文档库 最新最全的文档下载
当前位置:文档库 › 闭区间上有有限个间断点的有界函数可积

闭区间上有有限个间断点的有界函数可积

闭区间上有有限个间断点的有界函数可积
闭区间上有有限个间断点的有界函数可积

12-函数与极限习题与答案(选择题)

高等数学 一、选择题(共 191 小题,) 1、 下列函数中为奇函数的是 ; ; ; 答( ) ()tan(sin )()cos()()cos(arctan )()A y x x B y x x C y x D y x x ==+== --2 2 4 22 π 2、 [][]下列函数中(其中表示不超过的最大整数),非周期函数的是; ;; 答( ) x x A y x x B y x C y a bx D y x x ()sin cos ()sin ()cos ()=+==+=-π22 3、 关于函数的单调性的正确判断是 当时,单调增;当时,单调减; 当时,单调减;当时,单调增;当时,单调增;当时,单调增。 答( ) y x A x y x B x y x C x y x x y x D x y x x y x =- ≠=-≠=-<=->=-<=- >=- 1010101010101()()()() 4、 答( ) ;; ; 的是 下列函数中为非奇函数 7 373)( 1arccos )()1lg()( 1 2 12)(2 2 2 2 +--++= +=++ =+-= x x x x y D x x x y C x x y B y A x x 5、

函数 是 奇函数; 偶函数; 非奇非偶函数;奇偶性决定于的值 答( ) f x a x a x a A B C D a ()ln ()()()()()=-+>0 6、 f x x e e A B C D x x ()()()()()()()=+-∞+∞-在其定义域,上是 有界函数; 奇函数;偶函数; 周期函数。 答( )  7、 设,,,则此函数是 周期函数; B单调减函数;奇函数 偶函数。 答( )  f x x x x x A C D ()sin sin ()()();()=-≤≤-<≤?????3 3 0ππ 8、 设,,,则此函数是 奇函数; 偶函数;有界函数; 周期函数。 答( ) f x x x x x A B C D ()()()()()=--≤≤<≤?????3330 02 9、 f x x A B C D ()(cos )()()()()()=-∞+∞333 23 2 在其定义域,上是 最小正周期为的周期函数; 最小正周期为的周期函数; 最小正周期为 的周期函数; 非周期函数。 答( ) πππ 10、 f x x x A B C D ()cos()()()()()()= ++-∞+∞212 在定义域,上是 有界函数; 周期函数;奇函数; 偶函数。 答( )

2016考研高等数学函数与极限必背定理

2016考研高等数学函数与极限必背定理考研数学我们在学习的时候接触过很多定理和定义,这些定理和定义是我们学好高分的关键,这样我们才能够更好地解题,下面我们为大家带来了2016考研高等数学函数与极限必背定理,希望帮助大家高数的复习备考。 1、函数的有界性 在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限 定理(极限的唯一性) 数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性) 如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系) 如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则 定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小; 定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则 两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 6、函数的连续性 设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。

1第一章 函数与极限答案

第一章 函数与极限 第一节 映射与函数 1.填空题: (1)函数)(x f y =与其反函数)(x y ?=的图形关于 x y = 对称. (2 )函数 2 1 ()1f x x = +-的定义域为__________________________; (3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} . (4)设b ax x f +=)(,则=-+= h x f h x f x ) ()()(? a . (5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x . (6)函数2 x x e e y --=的反函数为 。 (7 )函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <1 2. 选择题: (1)下列正确的是:(B ,C ) A.2 lg )(x x f =与x x g lg 2)(=是同一函数. B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数. C.?? ? ??<-=>==0,10,00,1sgn x x x x y 是x 的奇函数. D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. . (2))sin()(2 x x x f -=是( A ). A.有界函数; B. 周期函数; C. 奇函数; D. 偶函数. (3)设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ). A.1; B.–1; C.2; D.–2. (4)函数 2 1 arccos 1++-=x x y 的定义域是( )

(整理)闭区间上连续函数的性质

§4.2 闭区间上连续函数的性质 一、 性质的证明 定理1.(有界性)若函数)(x f 在闭区间[a,b]连续,则函数)(x f 在闭区间[a,b]有界,即?M >0,∈?x [a,b],有|)(x f |≤M . 证法:由已知条件得到函数)(x f 在[a,b]的每一点的某个邻域有界.要将函数 )(x f 在每一点的邻域有界扩充到在闭区间[a,b]有界,可应用有限覆盖定理,从 而得到M >0. 证明:已知函数)(x f 在[a,b]连续,根据连续定义, ∈?a [a,b],取0ε=1,0δ?>0,∈?x (00,δδ+-a a )?[a,b],有 |)(x f )(a f -|<1.从而∈?x (00,δδ+-a a )?[a,b]有 |)(x f |≤|)(x f )(a f -|+|)(|a f <|)(|a f +1 即∈?a [a,b],函数)(x f 在开区间(00,δδ+-a a )有界。显然开区间集 { (00,δδ+-a a )|∈a [a,b] }覆盖闭区间[a,b].根据有限覆盖定理(4.1定理3),存在有限个开区间,设有n 个开区间 {(k k a k a k a a δδ+-,)|∈k a [a,b] },k=1,2,3,…,n 也覆盖闭区间[a,b] ,且 ∈?x (k k a k a k a a δδ+-,)|∈k a [a,b],有|)(x f |≤|)(|k a f +1,k=1,2,3,…,n 取M =max{|)(||,......,)(||,)(|21n a f a f a f }+1. 于是∈?x [a,b],∈?i {1,2,…,n},且∈x (i i a i a i a a δδ+-,)?[a,b], 有|)(x f |≤|)(|i a f +1≤M 定理2(最值性):若函数()f x 在闭区间[],a b 连续,则函数()f x 在区间

函数与极限练习题

第一章 函数与极限 §1 函数 一、是非判断题 1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ] 2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有 B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ] 4、定义在(∞+∞-,)上的常函数是周期函数。 [ ] 5、任一周期函数必有最小正周期。 [ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8、f(x)=1+x+ 2 x 是初等函数。 [ ] 二.单项选择题 1、下面四个函数中,与y=|x|不同的是 (A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是 (A )x 2log (B )x 2 (C )22log x (D )2 x 4、若)(x f 为奇函数,则 也为奇函数。 (A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。 1、 y=) 1arctan(+x e 2、 y=x x x ++ 3、 y=x ln ln ln

考研数学函数与极限部分定理定义汇总

1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

高数闭区间上连续函数的性质教案

第17、18课时: 【教学目的】 1、 掌握闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质; 2、 熟练掌握零点定理及其应用。 【教学重点】 1、介值性定理及其应用; 2、零点定理及其应用。 【教学难点】 介值性定理及其应用 §1. 10 闭区间上连续函数的性质 一、有界性与最大值与最小值 最大值与最小值: 对于在区间I 上有定义的函数f (x ), 如果有x 0∈I , 使得对于任一x ∈I 都有 f (x )≤f (x 0 ) (f (x )≥f (x 0 )), 则称f (x 0 )是函数f (x )在区间I 上的最大值(最小值). 例如, 函数f (x )=1+sin x 在区间[0, 2π]上有最大值2和最小值0. 又如, 函数f (x )=sgn x 在区间(-∞, +∞)内有最大值 1和最小值-1. 在开区间(0, +∞)内, sgn x 的最大值和最小值都是1. 但函数f (x )=x 在开区间(a , b )内既无最大值又无最小值. 定理1(最大值和最小值定理)在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值. 定理1说明, 如果函数f (x )在闭区间[a , b ]上连续, 那么至少有一点ξ1∈[a , b ], 使f (ξ1)是f (x )在[a , b ]上的最大值, 又至少有一点ξ 2∈[a , b ], 使f (ξ 2)是f (x )在[a , b ]上的最小值. 注意: 如果函数在开区间内连续, 或函数在闭区间上有间断点, 那么函数在该区间上就不一定有最大值或最小值. 例: 在开区间(a , b ) 考察函数y =x . 又如, 如图所示的函数在闭区间[0, 2]上无最大值和最小值. ?????≤<+-=<≤+-==2 1 31 110 1)(x x x x x x f y . 定理2(有界性定理)在闭区间上连续的函数一定在该区间上有界. 二、零点定理与介值定理 零点: 如果x 0 使f (x 0 )=0, 则x 0 称为函数f (x )的零点. 定理3(零点定理)设函数f (x )在闭区间[a , b ]上连续, 且f (a )与f (b )异号, 那么在开区间(a , b )内至少有一点ξ 使f (ξ)=0. 定理4(介值定理)设函数f (x )在闭区间[a , b ]上连续, 且在这区间的端点取不同的函数值 f (a )=A 及f (b )=B ,

高等数学第一章:函数与极限

第一章:函数与极限 第一节:函数 1、函数的性质:单调性,有界性(包括有界与无界),奇偶性,周期性。(重点在于单调性与奇偶性) 单调性:)()(,,212121x f x f x x X x x ?<∈?单调减少 有界性:M x f X x M ≤∈?>?)(,,0 无界性:M x f X x M >∈?>?)(,,0 奇偶性:)()(x f x f -=偶,)()(-x f x f -=奇。奇函数0点一定为0(重点) 周期性:)()(T x f x f +=,如果)()(b ax f x f +=,T 为)(x f 的周期,则周期为a T 第二节:极限 1、数列极限 定义: εε<->>?>??=∞ →A x N n N A x n n n ,,0,0lim M x N n N M x n n n >>>?>??∞=∞ →,,0,0lim

b y n n n ∞→(2、函数极限 定义: εε<->>?>??=∞ →a x f X x X a x f x )(,0,0)(lim 时,当 εδδε<-<-<>?>??=→a x f x x a x f x x )(0,0,0)(lim 00,当 性质: 1) 唯一性,左极限等于右极限。 2) 局部有界性(重点):极限存在,则某一空心邻域内有界(注意,一定是空心邻域,该点不一定存在) 3) 有序性:同数列极限 4) 局部保号性(重点):0)(lim 0 >=→a x f x x ,则0)(>x f (空心邻域),同理小于也是。 运算性质: 同数列的运算性质,同时还有 )(lim )](lim[x f c x cf =,n n A x f =)](lim[

浅论闭区间上连续函数的性质.doc

浅论闭区间上连续函数的性质 中山大学数学与应用数学04级数统基地班黎俊彬 摘要:本文就闭区间上连续函数的性质进行了一定程度上的探讨,从直观感觉和理论论证两面方面论述了有界性,最值定理,介值定理和一致连续性定理,并且将之与开区间上连续函数及不连续函数作一定的对比. 关键字:闭区间连续函数实数的连续性和闭区间的紧致性 实数的连续性和闭区间的紧致性,使闭区间上的连续函数有丰富的性质,而且可由实数的各等价命题推出?本文主要从对连续函数的直观理解深入到纯分析的论证?在论证过程屮,严格地不出现微分学和积分学的内容,只是从连续函数本身的性质及实数系的性质入手. 从直观上理解,连续函数的图像是一条连续不断的曲线,这对于一?般初等函数來说都是成立的?而闭区间b"]上的连续函数/(X)的图像两端必须紧紧地连接着定义在端点处的点(67,/?)),(/>,/⑹X-8 v ./(Q),/⑹V +8)上形成一条封闭的曲线,即与直线x = a,x = b.y =0形成一个或多个封闭的区域.直观理解虽然不完全正确,但却能帮助我们了解和发现闭区间连续函数的性质,某些时候还能帮助我们找到证明.但直观的认识不一定是正确的,的确存在一些连续函数,其图像并不能作岀来?直观认识,在科学里面只是充当一个开路先锋的角色,到最后,一定要用严格的推理来证明. 先看何谓闭区间上的连续函数?连续的定义首先是点连续的定义. 称/(X)在兀=兀0连续,如果lim /(%) = /(x0), 2X() B|j/(x)4x o附近有定义W > 0,? > 0,当X G u(x°0)时有|/(x)-/(x°)| < 称/⑴在兀=兀0左连续,如果w > o,? > 0,当兀w (兀0 - 兀0 ]时有(兀)-f(兀0 )| < £? 称 f(x)在兀=%右连续,如果>0,3^ >0,当x w [x0,x0 +5)时有|/(兀)-/(%)| < 若函数该点的极限值不等于函数值,经验告诉我们函数在该点必定断开,连续的定义与我们的直观认识相符合?而若函数在[G,b]连续,是指函数在区间的每点都连续,在左端点右连续,右端点左连续.下面讨论闭区间连续函数的相关性质, 并从直观和理论上与非闭区间的情况作比较,体会闭区间的独特的性质.

函数极限的存在准则

函数极限的存在准则 学习函数极限的存在准则之前,我们先来学习一下左、右的概念。 我们先来看一个例子: 例:符号函数为 对于这个分段函数,x从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。 定义:如果x仅从左侧(x<x0)趋近x0时,函数与常量A无限接近,则称A为函数当 时的左极限.记: 如果x仅从右侧(x>x0)趋近x0时,函数与常量A无限接近,则称A为函数当时的右极限.记: 注:只有当x→x0时,函数的左、右极限存在且相等,方称在x→x0时有极限 函数极限的存在准则 准则一:对于点x0的某一邻域内的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有 ≤≤,且, 那末存在,且等于A 注:此准则也就是夹逼准则. 准则二:单调有界的函数必有极限. 注:有极限的函数不一定单调有界 两个重要的极限 一: 注:其中e为无理数,它的值为:e=2.718281828459045... 二: 注:在此我们对这两个重要极限不加以证明. 注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们. 例题:求 解答:令,则x=-2t,因为x→∞,故t→∞,

则 注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x→∞时,若用t代换1/x,则t→0. 无穷大量和无穷小量 无穷大量 我们先来看一个例子: 已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为 此我们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当 时,成立,则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函 数当x→∞时是无穷大量,记为: 无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.

(完整版)14-函数与极限习题与答案(证明题)

高等数学 三、证明题(共 124 小题,) 1、)1 ()( , 5522)(22t f t f t t t t t f =+++=证明设。 2、 )1()()(,11ln )(yz z y f z f y f x x x f ++=++-=证明设).1,1(<+=时有证明当设。 4、)()() ( , )(y x f y f x f e t f t -==证明 设 。 5、证明是奇函数f x x x ()()()=+--2323。 6、 ,,设ax a x x x x x f +-= +∞<<-∞=1)()( arctan )(? []。,验证:,)()()()11(a f x f x f x a -=<

{}{}{}反例。 ,如否定结论则需举出如肯定结论请给出证明是否也必是无界数列。试判定: , 都是无界数列,,设数列n n n n n n z y x z y x = 16、 n n n n n b n n n n n n n n n b a b a n b a b b a a b a ∞ →∞ →→∞ →++==+==lim lim lim lim )21( 21111存在,且存在,试证明:,,,,是两个函数,令,设Λ 17、 {}.收敛,并求极限,试证数列 ,,.,,设n n n n n n x x n x x x x ∞ →+=-=∈lim )21(2)20(2 11ΛΛ 18、 . 试证明,,且的某去心邻域内若在B A B x g A x f x g x f x x x x x ≥==≥→→ ; )(lim )(lim )()(0 19、 0)(lim 0)(lim )()(0 0==αα≤→→x f x x x f x x x x x ,试证明,且的某去心邻域内若在 20、 试证明不存在。limcos x x →01 21、 . ,试证明,时,设当∞=≠→∞→→→)()(lim )0()()(0 0x g x f A A x g x f x x x x 22、 []. ,试证明,,设∞=+→∞→→→)()(lim )()(0 0x g x f A x g x f x x x x 23、 .是常数),试证明,时,设0) () (lim ()()(0 0=→∞→→→x f x g A A x g x f x x x x 24、 {}0lim 1001=<<≤>∞→+n n n n n n a r r a a a a ,试证明,;满足设有数列 25、 的某去心邻域,使得 试证明:必存在,且,设0,)(lim )(lim 0 x B A B x g A x f x x x x >==→→.在该邻域为)()(x g x f > 26、

闭区间上连续函数性质证明

§2 闭区间上连续函数性质的证明 教学目的:掌握闭区间上连续函数性质证明思路与方法,加深对实数完备性若干定理的理解。 重点难点:重点与难点为其证明思路与方法。 教学方法:讲练结合。 在本节中,我们利用实数完备性的基本定理,来证明闭区间上连续函数的基本性质. 有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界. 证 [证法一](应用有限覆盖定理) 由连续函数的局部有界性(定理4.2),对每一点[],,b a x ∈'都存在邻域);(x x U ''δ及正数x M ',使得[].,);(,)(b a x U x M x f x x '''∈≤δ 考虑开区间集 []{} b a x x U H x ,);(∈''='δ, 显然H 是[]b a ,的一个无限开覆盖.由有限覆盖定理,存在H 的一个有限子集 ()[]{}k i b a x x U i i i ,,2,1,,;* =∈=H δ 覆盖了[]b a ,,且存在正数k M M M ,,,21 ,使得对一切()[]b a x U x i i ,; δ∈有 ().,,2,1,k i M x f i =≤ 令 ,m a x 1i k i M M ≤≤= 则对任何[]b a x ,∈,x 必属于某()()M M x f x U i i i ≤≤?δ;.即证得f 在[]b a ,上有界. [证法二](应用致密性定理) 倘若f 在[]b a ,上无上界,则对任何正整数n ,存在[]b a x n ,∈,使得()n x f n >.依次取 ,2,1=n ,则得到数列{}[]b a x n ,?.由致密性定理,它含有收敛子列{} k n x ,记ξ=∞ →k n k x lim 。由b x a k n ≤≤及数列极限的保不等式性,[]b a ,∈ξ.利用f 在点ξ连续,推得 () ()+∞<=∞ →ξf x f k n k lim 另一方面,由n x 的选取方法又有()() +∞=?+∞→≥>∞ →k k n k k n x f k n x f lim 与(1)式矛盾.所以f 在[]b a ,有上界.类似可证f 在[]b a ,有下界,从而f 在[]b a ,上有界. 最大、最小值定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有最大值与最小值. 证 (应用确界原理) 已证f 在[]b a ,上有界,故由确界原理,f 的值域[]()b a f ,有上确界,记为M .以下我们证明:存在[]b a ,∈ξ,使()M f =ξ.倘若不然,对一切[]b a x ,∈都有()M x f <.令

第一章 函数与极限知识点

第一章函数与极限 区间 [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 x (D为非空实数集) 函数y=f(x)、y=F(x) D D为函数的定义域。通常x叫做自变量,y叫做因变量。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性 如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有 , 则称函数在区间(a,b)内是单调增加的。 如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有 , 则称函数在区间(a,b)内是单调减小的。 函数的奇偶性 如果函数对于定义域内的任意x都满足=,则叫做偶函数; 如果函数对于定义域内的任意x都满足=-,则叫做奇函数。注意:偶函数的图形关于y轴对称,奇函数的图形关于原点对称,若奇函数定义

域中含有0,则F(0)=0。f(0)=-f(0),2f(0)=0,所以f(0)=0。 函数的周期性 对于函数,若存在一个不为零的数l ,使得关系式 对于定义域内任何x 值都成立,则叫做周期函数,l 是的周期。 注:我们说的周期函数的周期是指最小正周期。 反函数 反函数的定义: 设函数)(x f y =,其定义域为D ,值域为M. 如果对于每一个M y ∈,有惟一的一个D x ∈与之对应,并使)(x f y =成立,则得到一个以y 为自变量,x 为因变量的函数,称此函数为y=f(x)的反函数,记作 )(1y f x -= 显然,)(1 y f x -=的定义域为M ,值域为D. 由于习惯上自变量用x 表示,因变量用y 表示, 所以)(x f y =的反函数可表示为 )(1x f y -= 反函数的存在定理 若在(a ,b)上严格增(减),其值域为 R ,则它的反函数必然在R 上确定,且严格增(减). 注:严格增(减)即是单调增(减) 反函数的性质 在同一坐标平面内, 与 )(1 x f y -=的图形是关于直线y=x 对称。 关于直线y=x 对称的。如右图所示: 复合函数的定义 若y 是u 的函数: ,而u 又是x 的函数: ,且 的函数值的全部或部分在 的定义域内,那末,y 通过u 的联系也是x 的函数,我们称后一个函数是由函数 及 复合而成的函数,简称复合函数,记作,其中u 叫做中间变量。 注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。 分段函数:????

闭区间上连续函数的有界性定理证明的新方法_1

闭区间上连续函数的有界性定理证明的新方法连续函数是数学分析中非常重要的一类函数,下面是小编搜集整理的一篇探究闭区间上连续函数的有界性定理证明的论文范文,欢迎阅读参考。 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定联系的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基

本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在2013年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基于投保人、保险公司和政府三方面的利益,按照公平合理的定价原则设计,由保险公司经营的保险产品,三方各承担不同的责任、义务和风险。根据题目中附件所给的P省的具体情况,可以将有界性定理灵活的用在自然灾害保险的风险评估和费率拟定上。假设时间是一个连续状态,则以时间t为自变量,根据题中所给数据,以日最高最低气温为例,很明显它与时间t是呈周期性变化的,以一年为一个周期,故只考虑在某一年内的变化规律,即. 将日最高最低气温拟合成一个关于时间的函数f(t),则由于自变量

闭区间上连续函数的性质答案

高等数学II 练习题 第二章 极限与连续 ________系_______专业 班级 姓名______ ____学号_______ 习题2.6 闭区间上连续函数的性质 一.选择题 1.若1,1 ()1, 1x x f x x +≠?=? =?,则下列说法中正确的是 ( B ) (A )()f x 无间断点 (B )()f x 只有一个间断点 (C )()f x 只有2个间断点 (D )()f x 只有3个间断点 2.若函数ln 1()sin ,12 x x f x a x x π ≥?? =?

函数与极限重点知识归纳

常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 在数轴上来说,区间是指介于某两点之间的线段上点的全体。 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性

第三章 函数极限练习题

第三章 函数极限 知识脉络 1.函数极限的24个定义,会用定义证明简单函数极限问题; 2. 函数极限的性质,注意与收敛数列性质的区别; 3. 函数极限存在的条件,会判断简单函数的极限是否存在; 4. 总结求函数极限的方法,掌握每种方法适用的极限问题; 5. 会比较无穷小的阶; 6. 会求曲线的渐近线. 一、判断题 1. 若要使0 lim ()x x f x →存在,()f x 在0x 处必须有定义.( ) 2. 若lim ()x f x A →∞ =,则lim ()x f x A →∞ =,当且仅当0A =时反之也成立.( ) 3. 若A x f x x =→)(lim 0 ,则)(x f 可表为))(1()(0x x o A x f →+=. ( ) 4. 若0 lim ()x x f x A →=存在,则()f x 有界.( ) 5. 若在00()U x 内()()f x g x >,0 lim ()x x f x →与0 lim ()x x g x →都存在,则00 lim ()lim ()x x x x f x g x →→>.( ) 6. 若0 lim ()x x f x A →=,0 lim ()x x g x B →=,A B >,则在某00()U x 内()()f x g x >.( ) 7. 若30 lim ()x f x →存在,则3 lim ()lim ()x x f x f x →→=.( ) 8. 若20 lim ()x f x →存在,则2 lim ()lim ()x x f x f x →→=( ) 9.设函数()f x 为定义在00()U x +上的单调有界函数,则0 lim ()x x f x →存在.( ) 10.设函数()f x 为定义在00()U x 上的单调函数,则0 lim ()x x f x + →存在.( ) 11.若()f x 为周期函数,且lim ()0x f x →+∞ =,则()0f x ≡.( ) 12.任意两个无穷小都可以进行阶的比较.( ) 13.无穷小量就是很小很小的数.( ) 16.无穷小量都是有界量,有界量也都是无穷小量.( ) 17.无限个无穷小的和、差仍然是无穷小.( ) 18.若()f x 和()g x 为当0x x →时的同阶无穷小量,则()(())f x O g x =.( ) 19. 若()(())f x O g x =(0x x →),则()f x 和()g x 为同阶无穷小量.( ) 20. 当0→x 时,0)( )()()(>>=++n m x o x o x o n m n m . ( ) 二、填空题

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2=-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 . 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。

8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→ 解:原式11)32 (1)31 (lim 3 =++-= ∞→n n n n 上下同除以 。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m

相关文档
相关文档 最新文档