文档库 最新最全的文档下载
当前位置:文档库 › 方波振荡电路设计

方波振荡电路设计

方波振荡电路设计
方波振荡电路设计

方波振荡电路设计

电气工程与自动化系王文川

方波振荡电路设计

1.1发展趋势

由555时基电路构成常见的最基本的典型应用电路有:单稳态触发电路、双稳态触发电路、无稳态电路,而用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路,如定时器、分频器、脉冲信号发生器、元件参数和电路检测电路、玩具游戏机电路、音响告警电路、电源交换电路、频率变换电路、自动控制电路等

总体方案设计

方案一:用UA741放大电路外接若干二极管、电阻电容,这种方案硬件电路复杂,可靠性差,

方案二:用MAX0832集成芯片产生所需方波,可靠性好,稳定性好,但经济价值很贵

方案三:用NE555集成芯片外接几个电阻电容,和二极管设计一个发生器。

在此我选择了方案三,通过它,产生的方波虽然不是很好看,但经过施密特整形会得到较好的波形,且经济比较为合理,也能达到实验的要求。

硬件设计

3.1工作原理

(一)555时基电路的电路结构和逻辑功能

1.电路结构及逻辑功能

图1为555时基电路的电路结构和8脚双列直插式的引脚图,由图可知555电路由电阻分压器、电压比较器、基本RS触发器、放电管和输出缓冲器5个部分组成。它的各个引脚功能如下:

1脚:GND(或Vss)外接电源负端VSS或接地,一般情况下接地。

8脚:VCC(或VDD)外接电源VCC,双极型时基电路VCC的范围是4.5~16V,CMOS型时基电路VCC的范围为3~18V。一般情况下选用5V。

3脚:OUT(或Vo)输出端。

2脚:TR低触发端。

6脚:TH高触发端。

4脚:R是直接清零端。当R端接低电平,则时基电路不工作,此时不论TR、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。

5脚:CO(或VC)为控制电压端。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。

7脚:D放电端。该端与放电管集电极相连,用做定时器时电容的放电。电阻分压器由三个5kΩ的等值电阻串联而成。电阻分压器为比较器C1、C2提供参考电压,比较器C1的参考电压为2/3Vcc,加在同相输入端,比较器C2的参考电压为1/3Vcc,加在反相输入端。比较器由两个结构相同的集成运放C1、C2组成。高电平触发信号加在C1的反相输入端,与同相输入端的参考电压比较后,其结果作为基本RS触发器R端的输入信号;低电平触发信号加在C2的同相输入端,与反相输入端的参考电压比较后,其结果作为基本RS触发器S端的输入信号。基本RS触发器的输出状态受比较器C1、C2的输出端控制。

在1脚接地,5脚未外接电压,两个比较器C1、C2基准电压分别为2/3Vcc,1/3Vcc的情况下,555时基电路的功能表如表1示.

2.555时基电路的主要参数

555时基电路的主要参数有电源电压、静态电流、定时精度、阈值电压、阈值电流、触发电压、触发电流、复位电压、复位电流、放电电流、驱动电流及最高工作频率。

3.等效电路

555时基电路内部既有模拟电路,又有数字电路,读图和应用十分不便,为便于一目了然地理解555的功能,可以将555电路的数字与模拟功能合在一起考虑,进行化简。

图2是图1(a)中555电路的内电路方框图简化成为带一个放电开关的特殊的RS触发器,其逻辑功能见表2所示。

化简后的特殊RS触发器输出电压Vo与输入电压VTH及VTR的关系见表4所示。

3.2.555构成占空比可调的多谐振荡器

首先是将555定时器的2脚与6脚接在一起,构成施密特触发器。施密特触发器的电压传输特性是反相的。电阻R5和电容C构成一个RC积分电路,其输入端接施密特触发器的输出端,其输出端接施密特触发器的输入端。除此以外,增加了一个电阻R6,R6与555定时器内部的放电管TD构成了一个反相器。逻辑上,这个反相器的输出与555定时器的输出完全相同。因此,这个施密特触发器有两个输出端,分别为555定时器的3号脚和7号脚。施密特触发器的一个输出端(7号脚)接RC积分电路的输入端,RC积分电路的输出端接施密特触发器的输入端。这就是我用555定时器构成多谐振荡器的思路。

图3 方波发生电路图

图中0.01uf电容C、4.7KΩ电阻R5和4.7KΩ电阻R6作为振荡器的定时元件,4.7KΩ电位器Rw决定着输出矩形波正、负脉冲的宽度。定时器的触发输入端(2脚)和阀值输入端(6脚)与电容相连;集电极开路输出端(7脚)接R1、R2之间的电位器R7,用以控制电容C的充、放电;外界控制输入端(5脚)通

过0.01uF电容Co接地。二极管D3与D4用来决定电容充、放电电流流经电阻的途径(充电时D3导通,D4截止;放电时D4导通,D3截止)。占空比:。

电路开始工作时,先对C4充电,充电电流通过R6,D3,R7和R8;放电时通过R8,R8,D4,R5.当R6=R5时,调至中心点,因充放电的时间基本相等,可使得其的占空比约为50%,此时改变R8仅仅改变频率,,占空比不变。如R7调至偏离中心点,再调节R8,不仅频率改变,其的占空比也跟着有影响。R8不变,只调节R7,只改变占空比,对频率没影响。因此,当电路工作时,接通电源,应调节R8使频率到达规定值,再调R7,获得想要的占空比。当想获得不同的频率时,先调R7到要获得的占空比的位置,再调R8到达所要的频率出。

3.3.设计的电路图:

图4 原理图

图5 PCB 图

调试和性能分析

4.1注意事项

1.NE555集成芯片三脚输出波形需整形

2.电阻电容用精密电阻电容为了提高稳定性和精度

3.调节占空比与频率时注意电位器的调节的先后顺序

4.2方法或步骤

第一步:检查电路中各个元件是否接的可靠、大小是否合理,特别是NE555必须接正确

第二步:在一切都正常的情况下,给电路通电,此时立即触摸NE555

是否发烫,若发烫应立即断电

第三步:若NE555没有发烫,则说明NE555工作正常,这时开始实验数据测试。第四步:通过示波器观察NE555输出的方波信号,观察方波的失真情况。

第五步:失真的波形通过改良一下,改良后的波形是应该是没有多大失真的方波或者没失真的方波。

第六步:通过示波器观察波形的幅值大小

第七步:通过改变可调电阻观察占空比的范围。

第八步:通过改变可调电阻观察方波的可调频率的范围。

第九步:统计实验数据参数的测量与分析:

1.占空比的测量:根据上面的步骤:在保证一个电位器不变的情况下,调节R7电位器可以看出其占空比的范围由下图6和图7可知道大概范围在20%—80%间,可知也是达到了要的占空比范围。

占空比最小图

占空比最大图

2.频率范围的测量:在保持R7电位器不变的情况下,调R8电位器,可知他的可调的频率范围为:89.368HZ—272.58HZ。可知其的频率可调也在200HZ左右,在一定的情况下是完全满足要求的。

频率最小图

频率最大图

二、非正弦波振荡电路测试

方案一:RC低通滤波电路,可以较好的将低于滤波器截止频率的频率通过,选频的效果不好,故不采用。

方案二:二阶带通滤波器电路,将低通滤波器和高通滤波器串联,并使低通滤波器的通带截止频率f2大于高通滤波器的通带截止频率f1,则频率在f1<f <f2范围内的信号能通过,选频的效果较好。故采用此方案。

2、系统整体方案设计 2.1系统总体框图

如下图所示,系统的整体方案设计如图1所示,主要由方波振荡电路、分频与滤波电路、移相电路、加法器电路、信号处理和显示电路组成。

图1 信号波形合成系统框图

3、硬件电路的设计

3.1方波振荡电路的设计

图2是此次设计中的方波振荡电路的设计。该振荡电路是由555定时器构成的多谐振荡器。由于555定时器内部的比较器灵敏度较高,而且采用非差分电路形式,用555定时器组成的多谐振荡器的振荡频率受电源电压和温度变换的影响较小。60KHZ 的方波信号如图2所示。

图2 占空比可调方波发生器

3.2分频电路的设计

设计中分频电路如图3所示,采用的是用74HC161计数的方式对信号进行分

C 2 10n

频。74HC161有两种计数方式,一种是反馈清零计数法,一种是反馈置数计数法。这两种计数法均能满足本次设计的要求,在设计中我们采用的是反馈置数计数法。对10KHZ 的信号我们选用的是先三分频在二分频,而30KHZ 的信号我们采用的是直接二分频。

图3 分频电路

3.3滤波电路的设计

滤波电路选用二阶带通滤波电路,电路原理图如图4,R2和 C1组成了低通滤波器,C2和R1组成了高通滤波器,R3引入正反馈,实现输出电压对电压放大倍数的控制。

图4 30kHz 滤波电路

3.4移相电路的设计

移相电路如图5所示,P2和C1组成移相电路,调节P2可调节相位,调节P1可调节输出信号的幅度。

图5 移相电路 图6加法器电路

3.5加法器电路的设计(见右上图6所示) 4、软件设计

软件程序流程图如图7所示。

图7 软件流程图

5、理论分析与计算

5.1方便振荡器的各参数的分析

用555定时器组成的多谐振荡。接通电源后,电容C 充电,当c V 上升到VCC

32

时,使o V 为低电平,同时放电三极管T 导通,此时电容C 通过1RV 和T 放电,c V 下降到

3

VCC 时,o V 翻转为高电平。如此周而复始,于是,在电路的输出端就得

到一个周期性的矩形波。电路的振荡频率为:

1

)212(43

.11C RV RV t t f pH

pl +≈

+=

电路输出波形的占空比为

%100)

21(2(%)?+=

RV RV RV q

5.2方波进行二阶滤波后产生正弦波的傅里叶计数

基波频率为T /2π=Ω,)(t f 的平均值是每个周期的平均面积,即

]

|cos |cos [2sin 2sin 20

cos 2cos 202

/2

/0

2

/2

/0

2

/2

/00T T

T T

T

T n T T

T n n t n n dt

n T

dt

n T dt T b dt n T dt n T a a Ω

Ω+

Ω

Ω-

=Ω?-

Ω?==Ω?-Ω?==

当n 为奇数时,1cos -=πn ;当n 为偶数时,1cos =πn ,可得

()

?????=为偶数为奇数n n n b n

)

(4π

因此,)(t f 的傅里叶级数为

)5sin 5

13sin 3

1(sin 4)( +Ω+

Ω+

Ω=

t t t n t f π

6、系统的调试与测试 6.1系统测试方法

1)调试方波振荡电路,接通电源,调节滑动器使方波占空比为50%,频率为60kHZ 。

2)调试分频电路,将60kHZ 进行二分频产生30kHZ 方波、三分频后进行二分频产生10kHZ 方波用示波器检测。

3)滤波电路的调试,将产生的30kHZ 、10kHZ 方波经过二阶带通滤波电路产生30kHZ 幅值2V 的正弦波、10kHZ 幅值6V 的正弦波。 4)移相电路的测试,加法电路的测试。 5)总体电路一步一步的接入进行测试。 6.2 作品测试结果及数据

1) 产生的频率为10kHz 和30kHz 的正弦波信号波形,幅度峰峰值分别为6V 和2V 。

图5 滤波后的10kHZ、30kHZ可调幅值的正弦波

2)经移相器和加法器构成的信号合成电路,将产生的10kHz和30kHz正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V的波形。

图6 合的近似方波

6.3测试结果分析

从上图5和图6的波形可知,经过滤波后的10kHZ、30kHZ正弦波波形基本正常,无明显失真现象,幅度误差为±1%,且其幅值可调。30kH的波形有点瑕疵,是由于振荡电路的不稳定性产生的干扰信号经滤波无法滤出而产生的。经移相器和加法器合成的波形幅度为5V的波形也出现了一点失真,是由于基波的信号过大,与三次谐波合成后出现的顶部失真现象,幅度误差为±2%。

方波三角波产生电路方案

方波-三角波产生电路的设计 1 技术指标 设计一个方波- 三角波产生电路,要求方波和三角波的重复频率为500Hz,方波脉冲幅度为6- 6.5V,三角波为1.5-2V,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生 器。构成迟滞比较器,用于输出方波;构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位由和决定。利用叠加定理可得: 当时,U1输出为正,即 当时,U1输出为负,即 构成反相积分器,为负时,正向变化。为正时,负向变化。 当时,可得: 当上升使略高于0v时,U1的输出翻转到 同样,时,当下降使略低于0时,。 这样不断重复就可以得到方波和三角波,输出方波的幅值由稳压管决定,被限制在之间。 积分电路的输入电压是滞回比较器的输出电压,而且不是,就是,所以输出电压的表达式为:

集成运放构成正弦波方波和三角波发生器

实验十一集成运算放大器的基本应用(Ⅳ) ─波形发生器─ 一、实验目的 1、学习用集成运放构成正弦波、方波和三角波发生器。 2、学习波形发生器的调整和主要性能指标的测试方法。 二、实验原理 由集成运放构成的正弦波、方波和三角波发生器有多种形式,本实验选用最常用的,线路比较简单的几种电路加以分析。 1、RC 桥式正弦波振荡器(文氏电桥振荡器) 图11-1为RC 桥式正弦波振荡器。其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率 起振的幅值条件 1 f R R ≥2 式中R f =R W +R 2+(R 3//r D ),r D —二极管正向导通电阻。 调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。如不能起振,则说明负反馈太强,应适当加大R f 。如波形失真严重,则应适当减小R f 。 改变选频网络的参数C 或R ,即可调节振荡频率。一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。 图11-1RC 桥式正弦波振荡器

2、方波发生器 由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。图11-2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。它的特点是线路简单,但三角波的线性度较差。主要用于产生方波,或对三角波要求不高的场合。 电路振荡频率 式中 R 1=R 1'+R W 'R 2=R 2'+R W " 方波输出幅值 U om =±U Z 三角波输出幅值 调节电位器R W (即改变R 2/R 1),可以改变振荡频率,但三角波的幅值也随之变化。如要互不影响,则可通过改变R f (或C f )来实现振荡频率的调节。 图11-2方波发生器 3、 三角波和方波发生器 如把滞回比较器和积分器首尾相接形成正反馈闭环系统,如图11-3所示,则比较器A 1输出的方波经积分器A 2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。图11-4为方波、三角波发生器输出波形图。由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。 图11-3三角波、方波发生器 电路振荡频率 f W f 12 O )C R (R 4R R f += 方波幅值 U ′om =±U Z 三角波幅值 Z 2 1 om U R R U = 调节R W 可以改变振荡频率,改变比值 2 1 R R 可调节三角波的幅值。 图11-4 方波、三角波发生器输出波形图

方波-三角波产生电路的设计.

方波-三角波产生电路的设计 1 技术指标 设计一个方波-三角波产生电路,要求方波和三角波的重复频率为500Hz ,方波脉冲幅度为6-6.5V ,三角波为1.5-2V ,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL 与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC 电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC 积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。1U 构成迟滞比较器,用于输出方波;2U 构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位p V 由1O V 和2O V 决定。利用叠加定理可得: 21211211211) ()(O V V O V P V R R R R R V R R R R V ?++++?++= 当0>P V 时,U1输出为正,即Z O V V +=1 当0

用集成运放组成的正弦波、方波、三角波产生电路

物理与电子工程学院《模拟电路》课程设计 题目:用集成运放组成的正弦波、方波、三 角波产生电路 专业电子信息工程专业 班级 14级电信1班 学号 1430140227 学生姓名邓清凤 指导教师黄川

完成日期: 2015 年 12 月 目录 1 设计任务与要求 (3) 2 设计方案 (3) 3设计原理分析 (5) 4实验设备与器件 (8) 4.1元器件的引脚及其个数 (8) 4.2其它器件与设备 (8) 5实验内容 (9) 5.1 RC正弦波振荡器 (9) 5.2方波发生器 (11) 5.3三角波发生器 (13) 6 总结思考 (14) 7 参考文献 (15)

用集成运放组成的正弦波、方波、三角波产生电路 姓名:邓清凤 电子信息工程专业 [摘要]本设计是用12V直流电源提供一个输入信号,函数信号发生器一般是指自动产生正弦波、方波、三角波的电压波形的电路或仪器。电路形式可采用由运放及分立元件构成:也可以采用单片机集成函数发生器。根据用途不同,有产生三种或多种波形的函数发生器,本课题采用UA741芯片搭建电路来实现方波、三角波、正弦波的电路。 [关键词]直流稳压电源12V UA741集成芯片波形函数信号发生器 1 设计任务与要求 (1)并且在proteus中仿真出来在同一个示波器中展示正弦波、方波、三角波。 (2)在面包板上搭建电路,并完成电路的测试。 (3)撰写课程设计报告。 (4)答辩、并提交课程设计报告书 2 设计方案 方案一:采用UA741芯片用集成运放组成的正弦波、方波、三角波产生电路优点:分立元件结构简单,可用常用分立元器件,容易实现,技术成熟,完全能够达到技术参数的要求,造价成本低。 缺点:设计、调试难度太大,周期太长,精确度不是太高。

方波、三角波、正弦波信号产生

课程设计报告 题 目 方波、三角波、正弦波信号 发生器设计 课 程 名 称 模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 电气及其自动化(2)班 学 生 姓 名 李丽 学 号 1104102067 课程设计地点 C206 课程设计学时 1周 指 导 教 师 赵国树 金陵科技学院教务处制

目录 1、绪论 (4) 1.1相关背景知识 (4) 1.2课程设计条件................................................... . (4) 1.3课程设计目的.......... (4) 1.4课程设计的任务 (4) 1.5课程设计的技术指标 (5) 2、信号发生器的基本原理 (5) 2.1原理框图 (4) 2.2总体设计思路 (5) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (8) 3.2.1正弦波到方波转换电路图 (6) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (11) 3.3.1方波到三角波转换电路图 (11) 3.3.2方波到三角波转换电路的工作原理 (13) 4、电路仿真结果 (13) 4.1正弦波产生电路的仿真结果 (14) 4.2 正弦波到方波转换电路的仿真结果 (14) 4.3方波到三角波转换电路的仿真结果 (15) 5、设计结果分析与总结 (16)

1、绪论 1.1相关背景知识 信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计条件 以本学期学习的电子技术基础(模拟部分)为知识背景,我们知道通过放大器、比较器等元器件可构成集成电路、反馈放大电路、运算放大电路等一系列组合放大电路。信号在我们的生活中是无处不在的,模拟信号是时间和幅度连续变化的信号。通过传感器我们可以将各种物理信号转换为电信号,再进过一系列信号的处理。如滤波、幅度放大等,我们可以获得自己需要的信号。 正弦波振荡电路。在通信、广播、医疗、电视系统中,都有广泛的应用。非正弦波产生电路。在一些电子系统中,如数学领域,方波、三角波的应用都是极其广泛的。 1.3课程设计目的 通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础。 1.4课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波、三角波; ③用±5V电源供电。 产生正弦波、方波、三角波的方案有多种,如: ①首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;②也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波;③也可以通过单片集成函数发生器8038来实现… 先是对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济。最方便。最优化的死亡合剂策略。然后运用仿真软件Multisim对电路进行仿真。观察效果并与要求的性能指标作对比。

方波和三角波发生器电路

创作编号:BG7531400019813488897SX 创作者:别如克* 方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6. 5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当Vp>0时A1输出为正,即VO1 = +Vz;当Vp<0时,A1输出为负即VO1 = -Vz A2构成反相积分器 VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。假设电源接通时VO 1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率范围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值范围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

方波和三角波发生器电路

方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当 Vp>0时 A1输出为正,即VO1 = +Vz;当 Vp<0时, A1输出为负即 VO1 = -Vz A2构成反相积分器 VO1为负时, VO2 向正向变化, VO1 为正时, VO2 向负向变化。假设电源接通时VO1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

图11-2 (2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02 (注意标注图形尺寸),并测量Rp及频率值。 表11-3 方波V01及三角波V02 波形 Rp= (中间) , f= (3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中 (记录不失真波形参数)。 表11-4 F ( KHz ) Rp ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。将 测量结果填入表11-4中。 表11-5 F (KHz ) R1 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (5)电位器Rp保持中间位置,R1接10K电阻,改变R2为100K可调电位计,观察对V01和V02 幅值和频率的影响。将测量结果填入表11-5中。(记录有波形的测试参数) 表11-6 F ( KHz ) R2 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高

方波-三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

姓名:侯涛 日期:2016年 4月 26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波 形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。

方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较 器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

模电课设方波三角波压控振荡器

第一章模电课设概述 1.1设计背景 人们通常把压控振荡器称为调频器,用以产生调频信号。在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。压控振荡器的类型有LC压控振荡器、RC压控振荡器和晶体压控振荡器。对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。晶体压控振荡器的频率稳定度高,但调频范围窄,RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。 1.2 设计目的及意义 1)培养学生正确的设计思想,理论联系实际的工作作风,严肃认真、实事求是的科学态度和勇于探索的创新精神。 2)锻炼学生自学软件的能力及分析问题、解决问题的能力。 3)通过课程设计,使学生在理论计算、结构设计、工程绘图、查阅设计资料、标准与规范的运用和计算机应用方面的能力得到训练和提高。 4)巩固、深化和扩展学生的理论知识与初步的专业技能。 5)为今后从事电子技术领域的工程设计打好基础基本要求。 1.3设计时间 课程设计时间:一周 1.4 开发环境proteus简介 PROTEUS软件是由英国LabCenter Electronics公司开发的EDA工具软件,由ISIS和ARES两个软件构成,其中ISIS是一款便捷的电子系统仿真平台软件,

ARES是一款高级的布线编辑器,它集成了高级原理布线图、混合模式SPICE电路仿真、PCB设计以及自动布线来实现一个完整的电子设计。 通过PROTEUS ISIS软件的VSM(虚拟仿真技术),用户可以对模拟电路、数字电路、模数混合电路,以及基于微控制器的系统连同所有外围接口电子元器件一起仿真。 在原理图中,电路激励源、虚拟仪器、图表以及直接布置在线路上的探针一起出现在电路中。任何时候都能通过“运行”按钮或“空格”键对电路进行仿真。 PROTEUS有两种截然不同的仿真方式:交互式仿真和基于图表的仿真。其中交互式仿真可实时观测电路的输出,因此可用于检验设计的电路是否能正常工作。 而基于图表的仿真能够在仿真过程中放大一些特别的部分,进行一些细节上的分析,因此基于图表的仿真可用于研究电路的工作状态和进行细节的测量。 PROTEUS软件的模拟仿真直接兼容厂商的SPICE模型,采用了扩充的SPICE3F5电路仿真模型,能够记录基于图表的频率特性、直流电的传输特性、参数的扫描、噪声的分析、傅里叶分析等,具有超过8000种的电路仿真模型。 PROTEUS软件的数字仿真支持JDEC文件的物理器件仿真,有全系列的TTL和CMOS数字电路仿真模型,同时一致性分析易于系统的自动测试。 PROTEUS软件支持许多通用的微控制器,如PIC、A VR、HC11以及8051;包含强大的调试工具,可对寄存器、存储器实时监测;具有断点调试功能及单步调试功能;具有对显示器、按钮、键盘等外设进行交互可视化仿真的功能。此外,PROTEUS可对IAR C-SPY、KEIL等开发工具的源程序进行调试。 此外,在PROTEUS中配置了各种虚拟仪器,如示波器、逻辑分析仪、频率计,便于测量和记录仿真的波形、数据。

三角波、方波、正弦波发生电路

波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定

方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。 因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比 例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率 范围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理:

[指南]正弦波、方波、三角波发生电路

[指南]正弦波、方波、三角波发生电路 一、设计目的及要求: 1.1、设计目的: (1).掌握波形产生电路的设计、组装和调试的方法; (2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。 1.2、设计要求: (1)设计波形产生电路。 (2)信号频率范围:100Hz——1000Hz。 (3)信号波形:正弦波。 二、实验方案: 方案一: 为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。选频网络由R、C和L、C等电抗性元件组成。正弦波振荡器的名称一般由选频网络来命名。正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。 产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。

(a)负反馈放大电路 (b)正反馈振荡电路 图1 振荡器的方框图 比较图1(a) 和 (b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。由于 ,,,,振荡电路的输入信号=0,所以=。由于正、负号的改变,正反馈的放大倍数为:XXXiif ,.A,,,式中是放大电路的放大倍数,F是反馈网络的放大倍数。A,Af,,1,AF .. 振荡条件: AF,1 .. 幅度平衡条件:,,=1 AF 相位平衡条件:,= ,+,= ,2n, AF AF .. 振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求|AF|,1 .. 这称为起振条件。既然,起振后就要产生增幅振荡,需要靠三极管大信号运用时|AF|,1 的非线性特性去限制幅度的增加,这样电路必然产生失真。这就要靠选频网络的作用,选出失真波形的基波分量作为输出信号,以获得正弦波输出。也可以在

方波-三角波产生电路

课程设计任务书 学生姓名:吴楠专业班级:电信科1001 指导老师:吴薇工作单位:武汉理工大学理学院 题目:方波-三角波产生电路 初始条件:直流可调稳压电源一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具 要求完成的主要任务:(包括课程设计工作量及其技术要求以及说明书撰 写等具体要求) 1、技术要求: 设计一个方波-三角波产生电路,要求方波和三角波的重复频率为 500Hz,方波脉冲幅度为6-6.5V,三角波为1.5-2V,振幅基本稳定, 振荡波形对称,无明显非线性失真。 2、主要任务: (一)设计方案 (1)按照技术要求,提出自己的设计方案(多种,芯片不 限)并进行比较; (2)以运算放大器为主,设计一个方波-三角波产生电路 (实现方案); (3)依据设计方案,进行预答辩; (二)实现方案 (4)根据设计的实现方案,画出电路逻辑图和装配图; (5)查阅资料,确定所需各元器件型号和参数; (6)在面包板上组装电路; (7)自拟调整测试方法,并调试电路使其达到设计指标要 求; (8)撰写设计说明书,进行答辩。 3、撰写课程设计说明书: 封面:题目,学院,专业,班级,姓名,学号,指导教师,日期 任务书 目录(自动生成) 正文:1、技术指标;2、设计方案及其比较;3、实现方案; 4、调试过程及结论; 5、心得体会; 6、参考文献 成绩评定表

时间安排: 课程设计时间:17周-18周 17周:明确任务,查阅资料,提出不同的设计方案(包括实现方案)并答辩; 18周:按照实现方案进行电路布线并调试通过;撰写课程设计说明书。 指导教师签名:年月日 系主任(或负责老师)签名:年月日

模拟电子方波—正弦波—三角波转换资料

第1章绪论 1.1简介 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。根据用途不同,有产生三种或多种波形的波形发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。它用于产生被测电路所需特定参数的电测试信号。在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。信号源可以根据输出波形的不同,划分为正弦波信号发生器、矩形脉冲信号发生器、函数信号发生器和随机信号发生器等四大类。正弦信号是使用最广泛的测试信号。 现在,我们通过对函数信号发生器的原理以及构成设计一个能变换出正弦波、方波、三角波的简易发生器。 众所周知,制作函数发生器的电路有很多种。本次设计先通过RC正弦波振荡电路产生正弦波,这是一种频率可调的移相式正弦波发生器电路,其频率稳定一般为实验所

集成运放构成正弦波-方波和三角波发生器

实验十一 集成运算放大器的基本应用(Ⅳ) ─ 波形发生器 ─ 一、实验目的 1、 学习用集成运放构成正弦波、方波和三角波发生器。 2、 学习波形发生器的调整和主要性能指标的测试方法。 二、实验原理 由集成运放构成的正弦波、方波和三角波发生器有多种形式,本实验选用最常用的,线路比较简单的几种电路加以分析。 1、 RC 桥式正弦波振荡器(文氏电桥振荡器) 图11-1为RC 桥式正弦波振荡器。其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率 2πRC 1 f O 起振的幅值条件 1 f R R ≥2 式中R f =R W +R 2+(R 3 // r D ),r D — 二极管正向导通电阻。 调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。如不能起振,则说明负反馈太强,应适当加大R f 。如波形失真严重,则应适当减小R f 。 改变选频网络的参数C 或 R ,即可调节振荡频率。一般采用改变电容C 作

频率量程切换,而调节R 作量程内的频率细调。 图11-1 RC 桥式正弦波振荡器 2、方波发生器 由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。图11-2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。它的特点是线路简单,但三角波的线性度较差。主要用于产生方波,或对三角波要求不高的场合。 电路振荡频率 式中 R 1=R 1'+R W ' R 2=R 2'+R W " 方波输出幅值 U om =±U Z 三角波输出幅值 调节电位器R W (即改变R 2/R 1),可以改变振荡频率,但三角波的幅值也随之变化。如要互不影响,则可通过改变R f (或C f )来实现振荡频率的调节。 Z 2 12 cm U R R R U += )R 2R Ln(1C 2R 1 f 1 2 f f o + =

三角波、方波振荡器 (1)要点

第1章 三角波、方波振荡器制作与调试 1.1设计任务 熟悉各元件仪器仪表与集成放大器的使用,按要求写出设计过程及调试过程和步骤,设计好电流电压转换装置并调试,使系统能输出方波和三角波。熟悉手工焊锡的常用工具的使用,基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊接。 1.2总体设计方案 该电路同时产生一个三角波和一个方波,它自动启动并且没有锁死的问题,IC1是一个集成块,其压摆率由CT 和RT 决定。IC2是一个施密特触发器;IC1的输出电平在施密特触发器的磁滞电平之间斜升和下降,它的输出驱动另一个集成电路,通过改变RT 可使工作频率在100~1范围内变化,只需三个电阻,一个电容和一只双运放,就能做成一个频率从0.1HZ 到100KHZ 的三角波和方波振荡器。 1.3系统分析与设计 1.3.1 自激振荡 因为电路中存在噪音,噪音信号引起电路电量波动,虽然很微弱,但它们具有多频谱的特性,即在在噪音中含有各次正弦波分量。这些谐波分量出现在放大电路的输入端,经过运算放大电路741的放大到达输出端。由于反馈网络的存在又把输出信号回送到电路的输入端。由于RT 引入的反馈是正反馈,那么微弱的噪音就会被不断的放大,使得在电路的输出端出现了具有一定幅值的电信号。 1.3.2积分运算电路 积分运算电路满足输出电压是输入电压的积分关系,通过计算可得到输出电压与输入电压的关系式为1 o i U U dt RC =?,图1.1是实现这一功能的电路,图二为方波转换为三角波的波形图。

图1.1 积分运算电路图1.2波形图 1.3.3 施密特触发器 施密特触发器作用主要是能够把变化缓慢的输入信号整形成边沿陡峭的矩形脉冲,输入的信号只要幅度大于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号(如图1.3)。同时,施密特触发器还可利用其回差电压来提高电路的抗干扰能力。它是由两级直流放大器组成,电路如图1.4 图1.3 脉冲信号图1.4施密特触发器 应用施密特触发器可以将波形变换的原理,即可将三角波波变成矩形波。施密特触发器IC2,其中电阻47K为正反馈。IC1的输出电平在施密特触发器的磁滞电平之间斜升和下降,它输出的三角波驱动另一个集成电路IC2,输出方波。将输出的方波通过RT反馈到IC1的输入,IC1 与IC2通过一个电阻耦合,这样就构成了一个连续输出三角波和方波的振荡器。改变RT就能做成一个频率从0.1HZ到100KHZ的三角波和方波。

正弦波-方波-三角波发生电路(模拟电子技术课程设计)

一设计实验目的 (1)掌握电子系统的一般设计方法 (2)掌握模拟IC器件的应用 (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计 (4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则 (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决 调试中所发生的问题 (6)学会撰写课程设计报告 (7)培养实事求是,严谨的工作态度和严肃的工作作风 (8)培养综合应用所学知识来指导实践的能力 (9)完成一个实际的电子产品;进一步提高分析问题、解决问题的能力 设计一个正弦波-方波-三角波发生电路 (1)正弦波-方波-三角波的频率在100HZ~20KHZ范围内连续可调; (2)正弦波-方波的输出信号幅值为6V。三角波输出信号幅值为0~2V连续可调 (3)正弦波失真度 ≦5%。 二实验中的仪器设备 三实验所用电路 调节方波脉冲宽度 调节正弦波失真程度 调节方波电压大小

调节反馈电路的放大倍数 四实验结果 1.正弦波-方波-三角波的频率在28.6HZ~28.6KHZ范围内连续可调;对应的28.6HZ时,对应的电容大小为1uf;对应的28.6KHZ时,对应的电容大小为0.01uf 2.方波的输出幅值为6V;正弦波的一级输出幅值为2.8V,二级输出幅值为 3.6V;三角波峰值在0~4V内连续可调 3.正弦波失真度 一讨论 1.实验中发生的问题 (1) 我们由一级电路得到的方波峰峰值达到24V左右,后通过分压电路得到 所需要的方波电压峰值为6V

方波·三角波转换

一方波、三角波发生器 设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 二、 设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V 或±15V 直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 7实现方波和三角波输出电压:方波输出幅值110o p p U V -≤, 28o p p U V -≤。能够输出确定频率的三角波 三、 原理图 四、 设计说明书 1、设计题目 方波、三角波发生器 2设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法

4.培养综合应用所学知识来指导实践的能力法 3、设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V 或±15V 直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 4、设计过程 实验器材 1) uA741 2片 2) 稳压管(4.3或5.3V ) 2只 3) 15k 电位器 1只 4) 1k 欧姆电阻 1只 5) 10k 欧姆电阻 2只 6) 7.5 k 欧姆电阻 1只 7) 0.15uF 电容 1只 8) ±15V 直流电源 2台 9) 万用表 1台 10)示波器 实验原理 1.滞回电压比较器 图1为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有 2 1o 1in 22 1 o 2in 1 p 1111 R R u R u R R R u R u R u ++= + += 根据翻转条件,令上式右方为零,得此时的输入电压 th Z 2 1o 2 1in U U R R u R R u ==- = U th 称为阈值电压。滞回电压比较器的直流传递特性如图2所示。设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。

方波-三角波-正弦波函数信号发生器

苏州科技学院天平学院
模拟电子技术课程设计指导书
课设名称正弦波-方波-三角波信号发生器设计 学生姓名
王凌飞 徐跃
高尚 专业物联网 1021 指导教师胡伏原
一 设计课题名称
正弦波-方波-三角波信号发生器设计
二 课程设计目的、要求与技术指标
2.1 课程设计目的 (1) 巩固所学的相关理论知识; (2) 实践所掌握的电子制作技能; (3) 会运用 EDA 工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计; (4) 通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的
原则; (5) 掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分
析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6) 学会撰写课程设计报告;

(7) 培养实事求是,严谨的工作态度和严肃的工作作风; (8) 完成一个实际的电子产品,提高分析问题、解决问题的能力。
2.2 课程设计要求
(1) 根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数; (2) 列出所有元器件清单; (3) 安装调试所设计的电路,达到设计要求; (4) 记录实验结果。
2.3 技术指标
(1) 输出波形:方波-三角波-正弦波; (2) 频率范围:100HZ~200HZ 连续可调; (3) 输出电压:正弦波-方波的输出信号幅值为 6V.三角波输出信号幅值为 0~2V 连续可调; (4) 正弦波失真度: ? ? 5% 。
图 3.2 函数发生器设计原理
函数发生器组成框图,主要有 RC 桥式振荡电路,过零比较器,积分器三大主要模块电 路构成。
经过 RC 桥式振荡电路产生正弦波波,再经过零比较器产生方波,然后由积分器产生三角
波。其总的原理设计框如图:
RC 桥式振荡器
过零比较器
积分器


正弦波
方波

图 1 总的原理框图
2.2 正弦波产生电路
利用 RC 桥式振荡电路产生正弦波,原理如下图所示;其中 RC 串并联电路构成正反馈支路, 同时兼并选频网络,R1,R4,R5 及二极管等原件构成负反馈和稳幅环节。
图 2RC 桥式振荡电路原理图

相关文档
相关文档 最新文档