同学们计算半径为3cm ,圆心角分别为180?、90?、45?、1?、n ?所对的弧长。 因此弧长的计算公式为 l =__________________________ 4、如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形 问:右图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为1?的扇形面积是面积的几分之几?进而求出圆心角n 的扇形面积 如果设圆心角是n °的扇形面积为S ,圆的半径为r , 那么扇形的面积为S = ___ . 因此扇形面积的计算公式: S =———————— 或 S =——————————

圆的弧长和扇形面积的计算

圆的弧长和扇形面积 教学目标 (一)教学知识点 1.经历探索弧长计算公式及扇形面积计算公式的过程; 2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题. (二)能力训练要求 1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力. 2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力. (三)情感与价值观要求 1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性. 2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重点 1.经历探索弧长及扇形面积计算公式的过程. 2.了解弧长及扇形面积计算公式. 3.会用公式解决问题. 教学难点 1.探索弧长及扇形面积计算公式. 2.用公式解决实际问题. 教学方法 学生互相交流探索法 教具准备 2.投影片四张 教学过程 Ⅰ.创设问题情境,引入新课 [师]在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索. Ⅱ.新课讲解 一、复习 1.圆的周长如何计算? 2.圆的面积如何计算? 3.圆的圆心角是多少度? [生]若圆的半径为r,则周长l=2πr,面积S=πr2,圆的圆心角是360°. 二、探索弧长的计算公式 投影片(§3.7A) 如图,某传送带的一个转动轮的半径为10cm. (1)转动轮转一周,传送带上的物品A被传送多少厘米? (2)转动轮转1°,传送带上的物品A被传送多少厘米? (3)转动轮转n°,传送带上的物品A被传送多少厘米?

弧长以及扇形面积的计算-练习题含答案

弧长以及扇形面积的计算 副标题 题号一二三总分 得分 一、选择题(本大题共3小题,共分) 1.如图,在中,,,以BC的中 点O为圆心分别与AB,AC相切于D,E两点,则的长 为 A. B. C. D. 【答案】B 【解析】解:连接OE、OD, 设半径为r, 分别与AB,AC相切于D,E两点, ,, 是BC的中点, 是中位线, , , 同理可知:, , , 由勾股定理可知, , 故选:B. 连接OE、OD,由切线的性质可知,,由于O是BC的中点,从而可知OD是中位线,所以可知,从而可知半径r的值,最后利用弧长公式即可求出答案.

本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型. 2.一个扇形的弧长是,面积是,则此扇形的圆心角的度数是 A. B. C. D. 【答案】B 【解析】解:一个扇形的弧长是,面积是, ,即, 解得:, , 解得:, 故选B 利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数. 此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键. 3.的圆心角对的弧长是,则此弧所在圆的半径是 A. 3 B. 4 C. 9 D. 18 【答案】C 【解析】解:根据弧长的公式 得到: 解得. 故选C. 根据弧长的计算公式,将n及l的值代入即可得出半径r的值. 此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难度一般. 二、填空题(本大题共1小题,共分) 4.如图,已知等边的边长为6,以AB为直径的与 边AC、BC分别交于D、E两点,则劣弧的长为______. 5. 6. 7. 8. 【答案】 【解析】解:连接OD、OE,如图所示: 是等边三角形,

圆的弧长与扇形面积有关计算题(精选)

弧长与扇形面积一 1、(2013?徐州)已知扇形的圆心角为120°,弧长为10πcm,则扇形的半径为cm. 2. (2012山东泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若 ∠ABC=120°,OC=3,则BC的长为【】 A.πB.2πC.3πD.5π 3、(2013?嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头 侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长 cm B cm C cm D 4、(2013?苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为.(结 果保留π) 5、(2013?嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头 侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长 cm B cm C cm D 6、(2013?玉林)如图,实线部分是半径为15m的两条等弧组成的游泳池,若每条弧所在的圆都经 过另一个圆的圆心,则游泳池的周长是m. 7、(2013?恩施州)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长 为. 2013宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧 EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是. 8. (2012山东德州)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径 的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于. 9、(2013?遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开 cm πcm 滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm. 11、(2013?黄冈)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线 l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为. 12、(2013?常州)已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是cm,扇形的面 积是cm2(结果保留π). 13. (2012山东日照)如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆 半径r=1,阴影部分的面积记作S2,则S1S2(用“>”、“<”或“=”填空). 14、(2013?遂宁)如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长 度)的格点上,将△ABC绕点B逆时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则图中 阴影部分的面积约是.(π≈3.14,结果精确到0.1)

人教版初三数学上册弧长和扇形面积公式教学设计

《弧长和扇形的面积公式》教学设计 临高县皇桐中学周小花 教材分析 本节课的教学内容是义务教育课程标准实验教科书人教版九年级上册《圆》中的“弧长和扇形的面积”,这节课是学生在前阶段学完了“圆的认识”、“与圆有关的位置关系”的基础上进行的拓展与延伸。本课由特殊到一般探索弧长及扇形面积公式,并运用公式解决一些具体问题,为学生今后的学习及生活更好地运用数学作准备。 学情分析 九年级学生有一定的知识水平和自主学习、解决问题能力,在此基础上通过教师引导、小组合作交流探索弧长公式,类比弧长公式的探索过程尝试探索扇形面积计算公式,运用公式解决实际问题。 教学目标 经历弧长公式和扇形面积公式的推导过程,能运用弧长公式和扇形面积公式进行有关计算. 通过弧长和扇形面积公式的推导过程与运用,发展学生分析问题、解决问题及计算的能力. 通过弧长公式和扇形面积公式的推导,发展学生抽象、理解、概括、归纳能力和迁移能力. 教学重点和难点 教学重点:弧长、扇形面积公式的导出及应用. 教学难点:用公式解决实际问题 教学过程: 一、创设情景,揭示课题 在田径200米跑比赛中,运动员的起跑位置相同吗?为什么? 教师通过多媒体播放田径200米赛跑,运动员起跑时的图片,提出问题 学生观察图片思考老师提出的问题并作出回答 二、讲授新课 1、弧长的计算公式 探求弧长公式 (1)半径为3的圆的周长如何计? (2)圆的周长可以看作是多少度的圆心角所对的弧长? (3)1°的圆心角所对的弧长是多少?2°呢?3°呢?…n°呢? 弧长公式的运用 教师用多媒体展示问题 例题:例题1:制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

正多边形和圆弧长和扇形面积

正多边形与圆、弧长与扇形面积 一、目标与策略 明确学习目标及主要的学习方法就是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 了解正多边形与圆的有关概念;理解并掌握正多边形半径与边长、边心距、中心角之间的关系,会应用正多边形与圆的有关知识画正多边形. ● 通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长180n R l π=与扇形面积2360n R S π=扇的计算公式,并应用这些公式解决问题、 ● 了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题、 重点难点: ● 重点:正多边形半径与边长、边心距、中心角之间的关系;n °的圆心角所对的弧长180 n R l π=,扇形面积2360 n R S π=扇及它们的应用;圆锥侧面积与全面积的计算公式. ● 难点:正多边形半径与边长、边心距、中心角之间的关系;弧长与扇形面积公式的应用;由圆的周长与面积迁移到弧长与扇形面积公式的过程;圆锥侧面积与全面积的计算公式. 学习策略: ● 要结合图形真正理解掌握相关概念,注意多观察实物模型、多动手、 二、学习与应用 (一)多边形的内角与公式为 ,多边形的外角与为 、 (二)正n边形有 个内角,每一个内角都 ,每一个内角的度数为 、 (三)正n 边形有 个外角,每一个外角都 ,每一个外角度数为 、 (四)正n边形有 条对角线. (五)圆的半径为r ,则其周长为 ,面积为 、 知识点一:正多边形的概念 各边 ,各角也 的多边形就是正多边形、 要点诠释: “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性与针对性.知识要点——预习与课堂学习 知识回顾——复习 学习新知识之前,瞧瞧您的知识贮备过关了不?

弧长和扇形面积(教案)

24.4弧长和扇形面积 第1课时弧长和扇形面积 ;汽豹学目际 【知识与技能】 经历探索弧长计算公式的过程,培养学生的探索能力? 了解弧长计算公式,并会应用弧长公式解决问题,提高学生的应用能力? 【过程与方法】 通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力? 【情感态度】 通过对弧长和扇形面积公式的推导,理解整体和局部的关系.通过图形的转化,体会转化在数学解题中的妙用. 【教学重点】弧长公式及扇形面积公式的推导与应用? 【教学难点】阴影部分面积的计算? "襲孰字S3程 一、情境导入,初步认识 问题:制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题? 如图,根据图中的数据你能计算AB的长吗?求出弯道的展直长度? 【教学说明】通过这个实际问题引入有关弧长和扇形面积的计算,从而引入 课题。 、思考探究,获取新知

1?探索弧长公式 思考1你还记得圆的周长的计算公式吗?圆的周长可以看作多少度的圆 周角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n。的圆心角所对的弧长多少? 分析:在半径为R的圆中,圆周长的计算公式为:C=2n R,贝 圆的周长可以看作360°的圆心角所对的弧; ???1 °的圆心角所对的弧长是:1/360 ? 2n R=n R/180; 2°的圆心角所对的弧长是:2/360 ? 2n R= n R/90; 4°的圆心角所对弧长是:4/360 ? 2 n R= n r/45; ?n°的圆心角所对的弧长是:匸n n R/180; 由此可得出n°的圆心角所对的弧长是:l=n n R/180. 【教学说明】①在应用弧长公式进行计算时,要注意公式中n的意义,n表示1 °圆心角的倍数,它是不带单位的;②公式可以按推导过程来理解记忆; 例1:应用弧长公式求出上述弯道展直的长度. 答案:500 n +140(mm) 2. 扇形面积计算公式 如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 思考2扇形面积的大小与哪些因素有关?(学生思考并回答) 从扇形的定义可知,扇形的面积大小与扇形的半径和圆心角有关.扇形的半径越长,扇形面积越大;扇形的圆心角越大,扇形面积越大. 思考3若。O的半径为R,求圆心角为n°的扇形的面积. 【教学说明】此问题有一定的难度,目的是引导学生迁移推导弧长公式的方法步骤,利用迁移方法探究新问题,归纳结论.

2019-2020年九年级数学上册第28章圆28.5弧长和扇形面积的计算练习新版冀教版

2019-2020年九年级数学上册第28章圆28.5弧长和扇形面积的计算 练习新版冀教版 知|识|目|标 1.通过对扇形的认识,探索弧长公式及扇形的面积公式,能够利用公式计算弧长及扇形的面积. 2.通过对圆锥侧面展开图的探究,知道圆锥的侧面积和展开图扇形面积之间的关系,会计算圆锥的侧面积. 目标一掌握弧长及扇形面积的计算公式 例1 教材补充例题如图28-5-1,在Rt△ABC中,∠B=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转120°至△A′B′C的位置,则点A经过的路线的长度是( ) 图28-5-1 A.32π 3 B.4 3 C.8 D. 8π 3 【归纳总结】利用弧长公式解题的“三个步骤” 第一步:从问题中找出公式所涉及三个量(弧长、弧所对的圆心角、半径)中的两个; 第二步:把已知的两个量代入弧长公式; 第三步:求出公式中的未知量. 例2 教材补充例题如图28-5-2,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形BAD的面积为________.

图28-5-2 例3 教材补充例题如图28-5-3,点A ,B ,C 在⊙O 上.若∠BAC =45°,OB =2,则图中阴影部分的面积为( ) 图28-5-3 A .π-4 B.23π-1 C .π-2 D.2π 3-2 【归纳总结】求图形面积的方法 求图形面积的方法一般有两种,规则图形直接使用面积公式计算;不规则图形则利用割补、旋转、平移等方法,把不规则图形的面积转化为规则图形的面积或规则图形面积的和或差进行计算. 目标二 掌握圆锥的有关计算 例4 教材补充例题如图28-5-4,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60 cm ,则这块扇形铁皮的半径是( ) 图28-5-4 A .40 cm B .50 cm C .60 cm D .80 cm 【归纳总结】圆锥和侧面展开图之间的“两个对应” (1)圆锥的母线与展开后扇形的半径对应; (2)展开后扇形的弧长与圆锥底面圆周长对应. 根据这两个对应关系列方程求解是解决这两者转换问题的主要方法.

弧长及扇形面积的计算习题

弧长及扇形面积的计算 习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《弧长及扇形面积的计算》习题一、基础过关 1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是() A.B.1﹣C.﹣1 D.1﹣ 2.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为() A.cm B.cm C.3cm D.cm 3.圆心角为120°,弧长为12π的扇形半径为() A.6 B.9 C.18 D.36 4.在半径为2的圆中,弦AB的长为2,则的长等于() A.B.C.D. 5.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为() A.60°B.120°C.150°D.180° 6.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是() A.5πB.6πC.8πD.10π 7.已知扇形半径是3cm,弧长为2πcm,则扇形的圆心角为°.(结果保留π)8.若扇形的圆心角为60°,弧长为2π,则扇形的半径为. 9.半径为4cm,圆心角为60°的扇形的面积为πcm2. 10.如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是.二、综合训练 1.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线; (2)若⊙O的半径为2,求图中阴影部分的面积. 2.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,OC=2,求阴影部分图形的面积(结果保留π).

弧长和扇形面积的计算

第1课时弧长和扇形面积的计算 【知识与技能】 理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练地运用两个公式进行相关计算. 【过程与方法】 经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力. 【情感态度】 通过联系和运动发展的观点,渗透辩证唯物主义思想方法. 【教学重点】 弧长及扇形面积计算公式. 【教学难点】 应用公式解决问题. 一、情境导入,初步认识 在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索. 【教学说明】教师确立延伸目标,让学生独立思考,为本课学习做好准备. 二、思考探究,获取新知 探究1:弧长的计算公式 (1)已知⊙O半径为2,这个圆的周长是_______,面积是______. 当圆心角为180°时,弧长是_______,弧为圆周的_______分之______; 当圆心角为360°时,弧长是_______,弧为圆周的_______分之______; 当圆心角为90°时,弧长是_______,弧为圆周的_______分之_______; 当圆心角为60°时,弧长是_______,弧为圆周的_______分之_______; 当圆心角为30°时,弧长是_______;弧为圆周的_______分之_______; ……

当圆心角为1°时,弧长是_______;弧为圆周的_______分之_______; (2)你能推导出半径为R ,圆心角为n°时,弧长是多少吗? 【归纳结论】如果弧长为l,圆心角的度数n,圆的半径为r,那么,弧长为l=360n ·2πr=180 n r π 探究2:扇形面积公式 如图所示的各扇形面积分别是圆面积的几分之几? (1)圆心角是180°,占整个周角的 180360 ,因此圆心角是180°的扇形面积是圆面积的________. (2)圆心角是90°,占整个周角的________,因此圆心角是90°的扇形面积是圆面积的________. (3)圆心角是45°,占整个周角的________,因此圆心角是45°扇形面积是圆面积的________. (4)圆心角是1°,占整个周角的_________,因此圆心角是1°的扇形面积是圆面积的________. (5)圆心角是n°,占整个周角的_________,因此圆心角是n°的扇形面积是圆面积的________. 【归纳结论】扇形面积的计算公式为2360n r S π=或12S lr = 【教学说明】学生交流讨论;在老师的指引下,在热烈的讨论中互相启发、质疑、争辩、补充,自己得出几个公式. 三、运用新知,深化理解 1.见教材P 61例1 2.制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即AB 的长(结果精确到0.1mm )

244弧长和扇形面积

2441 弧长和扇形面积 教学任务分析 板书设计 24.4弧长和扇形面积公式 弧长公式:例题分析 扇形面积公式: 课后反思

教学过程设计 问题与情境师生行为设计意图 教师提出问题后,学生认真思考,说明解题的关键 是求中心线“展直长度”,但如何求呢?从而引出今 天的课题:弧长和扇形面积. 教师根据学生已有的知识结构,强调弧、扇形的有关概念. 由实际问题引出课题,可激发学生的学习兴趣. 教师引导学生由圆周长入 手,推导弧长公式. 活动二:思考:试一试 问题1:你还记得圆周长的计算公式 吗?圆的周长可以看作多少度的圆心 角所对的弧长?由此出发,1 °的圆心 角所对的弧长是多少?n的圆心角 呢? 设:圆的半径为R,求n的圆心角所对的弧长. 教师提出问题后,学生认真思考,由中等学生回答:圆周长为2二R,可看作是360°的圆心角所对的弧长;1°的圆心角所 问题2:你还记得圆面积的计算公式吗?圆面积可以看作多少度的圆心角所对的扇形的面积?1 ° 的圆心角所对的扇形面积是多少?n的圆心角呢? A 、. 设:已知半径为R,求n的圆心角所对的扇形面积对的弧长为 2 R = R;圆心角 360 180 为n°的弧长是圆心角为1°的弧长 的n倍;二n;的圆心角所对的 弧长为*R. 180 二弧长公式为:|= ~R 180 注:不写度,n和180表示的是 倍、分关系. 教师关注学生对公式的理解程 度. 教师引导学生类比弧长公式的 推导过程,推导出扇形面积公 式: (1)圆面积S=n R2,可以看 作是360°的圆心角所对的扇形面 积; 在教师的引 导下,推出弧长 公式,使学生明 确公式的推导过 程,知道公式的 来龙去脉,更要 学会学习新知识 的方法. 教会学生用 类比的方法研 究问题. 活动一:创设情境,引入课题 制造弯形管道时,经常要先按中心线计算“展直长度”(图1中虚线的长度),再下料,这就涉及 3 图1

弧长及扇形的面积

弧长及扇形的面积 教学目标 1.经历探索弧长计算公式及扇形面积计算公式的过程; 2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题. 教学重点 1.经历探索弧长及扇形面积计算公式的过程. 2.了解弧长及扇形面积计算公式.会用公式解决问题. 教学难点 1.探索弧长及扇形面积计算公式. 2.用公式解决实际问题. 教学过程 一.创设问题情境,引入新课 如图是圆弧形状的纸扇示意图,纸扇的半径为10cm,圆心角为120°,你能求出纸扇边沿的长度吗?纸扇面积是多少? 弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索. 二.活动与探究 探究一、1、已知⊙O半径为R,求n°圆心角所对弧长. (1)圆周长是多少? (2)1°圆心角所对弧长是多少? (3)n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍? (4)n°圆心角所对弧长是多少? 如果设⊙O半径为R,圆心角为n°,所对弧长为l,那么l=? 练习:1、圆弧形状的纸扇,纸扇的半径为10cm,圆心角为120°,求出纸扇边沿的长度吗? 探究二、已知⊙O半径为R,求圆心角n°的扇形的面积? (1)半径为R的圆,面积是多少? (2)圆心角为1°的扇形的面积是多少? (3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积的多少倍? (4)圆心角为n°的扇形的面积是多少? 如果⊙O半径为R,圆心角为n°,扇形面积为S扇形,则S=? 三、知识运用: 制作弯形管道时,需要先按中心线计算"展直长度"再下料,试计算下图中管道的展直长度,

即的长(结果精确到0.1mm). 分析:要求管道的展直长度,即求的长,根根弧长公式l=可求得的长,其中n为圆心角,R为半径. 解:R=40mm,n=110. ∴的长=πR=×40π≈76.8mm.因此,管道的展直长度约为76.8mm. 四、思考: 弧长与扇形面积有什么关系?我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n°的圆心角所对的弧长的计算公式为l=πR,n°的圆心角的扇形面积公式为S扇形=πR2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流. 五、随堂练习 1、如图是圆弧形状的纸扇示意图,纸扇的半径为10cm,圆心角为120°, 纸扇面积是多少? 2、一个扇形的圆心角为90o,半径为2,cm 则弧长= ,扇形面积= . 3、已知扇形的圆心角为120o,半径为6,则扇形的弧长是() A. 3π B.4π C.5π D.6π 六、课时小结 学了本节课你有哪些收获? 1.探索弧长的计算公式l=πR,并运用公式进行计算; 2.探索扇形的面积公式S=πR2,并运用公式进行计算; 3.探索弧长l及扇形的面积S之间的关系,并能已知一方求另一方. 七、当堂检测 (1)已知圆的半径为10cm,半圆的弧长为( ) (2)已知圆的半径为9cm ,60°圆心角所对的弧长为( ) (3)已知半径为3,则弧长为π的弧所对的圆心角为_______ (4)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______。 八、课后作业 习题24.4 第4、5题

弧长和扇形面积

弧长和扇形面积 练习 第1题. 一条弧所对的圆心角是90 ,半径是R ,则这条弧的长是 . 第2题. 若 AB 的长为所对的圆的直径长,则 AB 所对的圆周角的度数为 . 第3题. 如图,AB 是半圆O 的直径,以O 为圆心,OE 为半径的半圆交AB 于E , F 两点,弦AC 是小半圆的切线,D 为切点,若4OA =,2OE =,则图中阴影部 分的面积为 . 第4题. 如果一条弧长等于l ,它的半径等于R ,这条弧所对的圆心角增加1 ,则它的弧长增加( ) A.l n B.180R π C.180l R π D.360 l 第5题. 在半径为3的O 中,弦3AB =,则 AB 的长为( ) A. π 2 B.π C. 32 π D.2π 第6题. 扇形的周长为16,圆心角为360 π ,则扇形的面积是( ) A.16 B.32 C.64 D.16π 第7题. 如图,扇形OAB 的圆心角为90 ,且半径为R ,分别以OA ,OB 为直径 在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是( ) A.P Q = B.P Q > C.P Q < D.无法确定 第8题. 如图,矩形ABCD 中,1AB =,3BC =,以BC 的中点E 为圆心的 MPN 与AD 相切,则图中的阴影部分的面积为( ) A. 2 3 π B. 34 π C.3 4 π D. π3 第9题. 如图所示,正方形ABCD 是以金属丝围成的,其边长1AB =,把此正方形的金属丝重新围成扇形的ADC ,使AD AD =,DC DC =不变,问正方形面积与扇形面积谁大?大多少?由计算得出结果. O E F B C D A Q O A P C B B C N D P A M A B D C A D C

弧长和扇形面积专题

培优训练之《弧长和扇形面积》专题 知识点回顾: 1.半径为r 的圆,n°的圆心角所对的弧长为 ,圆心角为n°的扇形的面积为 ,若扇形弧长为l,则扇形面积为 . 2.底面圆半径为R ,母线为L 的圆锥的侧面积为: ,全面积为: . 一、课前预习 (5分钟训练) 1.在半径为1的⊙O 中,1°的圆心角所对的弧长是___________. 2.⊙O 中,半径r=30 cm ,弧AB 的长度是8π cm ,则弧AB 所对的圆心角是____________. 3.在半径为6 cm 的圆中,圆心角为40°的扇形面积是___________ cm 2. 4.扇形的面积是5π cm 2,圆心角是72°,则扇形的半径为____________ cm. 二、课中强化(10分钟训练) 1.在半径为1的⊙O 中,弦AB=1,则AB 的长是( ) A. 6π B.4 π C.3π D. 2π 2.已知100°的圆心角所对的弧长l=5π,则该圆的半径r 等于( ) A.7 B.8 C.9 D.10 3.如果扇形的圆心角为150°,扇形面积为240π cm 2,那么扇形的弧长为( ) A .5π cm B .10π cm C .20π cm D .40π cm 4.一段铁路弯道成圆弧形,圆弧的半径是2 km ,一列火车以28 km/h 的速度经过10 s 通过弯道,那么弯道所对的圆心角的度数为______________度.(π取3.14,结果精确到0.1度) 5.如图24-4-1-1,三个圆是同心圆,图中阴影部分的面积为. 图24-4-1-1

三、课后巩固(30分钟训练) 1.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是__________. 图24-4-1-3 2. 如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线AB的轴截面上另一母线AC上,问它爬行的最短路线是多少? 3.如图24-4-1-5,正△ABC内接于⊙O,边长为4 cm,求图中阴影部分的面积. 图24-4-1-5 4.如图24-4-1-6,Rt△ABC的斜边AB=4,O是AB的中点,以O为圆心的半圆分别与两直角边相切于点D、E,求图中阴影部分的面积. 图24-4-1-6

相关文档