文档库 最新最全的文档下载
当前位置:文档库 › 改进的并行遗传算法的MPI实现

改进的并行遗传算法的MPI实现

改进的并行遗传算法的MPI实现
改进的并行遗传算法的MPI实现

遗传算法并行化的研究.doc

遗传算法并行化的研究 学号:SC02011036 姓名:黄鑫 摘要 本文是针对遗传算法并行化进行了研究,首先简要给出了基本遗传算法的形式化描述,然后做了并行性的分析,详细介绍了遗传算法的结构化并行模型:步进模型,岛屿模型,邻接模型,最后指出了进一步要研究的课题。 关键词:遗传算法,并行计算,结构化GA 1引言 遗传算法(GA)是根据达尔文进化论“优胜劣汰,适者生存”的一种启发式搜索算法。采用选择,交叉,变异等基本变化算子在解空间同时进行多点搜索,本身固有并行性。随着大规模并行机的迅速发展,将并行机的高速性与遗传算法并行性结合起来,从而促进遗传算法的发展。然而,仅仅将基本遗传算法硬件并行化伴随着大量通讯开销等问题,从而必须对标准GA的进行改进,使得并行遗传算法不单单是遗传算法硬件并行实现,更重要的是结构化的遗传算法。本文首先给出了GA形式化描述,对基本GA的可并行性做出分析,然后给出了并行GA的模型,最后指出了并行遗传算法还需要解决的问题。 2 基本遗传算法 在这里我们不对遗传算法做过多的介绍,只是给出基本遗传算法的形式化描述:begin (1)initialization (1.1)产生一个初始群体 (1.2)评估第一代整个群体的适应度值 (2)while running do (2.1)选择父代 (2.2)交叉操作 (2.3)子代变异 (2.4)评估子代的适应度 (2.5)子代取代父代,形成新的一带个体 endwhile end 3 遗传算法的并行性分析 从第一节对遗传算法的描述,我们可以看出基本遗传算法模型是一个反复迭代的进化计算过程,通过对一组表示候选解的个体进行评价、选择、交叉、变异等操作,来产生新一代的个体(候选解),这个迭代过程直到满足某种结束条件为止。对应于基本遗传算法的运行过程,为实现其并行化要求,可以从下面四种并行性方面着手对其进行改进和发展。 并行性Ⅰ:个体适应度评价的并行性。 个体适应度的评价在遗传算法中占用的运行时间比较大。通过对适应度并行计算方法的研究,可提高个体适应度评价的计算效率。 并行性Ⅱ:整个群体各个个体适应度评价的并行性。

遗传算法与优化问题

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm —GA),就是模拟达尔文的遗传选择与自然淘汰的生物进化过程的计算模型,它就是由美国Michigan大学的J、Holla nd教授于1975 年首先提出的?遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算? 1. 遗传算法的基本原理 遗传算法的基本思想正就是基于模仿生物界遗传学的遗传过程?它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体?这个群体在问题特定的环境里生存 竞争,适者有最好的机会生存与产生后代?后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解?值得注意的一点就是,现在的遗传算法就是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身就是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法就是由进化论与遗传学机理而产生的直接搜索优化方法;故而 在这个算法中要用到各种进化与遗传学的概念? 首先给出遗传学概念、遗传算法概念与相应的数学概念三者之间的对应关系这些概念

(2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要就是:先把问题的解表示成“染色体”,在算法中也就就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则从中选 择出较适应环境的“染色体”进行复制 ,再通过交叉、变异过程产生更适 应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就就是问题的最优解. 下面给出遗传算法的具体步骤,流程图参见图1: 第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间; 第二步:定义适应函数,便于计算适应值; 第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数; 第四步:随机产生初始化群体; 第五步:计算群体中的个体或染色体解码后的适应值; 第六步:按照遗传策略,运用选择、交叉与变异算子作用于群体,形成下一代群体; 第七步:判断群体性能就是否满足某一指标、或者就是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步. 图1 一个遗传算法的具体步骤

一种改进的遗传算法

第17卷第3期 辽阳石油化工高等专科学校学报Vol.17No.3 2001年9月 Journal of Liaoyang Petrochemical College September2001 一种改进的遗传算法 王亮申 王文友 吴克勤 江远鹏 谢 荣 (辽阳石油化工高等专科学校机械系,辽阳111003) 摘 要 给出的适应值标定公式能够解决对个体选择压力和标定后适应值非负问题. 对多极值函数的遗传算法所提出的改进措施可以增加群体的多样性,避免算法“早熟”,过早 陷入局部最优. 关键词 遗传算法;适应值标定;早熟 中图分类号 O224 由美国密执安(Michrgan)大学的Holland教授等人在1975年创立的遗传算法(G enetic Algo2 rithms简称G A),是建立在达尔文(Darwin)的生物进化论和孟德尔(Mendel)的遗传学说基础上的算法.经过后人的不断改进使得遗传算法更加完善.由于遗传算法求解复杂优化问题的巨大潜力及其在各个领域(如布局优化问题、交通问题、图像处理与识别、结构设计、电力系统设计、可靠性计算等)的成功应用,这种算法越来越被人们所接受. 遗传算法是一种基于生物进化原理构想出来的搜索最优解的仿生算法,它模拟基因重组与进化的自然过程,把待解决问题的参数编成二进制码或十进制码(也可编成其它进制码)即基因(gene),若干基因组成一个染色体(个体),许多染色体进行类似于自然选择、配对交叉和变异运算,经过多次重复迭代(即世代遗传)直至得到最后的优化结果.习惯上,适应度值越大,表示解的质量越好.对于求解最小值问题可通过变换转为求解最大值问题.遗传算法是一种高度并行、随机、自适应搜索算法. 尽管遗传算法有许多优点,也有许多专家学者对遗传算法进行不断研究,但目前存在的问题依然很多.如(1)适应值标定方式多种多样,没有一个简洁、通用方法,不利于对遗传算法的使用; (2)遗传算法的“早熟”现象即很快收敛到局部最 收稿日期:2001-06-27优解而不是全局最优解是迄今为止最难处理的关键问题;(3)快要接近最优解时在最优解附近左右摆动,收敛较慢. 1 改进方法 1.1 适应值标定 初始种群中可能存在特殊个体的适应值超常(如很大).为了防止其统治整个群体并误导群体的发展方向而使算法收敛于局部最优解需限制其繁殖;在计算临近结束,遗传算法逐渐收敛,由于群体中个体适应值比较接近,继续优化选择困难,造成在最优解附近左右摇摆,此时应将个体适应值适当加以放大,以提高选择能力,这就是适应值的标定.文献[1]提出的标定方法有两个计算公式,不利于使用;文献[2]的标定方式虽然限制了适应值范围但将最大最小值颠倒.此外象幂律标定、对数标定等亦有应用.本文针对适应值标定问题提出以下计算公式. f’= 1 f max-f min+δ (f+|f min|) f′—为标定后的适应值;f—为原适应值;δ—为在(0,1)内的一个正实数,目的是防止分母为零和增加遗传算法的随机性;|f min|—是为了保证定标后的适应值不出现负值。

遗传算法基本原理及改进

遗传算法基本原理及改进 编码方法: 1、二进制编码方法 2、格雷码编码方法 3、浮点数编码方法。个体长度等于决策变量长度 4、多参数级联编码。一般常见的优化问题中往往含有多个决策变量,对这种还有多个变量的个体进行编码的方法就成为多参数编码方法。多参数编码的一种最常用和最基本的方法是:将各个参数分别以某种方式进行编码,然后再将它们的编码按照一定顺序连接在一起就组成了标识全部参数的个体编码。 5、多参数交叉编码:思想是将各个参数中起主要作用的码位集中在一起,这样他们就不易于被遗传算子破坏掉。在进行多参数交叉编码时,可先对各个参数进行编码;然后去各个参数编码串的最高位连接在一起,以他们作为个体编码串前N位编码,同上依次排列之。

改进遗传算法的方法: (1)改进遗传算法的组成成分或实用技术,如选用优化控制参数、适合问题的编码技术等。 (2)采用动态自适应技术,在进化过程中调整算法控制参数和编码精度。 (3)采用混合遗传算法 (4)采用并行算法 (5)采用非标准的遗传操作算子 改进的遗传算法: (1)分层遗传算法 (2)CHC算法 (3)messy遗传算法; (4)自实用遗传算法(Adaptive Genetic Algorithm) (5)基于小生境技术的遗传算法(Niched Genetic Algorithm,简称NGA)。 (6)并行遗传算法(Parallel Genetic Algorithm) (7)混合遗传算法:遗传算法与最速下降法相结合的混合遗传算法;遗传算法与模拟退火算法相结合的混合遗传算法。 解决标准遗传算法早熟收敛和后期搜索迟钝的方案 (1)变异和交叉算子的改进和协调采用 将进化过程划分为渐进和突变两个不同阶段 采用动态变异 运用正交设计或均匀设计方法设计新的交叉和变异算子 (2)采用局部搜索算法解决局部搜索能力差的问题 (3)采用有条件的替代父代的方法,解决单一的群体更新方式难以兼顾多样性和收敛性的问题 (4)收敛速度慢的解决方法; 产生好的初始群体 利用小生境技术 使用移民技术 采用自适应算子 采用与局部搜索算法相结合的混合遗传算法 对算法的参数编码采用动态模糊控制 进行未成熟收敛判断

并行遗传算法

并行遗传算法及其应用 1、遗传算法(GA)概述 GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。生物遗传物质的主要载体是染色体,在GA中同样将问题的求解表示成“染色体Chromosome”,通常是二进制字符串表示,其本身不一定是解。首先,随机产生一定数据的初始染色体,这些随机产生的染色体组成一个种群(Population),种群中染色体的数目称为种群的大小或者种群规模。第二:用适值度函数来评价每一个染色体的优劣,即染色体对环境的适应程度,用来作为以后遗传操作的依据。第三:进行选择(Selection),选择过程的目的是为了从当前种群中选出优良的染色体,通过选择过程,产生一个新的种群。第四:对这个新的种群进行交叉操作,变异操作。交叉、变异操作的目的是挖掘种群中个体的多样性,避免有可能陷入局部解。经过上述运算产生的染色体称为后代。最后,对新的种群(即后代)重复进行选择、交叉和变异操作,经过给定次数的迭代处理以后,把最好的染色体作为优化问题的最优解。 GA通常包含5个基本要素:1、参数编码:GA是采用问题参数的编码集进行工作的,而不是采用问题参数本身,通常选择二进制编码。2、初始种群设定:GA随机产生一个由N个染色体组成的初始种群(Population),也可根据一定的限制条件来产生。种群规模是指种群中所含染色体的数目。3、适值度函数的设定:适值度函数是用来区分种群中个体好坏的标准,是进行选择的唯一依据。目前主要通过目标函数映射成适值度函数。4、遗传操作设计:遗传算子是模拟生物基因遗传的操作,遗传操作的任务是对种群的个体按照它们对环境的适应的程度施加一定的算子,从而实现优胜劣汰的进化过程。遗传基本算子包括:选择算子,交叉算子,变异算子和其他高级遗传算子。5、控制参数设定:在GA的应用中,要首先给定一组控制参数:种群规模,杂交率,变异率,进化代数等。 GA的优点是擅长全局搜索,一般来说,对于中小规模的应用问题,能够在许可的范围内获得满意解,对于大规模或超大规模的多变量求解任务则性能较差。另外,GA本身不要求对优化问题的性质做一些深入的数学分析,从而对那些不

遗传算法的并行实现

遗 传 算 法 (基于遗传算法求函数最大值) 指导老师:刘建丽 学号:S201007156 姓名:杨平 班级:研10级1班

遗传算法 一、 遗传算法的基本描述 遗传算法(Genetic Algorithm ,GA )是通过模拟自然界生物进化过程来求解优化问题的一类自组织、自适应的人工智能技术。它主要基于达尔文的自然进化论和孟德尔的遗传变异理论。多数遗传算法的应用是处理一个由许多个体组成的群体,其中每个个体表示问题的一个潜在解。对个体存在一个评估函数来评判其对环境的适应度。为反映适者生存的思想,算法中设计一个选择机制,使得:适应度好的个体有更多的机会生存。在种群的进化过程中,主要存在两种类型的遗传算子:杂交和变异。这些算子作用于个体对应的染色体,产生新的染色体,从而构成下一代种群中的个体。该过程不断进行,直到找到满足精度要求的解,或者达到设定的进化代数。显然,这样的思想适合于现实世界中的一大类问题,因而具有广泛的应用价值。遗传算法的每一次进化过程中的,各个体之间的操作大多可以并列进行,因此,一个非常自然的想法就是将遗传算法并行化,以提高计算速度。本报告中试图得到一个并行遗传算法的框架,并考察并行化之后的一些特性。为简单起见(本来应该考虑更复杂的问题,如TSP 。因时间有些紧张,做如TSP 等复杂问题怕时间不够,做不出来,请老师原谅),考虑的具有问题是:对给定的正整数n 、n 元函数f ,以及定义域D ,求函数f 在D 内的最大值。 二、 串行遗传算法 1. 染色体与适应度函数 对函数优化问题,一个潜在的解就是定义域D 中的一个点011(,,...,)n x x x -,因此,我们只需用一个长度为n 的实数数组来表示一个个体的染色体。由于问题中要求求函数f 的最大值,我们可以以个体所代表点011(,,...,)n x x x -在f 函数下的值来判断该个体的好坏。因此,我们直接用函数f 作为个体的适应度函数。 2. 选择机制 选择是遗传算法中最主要的机制,也是影响遗传算法性能最主要的因素。若选择过程中适应度好的个体生存的概率过大,会造成几个较好的可行解迅速占据种群,从而收敛于局部最优解;反之,若适应度对生存概率的影响过小,则会使算法呈现出纯粹的随机徘徊行为,算法无法收敛。下面我们介绍在实验中所使用的选择机制。

改进的混沌遗传算法

改进的混沌遗传算法 李辉 (计算机学院2004级研究生 04720746) 摘要:混沌遗传算法(chaos genetic algorithm, CGA)是基于混沌优化的遗传操作,将使子代个体均匀地分布于定义空间,从而可避免早熟,以较大的概率实现全局最优搜索.与传统的遗传算法相比较, CGA 的在线和离线性能都有较大的改进。而遗传算法作为一种智能算法,是解决非线性复杂优化问题的有利工具,但它在搜索过程中易陷入局部最优,收敛速度慢的缺陷又限制了它的寻优效能。混沌遗传算法具有两者的优点,大大提高了优化的效率。 关键词:遗传算法混沌混沌优化 Abstract:Chaos genetic algorithm (CGA)is a genetic operation,which based on chaos optimization,makes the individuals of subgeneration distribute uniformly in the defined space and avoids the premature of subgeneration.To compare the performances of the CGA with those of the traditional GA,The results demonstrated that the CGA’s on-line and off–line performance was all superior to that of the traditional GA.As an inteliengence algorithm,GA is a effectual toos to resolve the problem of the liner-optimization,but the slower convergence and the premature restrict its efficiency.And CGA which has the two strongpoint has promoted is efficiency in optimization. Key words: genetic algorithm chaos chaos optimization 1 引言: 遗传算法(GA)最早由美国Michigan大学的John Holland教授提出,通过模拟自然界中的生命进化过程,有指导地而不是盲目地进行随机搜索,适用于在人工系统中解决复杂特定目标的非线性反演问题。De Jong首先将遗传算法应用于函数优化问题的研究,他的工作表明在求解数学规划时,GA是一种有效的方法。但对于大型复杂系统,尤其是非线性系统优化问题的求解,GA仍有许多缺陷,如无法保证收敛到全局最优解,群体中最好的染色体的丢失,进化过程的过早收敛等。 混沌是自然界中一种较为普遍的现象,具有“随机性”、“遍历性”及“规律性”等特点,在一定范围内能按其自身的“规律”不重复地遍历所有状态的。在搜索空间小时混沌优化方法效果显著,但搜索空间大时几乎无能为力。 混沌遗传算法(CGA)的基本思想是将混沌状态引入到优化变量中,并把混沌运动的遍历范围“放大”到优化变量的取值范围,然后把得到的混沌变量进行编码,进行遗传算子操作。再给混沌变量附加—混沌小扰动,通过一代代地不断进化,最后收敛到一个最适合环境的个体上,求得问题的最优解。 2 传统遗传算法 传统遗传算法: population old_pop,new_pop;/*current and next population*/ int pop_size,generation; float p_cross,p_mutation; /*prob. Of crossover & mutation*/ 1 old_pop=initial random population={ind1,ind2,….indpopsize} 2 while(generation

遗传算法论文:浅谈遗传算法的研究与改进

遗传算法论文:浅谈遗传算法的研究与改进【摘要】遗传算法是模拟自然界生物进化机制的概率性搜索算法,可以处理传统搜索方法难以解决的非线性问题。但是经典遗传算法存在局部收敛、收敛速度慢等缺点,这使得经典遗传算法有时很难找到全局最优解。本文针对经典遗传算法中所存在的缺点,采用阶段式的适应度函数、基于竞争机制的交叉方式和仿粒子群变异操作,使遗传算法的收敛速率、全局收敛概率都得到了较大的提高。 【关键词】遗传算法适应度交叉操作仿粒子群变异 一遗传算法 遗传算法(genetic algorithm,简称ga)是holland 在研究自然遗传现象与人工系统的自适应行为时,模拟生物进化现象,并采用自然进化机制来表现复杂现象的一种全局群体搜索算法。遗传算法的基本思想起源于darwin进化论和mendel的遗传学说。作为一类智能计算工具和学习算法,由于其实现简单、对目标函数要求不高等特性,遗传算法已广泛应用于如人工智能、组合优化等研究领域。 1.遗传算法的优越性 遗传算法(genetic algorithm)利用某种编码技术作用在称为染色体的二进制串上,模拟由这些串组成的个体的进化过程。通过有组织的、随机的信息交换来重新结合那些

适应性好的串,在每一代中,利用上一代串结构中适应性好的位和段来形成一个新的串的群体,同时在串结构中尝试用新的位和段来代替原来的部分以形成新的个体,以增加种群的多样性。遗传算法的最大优点是能够通过群体间的相互作用,保存已经搜索到的信息,这是基于单次搜索过程的优化方法所无法比拟的。但是,遗传算法也存在着计算速度较慢,并且容易陷入局部最优解的问题中。 遗传算法的优越性归功于它与传统搜索方法不同的特 定结构。 第一,遗传算法的操作对象是编码,对问题的限制极少,对函数的一些约束条件如连续性、可导性等不做要求,减少了要解决问题的复杂性。 第二,遗传算法同时搜索解空间内的许多点,因而可以有效地防止搜索过程中收敛到局部最优解,并获得全局最优解,与其他单点搜索的方法相比,在计算时间上也有较大的优势。 第三,遗传算法使用遗传操作时是按概率在解空间进行搜索,因而既不同于随机搜索,也不同于枚举法那样盲目地举例,而是一种有目标、有方向的启发式搜索。 2.遗传算法的基本步骤 遗传算法的实现中包括复制、交叉、变异三个算子,需

遗传算法的原理及MATLAB程序实现

1 遗传算法的原理 1.1 遗传算法的基本思想 遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。 遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。这一过程循环执行,直到满足优化准则,最终产生问题的最优解。图1-1给出了遗传算法的基本过程。 1.2 遗传算法的特点 1.2.1 遗传算法的优点 遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点: 1. 遗传算法以控制变量的编码作为运算对象。传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。 2. 遗传算法具有内在的本质并行性。它的并行性表现在两个方面,一是遗传

并行遗传算法

1、遗传算法(GA)概述 GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。生物遗传物质的主要载体是染色体,在GA中同样将问题的求解表示成“染色体Chromosome”,通常是二进制字符串表示,其本身不一定是解。首先,随机产生一定数据的初始染色体,这些随机产生的染色体组成一个种群(Population),种群中染色体的数目称为种群的大小或者种群规模。第二:用适值度函数来评价每一个染色体的优劣,即染色体对环境的适应程度,用来作为以后遗传操作的依据。第三:进行选择(Selection),选择过程的目的是为了从当前种群中选出优良的染色体,通过选择过程,产生一个新的种群。第四:对这个新的种群进行交叉操作,变异操作。交叉、变异操作的目的是挖掘种群中个体的多样性,避免有可能陷入局部解。经过上述运算产生的染色体称为后代。最后,对新的种群(即后代)重复进行选择、交叉和变异操作,经过给定次数的迭代处理以后,把最好的染色体作为优化问题的最优解。 GA通常包含5个基本要素:1、参数编码:GA是采用问题参数的编码集进行工作的,而不是采用问题参数本身,通常选择二进制编码。2、初始种群设定:GA随机产生一个由N个染色体组成的初始种群(Population),也可根据一定的限制条件来产生。种群规模是指种群中所含染色体的数目。3、适值度函数的设定:适值度函数是用来区分种群中个体好坏的标准,是进行选择的唯一依据。目前主要通过目标函数映射成适值度函数。4、遗传操作设计:遗传算子是模拟生物基因遗传的操作,遗传操作的任务是对种群的个体按照它们对环境的适应的程度施加一定的算子,从而实现优胜劣汰的进化过程。遗传基本算子包括:选择算子,交叉算子,变异算子和其他高级遗传算子。5、控制参数设定:在GA的应用中,要首先给定一组控制参数:种群规模,杂交率,变异率,进化代数等。 GA的优点是擅长全局搜索,一般来说,对于中小规模的应用问题,能够在许可的范围内获得满意解,对于大规模或超大规模的多变量求解任务则性能较差。另外,GA本身不要求对优化问题的性质做一些深入的数学分析,从而对那些不太熟悉数学理论和算法的使用者来说,无疑是方便的。 2、遗传算法的运行机理: 对GA运行机理的解释有两类: 一是传统的模式理论;二是1990 年以后发展起来的有限状态马尔可夫链模型。 (1)模式理论:由Holland创建,主要包括模式定理,隐并行性原理和积木块假说三部分。模式是可行域中某些特定位取固定值的所有编码的集合。模式理论认为遗传算法实质上是模式的运算,编码的字母表越短,算法处理一代种群时隐含处理的模式就越多。当算法采用二进制编码时,效率最高,处理规模为N的一代种群时,可同时处理O(N3)个模式。遗传算法这种以计算少量编码适应度而处理大量模式的性质称为隐并行性。模式理论还指出,目标函数通常满足积木块假说,即阶数高,长度长,平均适应度高的模式可以由阶数低,长度短,平均适应度高的模式(积木块)在遗传算子的作用下,接合而生成。而不满足积木块假说的优化问题被称为骗问题(deceptive problem)。模式理论为遗传算法构造了一条通过在种群中不断积累、拼接积木块以达到全局最优解的寻优之路。但近十多年的研究,特别是实数编码遗传算法的广泛应用表明,上述理论与事实不符。 (2)有限状态马尔可夫链模型:由于模式理论的种种缺陷,研究者开始尝试利用有限状态马尔可夫链模型研究遗传算法的运行过程。对于遗传算法可以解决的优化问题,问题的可行域都是由有限个点组成的,即便是参数可以连续取值的问题,实际上搜索空间也是以要求精度为单位的离散空间,因此遗传算法的实际运行过程可以用有限状态马尔可夫链的状态转移过程建模和描述。对于有m 个可行解的目标函数和种群规模为N的遗传算法,N 个个体共有种组合,相应的马尔可夫模型也有个状态。实际优化问题的可行解数量m 和种群规模

遗传算法的并行实现

遗传算法的并行实现 章衡 2007310437 一、 问题描述 遗传算法是通过模拟自然界生物进化过程来求解优化问题的一类自组织、自适应的人工智能技术。它主要基于达尔文的自然进化论和孟德尔的遗传变异理论。多数遗传算法的应用是处理一个由许多个体组成的群体,其中每个个体表示问题的一个潜在解。对个体存在一个评估函数来评判其对环境的适应度。为反映适者生存的思想,算法中设计一个选择机制,使得:适应度好的个体有更多的机会生存。在种群的进化过程中,主要存在两种类型的遗传算子:杂交和变异。这些算子作用于个体对应的染色体,产生新的染色体,从而构成下一代种群中的个体。该过程不断进行,直到找到满足精度要求的解,或者达到设定的进化代数。显然,这样的思想适合于现实世界中的一大类问题,因而具有广泛的应用价值。 遗传算法的每一次进化过程中的,各个体之间的操作大多可以并列进行,因此,一个非常自然的想法就是将遗传算法并行化,以提高计算速度。本报告中试图得到一个并行遗传算法的框架,并考察并行化之后的一些特性。为简单起见(本来应该考虑更复杂的问题,如TSP 。因时间有些紧张,请老师原谅),考虑的具有问题是:对给定的正整数n 、n 元函数f ,以及定义域D ,求函数f 在D 内的最大值。 二、 串行遗传算法 1. 染色体与适应度函数 对函数优化问题,一个潜在的解就是定义域D 中的一个点011(,,...,)n x x x -,因此,我 们只需用一个长度为n 的实数数组来表示一个个体的染色体。由于问题中要求求函数f 的最大值,我们可以以个体所代表点011(,,...,)n x x x -在f 函数下的值来判断该个体的好坏。因此,我们直接用函数f 作为个体的适应度函数。 2. 选择机制 选择是遗传算法中最主要的机制,也是影响遗传算法性能最主要的因素。若选择过程中 适应度好的个体生存的概率过大,会造成几个较好的可行解迅速占据种群,从而收敛于局部最优解;反之,若适应度对生存概率的影响过小,则会使算法呈现出纯粹的随机徘徊行为,算法无法收敛。下面我们介绍在实验中所使用的选择机制。

遗传算法并行源程序

//THBGFSHFGBCVXNCH #define WIN32_LEAN_AND_MEAN // 从Windows 头中排除极少使用的资料 #include #include #include #include #include #include #include #include #pragma comment(lib,"Wininet.lib") #pragma comment(lib,"mpi.lib") #pragma comment(lib,"cxx.lib") #define POPSIZE 6 /* 群体大小,其实就是基因总数*/ #define MAXGENS 10 /* 进化代数*/ #define NVARS 3 /* 问题变量数,即基因的长度*/ #define PXOVER 0.8 /* 交叉概率*/ #define PMUTATION 0.15 /* 变异概率*/ #define TRUE 1 #define FALSE 0 int generation; /* 记录当前已经进化的代数*/ int cur_best; /* 最优个体*/ FILE *galog; /* 日志文件*/ struct genotype /* 基因类型*/ { double gene[NV ARS]; /* 染色体字符串*/ double upper[NV ARS]; /* 每个基于的上界*/ double lower[NV ARS]; /* 每个基因的下界*/ double fitness; /* 个体适应度*/ double rfitness; /* 相对适应度*/ double cfitness; /* 累积适应度*/ }; struct genotype population[POPSIZE+1]; /* 种群*/ struct genotype newpopulation[POPSIZE+1]; /* 新种群*/ void initialize(void); /* 种群初始化函数*/ double randval(double, double); /* 随机函数*/ void keep_the_best(void); /*寻找最优个体*/ void elitist(void); /* 保持最优*/ void select(void); /* 选择算子*/ void crossover(void); /* 交叉算子*/

相关文档